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Chronic stroke patients show early and robust
improvements in muscle and functional
performance in response to eccentric-overload
flywheel resistance training: a pilot study
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Abstract

Background: Resistance exercise comprising eccentric (ECC) muscle actions enhances muscle strength and
function to aid stroke patients in conducting daily tasks. The purpose of this study was to assess the efficacy of a
novel ECC-overload flywheel resistance exercise paradigm to induce muscle and functional performance adaptations
in chronic stroke patients.

Methods: Twelve patients (~8 years after stroke onset) performed 4 sets of 7 coupled concentric (CON) and ECC actions
using the affected limb on a flywheel leg press (LP) device twice weekly for 8 weeks. Maximal CON and ECC isokinetic
torque at 30, 60 and 90°/s, isometric knee extension and LP force, and CON and ECC peak power in LP were measured
before and after training. Balance (Berg Balance Scale, BBS), gait (6-Min Walk test, 6MWT; Timed-Up-and-Go, TUG),
functional performance (30-s Chair-Stand Test, 30CST), spasticity (Modified Ashworth Scale) and perceived participation
(Stroke Impact Scale, SIS) were also determined.

Results: CON and ECC peak power increased in both the trained affected (34 and 44%; P < 0.01), and the untrained,
non-affected leg (25 and 34%; P < 0.02). Power gains were greater (P = 0.008) for ECC than CON actions. ECC isokinetic
torque at 60 and 90°/s increased in the affected leg (P < 0.04). The increase in isometric LP force for the trained, affected
leg across tests ranged 10-20% (P < 0.05). BBS (P = 0.004), TUG (P = 0.018), 30CST (P = 0.024) and SIS (P = 0.058) scores
improved after training. 6MWT and spasticity remained unchanged.

Conclusions: This novel, short-term ECC-overload flywheel RE training regime emerges as a valid, safe and viable
method to improve muscle function, balance, gait and functional performance in men and women suffering from
chronic stroke.
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Background
Stroke is a leading cause for long-term disability [1] that
often compromises muscle strength, power, balance and
gait [2-5] frequently accompanied by spasticity [6,7]. To
overcome adverse neuromuscular changes and associ-
ated impairments consequent to stroke, various exercise
intervention strategies have been implemented [8]. More
recently, resistance exercise (RE) has become a primary
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target for stroke rehabilitation [9]. Indeed, RE training,
challenging the more conservative approach of cau-
tiousness, employing high-intensity muscle actions, has
proven efficacy to ameliorate vital physical functions in
stroke patients [10,11] without exacerbating spasticity
[12,13]. More importantly, improvements in neuromus-
cular function achieved through RE training interven-
tions appear to be carried over to long lasting benefits
aiding patients in daily physical tasks [14].
For unknown reason(s) stroke patients show greater

discrepancy in shortening (concentric; CON) relative to
lengthening (eccentric; ECC) maximal voluntary force
Med Central Ltd. This is an Open Access article distributed under the terms of
tp://creativecommons.org/licenses/by/4.0), which permits unrestricted use,
, provided the original work is properly credited. The Creative Commons Public
mons.org/publicdomain/zero/1.0/) applies to the data made available in this

mailto:rodrigo.fernandez.gonzalo@ki.se
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


Figure 1 Cartoon showing the flywheel leg press resistance
exercise device for stroke patients.
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compared with healthy individuals [3,4,15]. As skeletal
muscle inherently produces much less force in CON
than ECC actions [16], traditional RE regimes executed
by lifting and lowering weights or weight stacks, offer
modest and insufficient stimulus providing the goal is
maximizing neural drive and muscle activity. In support,
stroke patients subjected to isokinetic RE, showed more
robust neural adaptations following ECC than CON
mode training [17], potentially translated into the more
substantial benefits evident in functional daily activities
[18]. Additionally, ECC training using the affected limb
only, may elicit cross-transfer adaptations such that
muscle strength and power of the non-affected limb in-
crease as well [17]. Nevertheless, CON muscle actions
should be incorporated in any rehabilitation program
prescribed to stroke patients as they are equally import-
ant in daily tasks, e.g., rising from a chair or lifting a
shopping bag, and obviously orchestrating with ECC ac-
tions in most activities of locomotion of coupled CON
and ECC actions involving the stretch-shortening cycle.
In contrast to weight training employing constant ex-

