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Abstract
The study of gait variability, the stride-to-stride fluctuations in walking, offers a complementary way
of quantifying locomotion and its changes with aging and disease as well as a means of monitoring
the effects of therapeutic interventions and rehabilitation. Previous work has suggested that
measures of gait variability may be more closely related to falls, a serious consequence of many gait
disorders, than are measures based on the mean values of other walking parameters. The Current
JNER series presents nine reports on the results of recent investigations into gait variability. One
novel method for collecting unconstrained, ambulatory data is reviewed, and a primer on analysis
methods is presented along with a heuristic approach to summarizing variability measures. In
addition, the first studies of gait variability in animal models of neurodegenerative disease are
described, as is a mathematical model of human walking that characterizes certain complex
(multifractal) features of the motor control's pattern generator. Another investigation
demonstrates that, whereas both healthy older controls and patients with a higher-level gait
disorder walk more slowly in reduced lighting, only the latter's stride variability increases. Studies
of the effects of dual tasks suggest that the regulation of the stride-to-stride fluctuations in stride
width and stride time may be influenced by attention loading and may require cognitive input.
Finally, a report of gait variability in over 500 subjects, probably the largest study of this kind,
suggests how step width variability may relate to fall risk. Together, these studies provide new
insights into the factors that regulate the stride-to-stride fluctuations in walking and pave the way
for expanded research into the control of gait and the practical application of measures of gait
variability in the clinical setting.

Introduction
Like most physiologic signals, measures of gait are not
constants but rather fluctuate with time and change from
one stride to the next, even when environmental and
external conditions are fixed (Figure 1). In healthy adults,

these stride-to-stride fluctuations are relatively small and
the coefficient of variation of many gait parameters (e.g.,
gait speed, stride time) is on the order of just a few percent
[1-3], testimony to the accuracy and reliability of the fine-
tuned systems that regulate gait. Recently, the apparently

Published: 20 July 2005

Journal of NeuroEngineering and Rehabilitation 2005, 2:19 doi:10.1186/1743-
0003-2-19

Received: 07 July 2005
Accepted: 20 July 2005

This article is available from: http://www.jneuroengrehab.com/content/2/1/19

© 2005 Hausdorff; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 9
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16033650
http://www.jneuroengrehab.com/content/2/1/19
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


Journal of NeuroEngineering and Rehabilitation 2005, 2:19 http://www.jneuroengrehab.com/content/2/1/19
"noisy" variations in stride length, stride time and gait
speed have also been shown to display a hidden and
unexpected fractal-like property [4-9]. These properties of
gait exhibit long-range (power-law) correlations and a
"memory" effect, such that fluctuations at any given
moment are statistically related to those that occur over
many different time scales. When the systems regulating
gait are disturbed (e.g., as a result of certain diseases),
movement control may be impaired leading to increased
stride-to-stride fluctuations and/or alterations in their
multiscale dynamics.

The current series of the Journal of NeuroEngineering and
Rehabilitation (JNER) is dedicated to gait variability. As
guest editor of a collection of nine papers on this topic, I
have had the opportunity to preview the wealth of infor-
mation on stride-to-stride fluctuations in gait and the
manifold ways in which gait variability may be analyzed.
The articles in this collection cover a wide spectrum of
themes ranging from methods for evaluating gait variabil-
ity, animal and mathematical models investigating the

factors that influence the variability of gait, and evalua-
tions of the clinical utility of such measures. Altogether,
these reports underscore the complex and fascinating
nature of gait variability.

To set the stage, it is helpful to briefly highlight previous
work in this area. Earlier studies have demonstrated that:

• Gait variability is a quantifiable feature of walking that
is altered (both in terms of magnitude and dynamics) in
clinically relevant syndromes, such as falling, frailty, and
neuro-degenerative disease (e.g., Parkinson's and Alzhe-
imer's disease [10-19].