ternal load, iso-inertial exercise [19] offers coupled CON
and ECC actions, and maximal voluntary resistance
through the full range of motion during CON actions,
and if desired, brief episodes of ECC overload [19,20].
This method, using inertial resistance provided by rotat-
ing flywheel(s) set in motion by the trainee, has shown
efficacy in counteracting deleterious disuse effects pro-
ducing muscle atrophy and dysfunction [21,22]. Like-
wise, healthy individuals subjected to ECC-overload
flywheel RE training experienced more profound in-
creases in force and power via increased neural activation,
than subjects performing conventional RE training [23,24].
Given the unique features, ECC-overload flywheel RE
emerges as an attractive approach to be offered to stroke
patients.
The current study investigated the efficacy of an ECC-

overload flywheel RE training challenge to enhance
muscle strength and power in patients suffering from
chronic stroke. We hypothesized the 8-week unilateral
training intervention, using the affected lower limb,
would increase force and power of both limbs, and these
effects to be accompanied by improvements in balance
and daily task functional performance, without provok-
ing increased spasticity.

Methods
General design
Twelve chronic stroke patients with gait deficits per-
formed unilateral flywheel leg press (LP) RE (Figure 1)
using the affected limb twice weekly for 8 weeks. Bal-
ance, gait, functional performance, and muscle function
(i.e. maximal CON and ECC isokinetic torque at 30, 60
and 90°/s, maximal knee extension and LP isometric
force, and CON and ECC peak power during flywheel
LP exercise) were assessed before, and after the training
period. Time of the day was replicated (±2 h) from pre
to post training tests. Prior to any test, patients had
completed 3 familiarization sessions on the LP flywheel
device.

Participants
Subjects were community dwelling and had been treated
at the Östersunds Rehabcenter (Östersund Hospital,
Östersund, Sweden). Inclusion criteria were (a) a history
of stroke (>2 years post stroke) with unilateral motor
deficits affecting gait pattern and/or speed, (b) independ-
ent walking ability with or without walking aid at least
10 m, (c) to have completed standard rehabilitation, yet
not to be involved in any structured rehabilitation program
for the last 6 month prior to the study and, (d) ability to
perform closed-chain exercise using the prescribed LP
training device. Significant psychiatric or cognitive deficits,
major cardiorespiratory diseases (treated and controlled
arterial hypertension were not considered exclusion
criterion), chronic pain or joint affection were exclusion
criteria factors. After a preliminary selection using hos-
pital records, candidate participants were familiarized
with training and test procedures, and examined by a
physiotherapist and a rehabilitation medicine consultant.
Possible risks and discomforts associated with the study
protocols were explained and written informed consent
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was obtained. In particular, our pre-study assessments
revealed a clear-cut risk for muscle strains and joint
(mainly knee and hip) injury as the affected leg exhibited
diminished joint stiffness and stability while performing
unrestricted force through the entire range of motion
and brief eccentric overload. Thus, a custom made device
offered lateral leg support avoiding involuntary abduction
of the affected limb such that the limb was stabilized
and ankle, knee and hip joints positioned in the same
vertical plane during leg flexion/extension. Subjects were
instructed not to perform any additional strenuous lower-
limb activity during the intervention. The study protocol
was approved by the Regional Ethical Review Board in
Umeå (No. 09-190aM; 2009-1394-31).

Balance, gait, functional performance, spasticity and
perceived participation
Tests were performed ~12 days before and after the train-
ing period by an independent physiotherapist blinded to
the intervention and purpose of the study. The Berg
Balance Scale (BBS; [25]) assessed balance. This test
includes 14 different items to determine dynamic and
static balance. Gait performance was assessed by the
Timed-Up-and-Go (TUG; [26]) and the 6-Minute Walk
tests (6MWT; [27]). In the TUG test, patients were
instructed to rise from a chair, walk at a fast, still comfort-
able speed 3 m, turn around, walk back and sit down in
the chair. Time to the nearest second was recorded in
three trials, and the best value was used for data analysis.
The 6MWT consisted of walking 6 min at a self-selected
speed. The distance was recorded to the nearest meter.
Functional performance was also measured by means of
the 30-s Chair-Stand Test (30CST; [28]). From a seated
position, patients were requested to raise from a chair to
standing, and sit down as many times as possible during
30 s. The Modified Ashworth Scale [29] was used to assess
spasticity of the lower limbs. Perceived participation was
assessed using the Stroke Impact Scale (SIS-Patient-v.2.0
[30]). Items from the SIS related to physical deficits, every-
day activities and ability to move in- and outside home
(domains 1, 5 and 6) were completed by the participants.
Analysis of SIS was performed following Duncan et al.
[30]. Briefly, mean values for domains 1, 5, and 6 were cal-
culated (100 x (mean value of domains 1, 5 and 6 – 1)/
(5 – 1)) for each patient. The greater the relative value,
the fewer the restrictions in perceived participation.

Isometric and isokinetic knee extension torque
Unilateral knee extension torque of either leg was
assessed ~10 days before and ~3 days after completing
the training intervention. The patient was positioned in
the testing device (IsoMed2000 dynamometer; D&R
Ferstl GmbH, Hemau, Germany; 200 Hz). Individual
machine settings were recorded, saved and replicated in
subsequent sessions. A standardized warm-up comprised
three submaximal unilateral isometric actions at 90° knee
flexion. Beginning with the non-affected leg, three max-
imal isometric actions, each sustained for 5 s, were exe-
cuted 1 min apart. Peak torque (Nm) averaged over a 1-s
window was chosen for data analysis. After 2 min recov-
ery, unilateral CON and ECC isokinetic torque was
assessed at 30, 60 and 90°/s, respectively. One min was
allowed between different speed settings, and 2 min be-
tween CON and ECC actions. Three submaximal actions
preceded each maximal attempt. The highest peak torque
for each muscle action and speed mode was chosen for
further analysis.

Peak power
Peak power was assessed ~6 days before and ~5 days
after the intervention. Patients completed 2 sets of 7
maximal CON-ECC unilateral actions for either limb
using a flywheel leg press (YoYo® Technology AB,
Stockholm, Sweden; Figure 1) device with a lateral leg
support to avoid involuntary abduction of the affected
limb during exercise. This apparatus provides unlimited
resistance during coupled CON and ECC actions using
the inertia of a spinning flywheel (0.036 kg · m-2) set in
rotation by the trainee. Following initiation of flywheel
momentum using modest effort, 7 consecutive repeti-
tions were performed with maximal effort, accelerating
rotation and hence speed of the wheel during CON, and
produce deceleration in the subsequent ECC action. Pa-
tients were instructed to push with maximal effort
through the entire range of motion in the CON action
(i.e., from ~70° to almost full extension), then, and as
the strap rewinds about the flywheel shaft, aim at resist-
ing the inertial force. Thus, patients were requested to
gently resist during the first third of the ECC action, and
then apply maximal breaking force to stop the move-
ment at about 70° knee flexion. Once the flywheel comes
to a stop, a subsequent CON action is instantly initiated.
This methodology and strategy has successfully been used
to elicit ECC overload [20,23]. Peak power was measured
in all repetitions using an encoder (100 Hz) and associated
software (SmartCoach™, Stockholm, Sweden). Three min
recovery was allowed between sets. A 10-min warm-up on
a cycle ergometer preceded the peak power tests.