• The magnitude of the stride-to-stride fluctuations in
stride length and step timing are unaltered in healthy
older adults, whereas the dynamics of gait change with
healthy aging (e.g., alterations in the fractal pattern)
[1,20,21].

Example of the stride-to-stride fluctuations in the stride time as measured in two older adults: an older adult non-faller and an idiopathic fallerFigure 1
Example of the stride-to-stride fluctuations in the stride time as measured in two older adults: an older adult non-faller and an 
idiopathic faller. In both subjects, the stride time changes from one stride to the next. Although the mean values of the stride 
time are essentially identical in both subjects, the magnitude of the stride-to-stride fluctuations is much larger in the faller. SD: 
standard deviation; CV: coefficient of variation.

Example of Increased
Stride Time Variability in Elderly Fallers

Quantification of Stride-to-Stride Fluctuations
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• Physiologic factors that affect gait dynamics include
neural control, muscle function and postural control;
however, more subtle alterations in underlying physiol-
ogy including cardiovascular changes and mental health
may also influence the variability of gait (Figure 2) [10-
12,16,19,22-24].

• Improvements in muscle function and therapeutic inter-
ventions are associated with enhanced gait stability, but

not always with more conventional measures of average
gait velocity or cadence [12,16,25].

• Gait instability measures apparently predict falls in idi-
opathic elderly fallers and other populations who share
an increased fall risk [2,16,17,19,26-30].

Thus, gait variability may serve as a sensitive and clinically
relevant parameter in the evaluation of mobility, fall risk
and the response to therapeutic interventions.

Simplified block diagram of the locomotor systemFigure 2
Simplified block diagram of the locomotor system. Also shown are a sample of the alterations that occur in aging and disease 
which affect gait stability, at least as reflected in stride time variability, and fall risk. CBF: cerebral blood flow. Modified from 
Hausdorff et al, J Appl Physiol 2001.
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Gait variability: a marker of fall risk
Studies of gait variability have been motivated by a
number of factors. One intriguing aspect of gait variability
is its relationship to fall risk. In one of the first quantita-
tive studies of gait variability, Guimaraes and Isaacs [31]
suggested that elderly fallers walked with increased gait
variability, both in terms of step length and step time,
compared to non-falling older adults. Indeed, one of the
"holy grails" of geriatric and rehabilitation research is the
identification of markers that can be used to prospectively
identify older adults at greatest risk of falling. A number of
studies have demonstrated that measures of gait variabil-
ity may be help achieve this end [26,27,29]. Indeed, sur-
vival analyses have also shown that subjects are
significantly more likely to fall sooner if gait instability
measures are relatively increased at baseline, further
underscoring the potential utility of such measures.

The nature of the relationships among the average gait
speed, the average stride length, and the variability of
these measures are critical to the study of fall risk.
Although a reduced gait speed has often been viewed as a
sign of fall risk, Maki showed that, at least among certain
older adults, average gait speed and related measures are
related to fear of falling, but not to the risk of falling per
se, while measures of variability predict future falls [27]. A
number of other investigations demonstrated that the
degree of variability may be more closely related to fall
risk than average gait speed, average stride length, and
average stride time [2,26-29]. These results suggest that
measures of gait variability may sometimes be more sen-
sitive than other measures of gait, and that these measures
may provide a clinical index of gait instability and fall risk.
If one views gait variability as a reflection of the inconsist-
ency in the central neuromuscular control system's ability
to regulate gait and maintain a steady walking pattern,
then it makes sense that measures of gait variability would
be associated with instability and fall risk. A more variable
gait in which the center of pressure moves over and
beyond the base-of-support in a relatively uncontrolled,
unstable fashion may predispose to unsteadiness and
falls.

Similarly, it is important to stress that just as the assess-
ment of the magnitude of gait variability may provide
important, independent information above and beyond
average values, so, too, may the investigation of the
dynamics of gait variability offer additional insights. A
number of studies have demonstrated this concept. Here,
we briefly describe one example in which going beyond
the first (the mean) and second (the standard deviation)
moments proves relevant to the understanding of a
disorder.