Isometric leg press force
Isometric LP force was measured using the flywheel de-
vice ~3 days before and ~7 days after the intervention.
A foot-platform with a load cell was mounted for each
foot on the exercise device, allowing individual force
measurements (100 Hz) of each leg. Isometric tests were
performed bilaterally and unilaterally for either leg at 90
and 120° knee angle. Patients were instructed to push
as hard as possible for 5 s against the foot-platform,
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adjusted and fixed in the desired position using a chain
system. Additional instructions and verbal encourage-
ment to ensure maximal voluntary effort in tests using
both the affected and non-affected limbs were offered.
Two repetitions, with 1 min recovery in between, were
carried out for each action mode. A third repetition was
allowed if values differed >5%. Peak force averaged over
a 1 s window was chosen for data analysis. A warm-up
consisting of 10 min cycling and 3 submaximal bilateral
isometric repetitions preceded these tests.

Training intervention
Patients performed unilateral RE training using the af-
fected leg on the flywheel LP device (Figure 1), 2 days
per week during 8 weeks with ≥48 h of rest between ses-
sions. Four sets of 7 repetitions at maximal effort were
performed from ~70° knee flexion to almost full exten-
sion, with 3 min recovery between sets. Peak CON and
ECC power was measured (see above) in all repetitions.
Real time performance feedback was offered to the
trainees at all times. Any training session followed a
warm-up consisting of 10-min cycling at a submaximal
load and one set of 7 coupled CON/ECC actions using
modest effort on the LP apparatus.

Data analysis
Results are presented as mean ± standard deviation (SD),
unless otherwise indicated. Balance, gait and functional
performance variables were analyzed by a one-way
ANOVA over time. Isometric knee extension torque was
analyzed using a two-way ANOVA with repeated mea-
surements for time and leg. CON and ECC isokinetic
torque were examined independently employing a three-
way ANOVA (factors time, leg and speed). Peak power
was analyzed independently for CON and ECC muscle
actions by a two-way ANOVA with repeated measure-
ments for time and leg. In addition, a two-way ANOVA
(factors time x muscle action) was performed to assess
differences between CON and ECC actions. Isometric LP
force at 90 and 120° was examined separately using
a three-way ANOVA with factors time, leg and mode
(bilateral/unilateral). Training data were examined employ-
ing a two-way ANOVA (factors session and muscle action).
Data normality was assessed through histograms and the
Shapiro-Wilk test. When significant interactions were
found, simple effect tests were employed. To compen-
sate for multiple post hoc comparisons, the false discovery
rate procedure was used [31]. The level of significant was
set at 5% (P <0.05).

Results
Fifteen patients, most of them being habitually active
who recently had experienced infrequent low intensity
strength training, were initially recruited. Medical issues,
unrelated to the intervention per se prevented three in-
dividuals to complete the prescribed study protocol. In-
dividual characteristics of the remaining 12 patients
showing 100% compliance to the study protocol are
depicted in Table 1. Six individuals were cognitively in-
tact; 6 exhibited mild aphasia (5 showed expressive form
and 1 individual combined expressive and impressive).
Eleven patients were on medication i.e., antihypertensive,
lipid lowering or anti-thrombotic, or combinations of
these; 3 were prescribed anti-depressants i.e., selective
serotonin reuptake inhibitors; 3 patients were on anti-
epileptic drugs i.e., lamotrigin and levetiracetam or
carbamazepine. Medication was neither altered nor intro-
duced during the study. Four patients had received botulli-
num toxin injection at some time i.e., injection to arm and
leg muscles 3 months (n = 1) or 24 months (n = 3) prior to
the study.

Training intervention
There was a session x muscle action interaction for peak
power (F = 5.5, P <0.0005; Figure 2). CON and ECC
peak power increased from session 5 to 16 (P <0.05;
except for CON in session 6; P = 0.082). Peak power
was greater for ECC than CON in sessions 5, 8-9 and
11-16 (P <0.04).