The cause of impaired gait among many older adults
defies identification, even after thorough examination.
This has been termed a "higher-level gait disorder"
(HLGD) or "cautious gait" [32,33]. A study of the gait
dynamics of these patients found that they had signifi-
cantly larger (p < .0001) gait variability (the 2nd moment)
compared to controls [19] and that about 50% of them
reported falling. A fractal scaling index of gait was useful
in discriminating fallers from non-fallers in this patient
group, while all other measures (of muscle function, bal-
ance, and gait, including gait speed and stride time varia-
bility) did not [19]. These findings illustrate how going
beyond conventional statistical summaries may improve
discriminatory power and provide a more complete char-
acterization of gait changes.

In the present JNER series, Brach and colleagues study the
2nd moment to quantify the magnitude of stride-to-stride
fluctuations and examine the relationship between gait
variability and fall history in a population-based sample
of more than 500 older adults. In what is probably the
largest quantitative study on this question to date, too
much or too little step width variability was associated
with a fall history in a relatively healthy cohort of older
adults who do not walk slowly (i.e., gait speed ≥1.0 m/
sec). These findings raise a number of interesting ques-
tions about the relationship between variability and fall
risk, and encourage the study of specific aspects of varia-
bility and their inter-relationships (e.g., step length vs.
step width).

Gait variability and heart rate variability
The strides in knowledge gleaned from studies of other
physiologic systems, particularly those on heart rate vari-
ability, have also provided valuable incentive to similarly
investigate gait variability [4,34-43] (see also http://
www.physionet.org). The healthy heartbeat was originally
thought to be quite regular and periodic, essentially the
product of a single, metronomic pacemaker. Thus, for a
long time, mean heart rate was regarded as the primary
outcome, and fluctuations about the mean were largely
ignored. It emerged from later studies, however, that the
heart rate normally fluctuates, over many time scales, in a
complex manner from one beat to the next [37,44]. In
fact, the cardiovascular system shows erratic beat-to-beat
fluctuations resembling those found in dynamical sys-
tems that are being driven away from a single equilibrium
state, even under entirely healthy, resting conditions. A
large body of investigations have demonstrated that there
is important information hidden in the dynamics of the
heart rate that can be detected using methods that exam-
ine the variability, scaling and multi-scaling properties of
the heartbeat [4,39,45]. Moreover, numerous investiga-
tions have demonstrated the clinical utility of heart rate
variability measures with important diagnostic and
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prognostic utility including the prediction of life threaten-
ing arrhythmias and mortality [46-53].

While there are obvious fundamental differences between
the regulation of heart rate and the regulation of gait, the
success of research into the former has spurred dynamical
investigations of the latter. In the past, the fluctuations in
gait were largely ignored or erroneously viewed simply as
"noise". Many of the tools for quantifying heart rate
variability were applied to study the stride-to-stride fluctu-
ations in gait [5,6,8,13,19,35,36,54-56]. Of course, while
both signals do share many of the same characteristics,
there are several important differences: for example,
increased stride time variability (i.e., the magnitude of the
fluctuations) is usually a sign of pathology, while
increased heart rate variability is a healthy sign. On the
other hand, many of the dynamic properties of both sig-
nals are similar: heart rate and gait timing exhibit complex
fluctuations reminiscent of fractals, and this property is
typically altered with aging and certain diseases
[4,9,19,20,47,48,54,57-59]. Challenging reports to the
contrary [60], in the current series, the findings of West
and Latka suggest that gait fluctuations, like the healthy
heart rate, are also multi-fractal.

The parallel between gait fluctuations and heart rate vari-
ability should be considered with some caution. It would
be remiss to investigate heart rate variability and not
examine the average heart rate. Similarly, it would be defi-
cient to study gait variability and disregard mean values of
stride time, stride length and gait speed. These measures
offer an excellent, initial description of a person's mobil-
ity and gait [61]. The lesson from the study of heart rate is
that additional information can be uncovered by examin-
ing the fluctuations around the means, both in terms of
the magnitude and the dynamics. The experience with
heart rate also poses a challenge: pharmacologic and
intervention studies have clearly identified key compo-
nents that underlie the fluctuations in heart rate (e.g., the
interplay between the parasympathetic and sympathetic
systems). Equally fundamental studies are needed to
more completely understand the physiology and patho-
physiology that underlie gait variability and its dynamics.

Methods: data acquisition and signal processing
Data acquisition and signal processing are two key areas
that enable the study of gait variability. Traditional cam-
era-based, motion analysis limits the study to a few strides
and is not optimal for measuring the stride-to-stride fluc-
tuations. A number of methods have been used to study
gait under ambulatory conditions, including accelerome-
ters, gyroscopes, foot switches, body-worn sensors and
wearable computers, gait mats, and force-plate mounted
treadmills or optical measurement of treadmill walking
[27-29,54,62-70]. In the present series of JNER papers,

Terrier and Schutz review the use of global position satel-
lite monitoring for measuring gait. Although its time may
not yet have come for routine use, this method has some
important benefits, such as allowing for the determina-
tion of both the spatial and temporal measures of gait on
a stride-to-stride basis.

Once the signal is acquired, questions about signal
processing inevitably follow. Chau and colleagues
describe challenges that arise when analyzing gait varia-
bility and present an interesting strategy for dealing with
them. Their excellent review introduces the reader to dif-
ferent sources of variability and provides a heuristic
method for summarizing various types of variability
measures.

Modeling of gait variability
A number of approaches may be applied to make sense of
the various measures of gait variability. In this JNER series,
Amende and colleagues report on the dynamics of gait in
mouse models of Parkinson's disease, Huntington's dis-
ease and amyotrophic lateral sclerosis. In this first-ever
study of the stride-to-stride fluctuations of gait in animal
models of neurodegenerative processes, they demonstrate
that gait changes parallel those seen in clinical studies of
humans (check out the gait of these animals in on-line
video). This finding supports the validity of these models
and sets the stage for a novel means of studying gait
dynamics. While there are of course critical differences
between two and four legged locomotion, these animal
models enable manipulation and invasive intervention
that are not feasible in human studies, thus offering a way
to identify the mechanisms that underlie changes in the
stride-to-stride regulation of gait.

West and Latka take a different, complementary approach
toward understanding the fluctuations in gait. Using
mathematical methods, they build upon earlier nonlinear
dynamics models of the fluctuations in the stride time
[56,71,72] and demonstrate that these fluctuations in
healthy subjects can be described using a fractional Lan-
gevin equation. It remains to be seen whether this model
can be applied to data collected in animal models and
how disease and aging alter model parameters.

Gait variability, cognitive function, meaning and 
more
Another approach taken to gain insight into the factors
that influence gait variability is to manipulate the loco-
motor system or specific components of the system by
means of clinical studies. A priori, one might argue that
stride-to-stride variability is regulated by automated proc-
esses and requires minimal cognitive resources. This argu-
ment is consistent with the report of Maki [27],
demonstrating that variability was related to fall risk, but
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not to fear of falling. Indeed, studies of dual tasking found
that gait speed slowed when healthy subjects, young and
old, performed a secondary dual task during walking,
while the variability of stride and swing timing was
unchanged, even when subjects simultaneously walked
and subtracted 7's serially, a challenging cognitive task
[73,74]. In contrast, dual tasking not only reduced gait
speed, it also increased variability among patients with
impaired automaticity (e.g., Parkinson's disease patients)
[17,73-75]. These findings are in line with the view that
the regulation of variability is normally automated and
requires minimal cognitive input. However, when auto-
maticity is impaired (e.g., in the presence of pathology,
cognitive tasks affect gait variability. One recent investiga-
tion disputed the concept of automatic regulation and
suggested that stride time variability is related to specific
cognitive processes, namely executive function [76]. In
the present series, papers by Beauchet and colleagues and
Grabiner and Troy describe the effects of a secondary, dual
task on the gait variability in healthy young adults. One
study suggests that there is no effect on stride length vari-
ability, while there is a small increase in stride time varia-
bility due to changes in mean gait speed. The second
paper suggests that stride width variability becomes
reduced during dual tasking. These interesting findings
raise the question: "why?" and call for a more all-embrac-
ing understanding of the mechanisms that control gait
variability and a "smooth" gait.