Isometric and isokinetic knee extension torque
The non-affected showed 1.4-fold greater isometric knee
extension torque than the affected leg both pre and post
training (Table 2; main effect of leg; F = 63.9, P <0.0005).
There was no change over time for either leg. CON
isokinetic peak torque was 1.3-fold greater in the non-
affected than the affected leg (main effect of leg; F = 15.5,
P = 0.002), and higher at low compared with high angular
velocities (main effect of speed; F = 40.6, P <0.0005).
CON isokinetic torque was unaltered after training
(Table 2). ECC isokinetic peak torque showed leg x time
interaction (F = 5.6, P = 0.038). Thus, only the affected,
trained leg showed increased ECC-torque from pre to post
training at 60 (8%; P = 0.036) and 90°/s (7%; P <0.0005;
Table 2). Overall ECC torque was greater in the non-
affected than the affected leg (main effect of leg; F = 56.1,
P <0.0005).

Peak power
There was a time x muscle action interaction (F = 11.0,
P = 0.008) in peak power. Thus, ECC peak power in-
creased more than CON in both the affected and the
non-affected leg (Figure 3A). There was a time x leg
interaction in ECC peak power (F = 5.1, P = 0.046).
Thus, although ECC peak power increased in both the
affected and non-affected leg (affected; P = 0.019; non-
affected; P = 0.003), the gains were greater for the af-
fected leg (44% vs. 35%). In addition, the non-affected



Table 1 Characteristics of the 12 patients that completed the study at baseline

Patient Age (yr) Sex Years since onset Mechanism of stroke Affected side Walking aid

1 57.1 M 12.2 Hemorrhagic R None

2 57.8 F 5.9 Ischemic L Walking stick

3 62.3 M 17.2 Hemorrhagic L Forearm crutch

4 51.9 F 9.9 Ischemic R None

5 71.6 M 3.9 Ischemic L Walking stick

6 75.4 M 9.6 Ischemic R Walking stick

7 58.1 M 10.2 Hemorrhagic R None

8 66.2 M 3.0 Ischemic L None

9 69.3 F 3.9 Hemorrhagic R None

10 70.6 M 4.5 Ischemic L Rollator

11 68.6 M 2.4 Ischemic R None

12 50.7 M 10.9 Hemorrhagic R None

Mean 63.3 ± 8.1 7.8 ± 4.5
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leg produced more ECC peak power both pre (P = 0.001)
and post training (P <0.0005), compared with the af-
fected limb. CON peak power showed no time x leg
interaction. However, there was a main effect of time
(F = 10.2, P = 0.009) as CON peak power increased in
both the affected (34%) and the non-affected (24%) leg.
In addition, there was a main effect of leg (F = 31.7,
P <0.0005) due to greater overall CON peak power
in the non-affected than the affected leg.

Isometric leg press force
Isometric LP force at 90° knee angle. There was a main
effect of time (F = 5.1, P = 0.045) mainly as the affected
leg produced greater force at post compared with pre
training (P = 0.003 and P = 0.008 for unilateral and bilateral
mode, respectively). There was a leg x mode interaction
Figure 2 Concentric (CON) and eccentric (ECC) leg press peak
power (W) of the affected limb over 16 exercise sessions.
Significant main effects (P <0.05); a = interaction session x action,
b =main effect of session, c = main effect of action. Significant
simple effects (P <0.05); *vs. session 1; #vs. CON action. Data
presented as mean ± standard error of the mean.
(F = 9.4, P = 0,011; Figure 3B). Thus, while the affected
leg produced similar force during bilateral and unilat-
eral conditions, the non-affected leg produced higher
force in the unilateral than the bilateral test, both at
pre (P = 0.036) and post (P = 0.001) training.
Isometric LP force at 120° knee angle. There was a

time x leg interaction (F = 8.6, P = 0.014; Figure 3C).
Thus, while the affected leg showed increased isometric
force both bilaterally (17%, P = 0.045) and unilaterally
(20%, P = 0.021), force of the non-affected leg remained
unchanged. Force was greater for the non-affected
than the affected leg at pre training in both the bilateral
(P = 0.027) and unilateral (P <0.0005) mode. Force was
greater in the affected vs. non-affected limb in the unilat-
eral mode only at post training (P = 0.025). There was a
leg x mode interaction (F = 10.7, P = 0.008). Thus, the
non-affected leg produced more force in unilateral than
bilateral modes at pre (P = 0.01) and post (P = 0.004)
training. Force of the affected leg was similar across
modes.

Balance, gait, functional performance, spasticity and
perceived participation
Balance (BBS, 7%, P = 0.004), TUG (17%, P = 0.018) and
30CST (17%, P = 0.024) improved with training (Table 3).
There were no changes in 6MWT distance (P = 0.68) or
Modified Ashworth Scale score (P = 0.24; Table 3). There
was an increase in perceived participation (SIS) after
training that was at the limit of statistical significance
(P = 0.058).

Discussion
The current study assessed the efficacy of a novel ECC-
overload flywheel RE training paradigm to improve
force, power, balance and functional performance in



Table 2 Isometric and isokinetic knee extension torque (Nm) pre and post training

Affected leg Non-affected leg

Pre Post Δ% Pre Post Δ%

Isometric torqueb 135 ± 34 138 ± 39 2 195 ± 41# 187 ± 35# -4

CON torque at 30°/sb, c 113 ± 29 120 ± 32 6 147 ± 33# 144 ± 37# -2

CON torque at 60°/sb, c 99 ± 28 102 ± 32 3 123 ± 42# 131 ± 40# 6

CON torque at 90°/sb, c 86 ± 26 88 ± 34 2 111 ± 46# 115 ± 50# 4

ECC torque at 30°/sb 144 ± 40 149 ± 40 3 171 ± 36# 172 ± 35# 1

ECC torque at 60°/sa b 143 ± 41 154 ± 45* 8 178 ± 40# 175 ± 37# -2

ECC torque at 90°/sa b 141 ± 36 151 ± 39* 7 173 ± 36# 174 ± 36# 1

CON; concentric, ECC; eccentric. Significant main effects (P <0.05); ainteraction leg x time; bmain effect of leg; cmain effect of speed; Significant simple effects
(P <0.05); *vs. pre value within a leg; #vs. affected leg for a time point.

Figure 3 Concentric (CON) and eccentric (ECC) leg press peak power (W) of the affected and non-affected limbs (A), and isometric force in
the leg press at 90° (B) and 120° (C) knee angle for the affected and non-affected leg during unilateral and bilateral tests performed pre and
post training. Significant main effects (P <0.05); a = interaction time x leg, b = interaction time x muscle action, c = interaction leg x mode, d =main
effect of time, e =main effect of leg, f =main effect of mode. Significant simple effects (P <0.05); *vs. Pre within a leg; #vs. affected leg; §vs. bilateral mode
within a leg and time point.
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Table 3 Balance, gait, functional performance and
perceived participation pre and post training

Pre Post

Berg Balance Scale (a.u.) 48.5 ± 8.7 51.7 ± 6.4*

Timed Up-and-Go (s) 16.9 ± 9.1 14.1 ± 7.3*

6-minute Walk Test (m) 292.9 ± 144.5 295.3 ± 146.8

30-second Chair-Stand (reps) 8.5 ± 3.5 9.9 ± 4.6*

Modified Ashworth Scale (a.u.) 0.77 ± 0.54 0.88 ± 0.55

Stroke Impact Scale (a.u.) 62.2 ± 14.5 66.0 ± 12.8§

a.u.: arbitrary units, s: seconds, m: meter, reps: repetitions. Significant differences:
*vs. Pre (P <0.05); §at the limit of statistical significance vs. Pre (P = 0.058).
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physically active chronic stroke patients (2-17 years post
stroke). Patients complying with the 8-week intervention
showed marked gains in muscle power of the trained af-
fected, but of the untrained non-affected limb as well.
Also, there were increases in isometric leg press force
and isokinetic ECC, not CON, knee extension torque,
accompanied by improved balance and functional per-
formance without exaggerating spasticity. Thus, the
results of this investigation suggest that short-term
ECC-overload flywheel RE training is a valid, safe and
viable method to improve muscle function, balance, gait
and functional performance in men and women suffering
from stroke.
The ECC-overload flywheel RE training was well re-

ceived by chronic patients, as indicated by the overall
37% increase in peak power across sessions (Figure 2),
without exacerbating spasticity. Despite the low vol-
ume or exercise dose carried out in each training
session, i.e., 28 coupled CON-ECC actions equivalent
to <1 min of contractile activity, power and balance im-
provements induced by the current intervention were
robust and comparable to those achieved after more ex-
tended (i.e., 12 weeks) training [11,32] using conservative
methods employing either isokinetic or gravity dependent
loading. Thus, unique features characteristic of the exer-
cise training paradigm used here and elsewhere [19-24],
allowing for brief episodes of ECC-overload, unrestricted
CON force of any action through the entire range of
motion, variable velocity, and call for acceleration and
deceleration of each coupled CON-ECC action, appear to
reinforce the positive effects of RE, beyond what has been
noted in stroke patients subjected to more conservative
RE methods [11,32].
As muscle power, more so than strength, correlates

with physical performance in individuals showing re-
stricted mobility [33,34], rehabilitation programs pre-
scribed to stroke patients with obvious gait deficits,
should target muscle power as a primary outcome. Inter-
estingly, the marked increase in peak power of the
trained affected leg after the current intervention was
accompanied by an increase of nearly the same magnitude
in the untrained non-affected leg. Such cross-education ef-
fect has previously been reported in stroke patients sub-
jected to RE employing ECC actions only [17], inferring
RE favoring ECC actions prompts important central ner-
vous system adaptations [35]. In support, cortical activity
is greater during ECC than CON actions [36]. Hence,
neural signaling evoked by ECC exercise, and perhaps
ECC-overload flywheel RE even more so, may reinforce
certain neural strategies due to the variable velocity, and
accelerating and decelerating coupled CON-ECC muscle
actions, executed at maximal effort [37]. In support, ECC-
overload flywheel RE elicited more prominent neural ad-
aptations than constant load CON-ECC RE training in
healthy individuals [24]. Altogether, the specific fea-
tures of the current exercise modality appear to facili-
tate more favorable stimulus than traditional constant
load or velocity (i.e., isokinetic) RE training paradigms,
because of the emphasis on stretch-shortening cycle
and stretch reflex, resulting in increased afferent traffic
and proprioception, and/or the unique motor unit re-
cruitment strategy typical of ECC actions. Indeed, the
current resistance exercise paradigm seems to induce
greater cross-education adaptations than more trad-
itional training protocols [17,38].
Isometric leg press force was higher, and increases in

response to training greater, at 120 than 90° knee angle,
suggesting stroke patients not only exhibit more weak-
ness in the innermost part of the range of motion of a
joint [4], but are also less prone to benefit from the exer-
cise stimulus imposed in that particular range of motion.
The overall increase in leg press force for the paretic
limb amounted to 10-20%. Neither limb showed in-
creased isometric knee extension torque post training.
This finding concerts the principle of training specificity
suggesting the transfer effect is most evident in func-
tional mode(s) mimicking the particular exercise exe-
cuted during training [39].
Bilateral maximal voluntary force deficits, such that

the summed force produced by each limb alone exceeds
force in a bilateral action, are well documented in
healthy individuals. In the current investigation, bilateral
asymmetry was evident for the non-affected leg (<15%
force in the bilateral action), both pre and post training,
and regardless of knee angle. This observation is consist-
ent with the report of McQuade et al. [40], noting bilat-
eral asymmetries in the non-paretic m. biceps brachii of
stroke patients executing isometric elbow flexions, yet
contrasts reports showing bilateral asymmetries of the
affected leg only [41] or both legs [42], when subjected
to lower limb isometric actions. While ample evidence
suggests neural factors are responsible for these deficits
[43,44], inconsistencies in outcome across the above
studies remain to be explored, e.g., time since stroke,
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severity of impairment, and muscle specific recruitment
of neural pathways.
Balance, a critical asset in any upright position with

obvious impact on quality of life [45,46] and physical
performance in daily activities [47], is typically impaired
after stroke. The current low-volume, high-load RE
protocol induced early significantly enhanced balance,
assessed by means of BBS. Yet, only one patient attained
the proposed limit for minimal clinically significant
difference for the elderly, i.e., an 8-point increment
[48]. It is worth noting that patients presenting lower
BBS scores before training experienced the most sub-
stantial improvement in balance. Thus, while five pa-
tients displayed scores ≤45 (range 28-45), indicating
increased risk of fall [49] prior to training, only one
patient appeared to be at risk after the intervention
(BBS score 34). Even though the current method asses-
sing balance, i.e., BBS, may have allowed for a “ceiling
effect” in some patients, it remains the novel exercise
intervention employed here, improved balance in stroke
patients.
The current training paradigm also improved 30CST

and TUG performance. Changes in 30CST between 2.0
and 2.6 are associated with improvements corresponding
to minimum clinically important difference [50]. In the
present study, increases between 2 and 6 suggest 6 pa-
tients exhibited clinically important improvements. TUG
scores between 0.8 and 1.4 sec infer major improvement
[50]. In the present study, 9 patients showed enhanced
TUG performance by 1 to 13 sec, indicating major sig-
nificant clinical improvement.
Walking distance, as reflected in the 6MWT, was un-

changed. While our exercise regime did not intend to
improve walking, some reports have inferred a causal re-
lationship between muscle strength and walking capacity
[51,52], or that RE may serve to improve comfortable
gait speed and total distance walked [53]. It is worth
recalling that whereas use of the hip flexors is critical for
walking in stroke patients [51], involvement of this
muscle group was not emphasized with the current RE
paradigm, which rather called for closed-chain, simul-
taneous knee- and hip extension. Further, given the par-
ticular exercise stimulus imposed in this investigation
(<2 min per week), patients were not anticipated to
benefit in the 6MWT. Nevertheless, the RE paradigm
employed here enhanced TUG, an established mean
assessing gait performance after stroke [13,14]. Thus,
while features related to short-distance walking, like fast-
est self-selected speed were improved after ECC-overload
RE training, additional exercise tasks are warranted to
carry on walking over longer distances.
Conclusions from the current pilot study should con-

sider that individuals examined comprised 12 chronic,
yet low severity disabled stroke patients with minimal
spasticity. Future research employing ECC-overload fly-
wheel RE warrants investigations comprising more severely
injured stroke victims, as well as control individuals, to af-
firm the applicability of this novel exercise rehabilitation
paradigm to a broader range of men and women suffering
from stroke.
Conclusions
The current 8-week flywheel RE paradigm, prescribed
to stroke patients, facilitated robust increases in muscle
strength and power of the affected trained limb, as well
as improved power of the non-affected untrained leg.
These adaptations were accompanied by significantly en-
hanced balance, gait and functional performance. While
this particular iso-inertial exercise insult allows for unre-
stricted force through the entire range of motion of any
performed CON muscle action, it also offers brief epi-
sodes of ECC-overload. Our novel exercise paradigm ap-
pears to present a safe, viable and highly effective method
to improve skeletal muscle function, and performance in
daily living activities, in individuals suffering from chronic
stroke.
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