When dealing with this question, the complex relation-
ships between gait speed and measures of variability of
gait should be considered. When all other variables are
kept constant, studies in young adults have demonstrated
a U-shaped relationship between stride length (speed
and/or cadence) and measures of gait variability. Minimal
variability occurred near the usual walking speed and
cadence [77-79], where energy costs of walking are also
minimal and head stability is maximal [80,81]. Thus,
when investigating gait and the factors that influence var-
iability, it is important to take into account the possibility
that any observed group differences or responses to inter-
vention are simply a result of changes in gait speed. In
many cases, however, it is possible to demonstrate that
variability parameters are regulated independently of
mean values (e.g., of stride length and stride time) [78].
For example, in the present series, Kessler and colleagues
show that healthy controls and patients with a HLGD
reduce their stride length and walk more slowly when they
are asked to walk in conditions of minimal lighting. While
variability measures increased among the patients, control
subjects evidenced no change, even though they did walk
more slowly in near darkness.

A potential way of separating values of variability from
those of mean stride length and speed is described by

Frenkel-Toledo and colleagues in the present series. They
show that swing time variability is larger in patients with
Parkinson's disease compared to healthy controls and that
swing time variability is insensitive to changes in gait
speed in both groups. Perhaps this measure can be used as
a speed-independent measure of variability to help to
unravel the mechanisms that influence the stride-to-stride
fluctuations of gait and to identify measures with clinical
utility that are not influenced by gait speed. Interestingly,
a recent report observed a dissociation between left and
right swing time variability in patients with Parkinson's
disease who have a severe gait disturbance, i.e., freezing of
gait [82], further demonstrating the potential utility of
measures of swing time variability.

Outstanding issues
The investigations reported in this special series on gait
variability advance our understanding of an intriguing
aspect of gait: the ability of the healthy neural control sys-
tem to fine tune the stride-to-stride fluctuations of
walking to a remarkable degree. At the same time, they
delineate a number of important questions that remain to
be resolved by future studies. For example, several reports
highlight the differences between measures of the mean,
the variance and the dynamics. A theoretical framework is
needed to understand these differences. One possible
explanation for the difference between the results of the
study by Brach and colleagues and those of previous stud-
ies relates to the question: how much is enough? In order
to obtain reliable and meaningful measures of variability,
how many strides need to be studied? Owings and Grab-
iner [64] suggest that hundreds of strides are required to
accurately estimate step kinematic variability for treadmill
walking. The number needed for walking on level ground
is undetermined. If variability measures are to be used in
the clinic, more research is required to determine the
trade-off between accuracy, reliability, validity and clini-
cal utility.

The question of how many strides to measure highlights
the need for the development of standards and reference
values. Standards were set to define minimum data acqui-
sition requirements (e.g., sampling rate) to promote
research and the clinical implementation of heart rate var-
iability measures [83]. While there may be some debate
about the exact values, the defining of standards greatly
enhances the quality of the data and the ability to inter-
pret and compare studies that use a given tool. Similarly,
well-established reference values and norms are needed in
different age groups and populations in order to promote
interpretation and clinical references. Heart rate databases
in different populations, complete with annotations and
medical information, are widely available (e.g., see http:/
/www.physionet.org), significantly advancing the sharing
of methods and interpretation. Similar open-access
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database efforts would greatly help the study of gait varia-
bility and the development of clinical measures, but this
must await the establishment of minimum standards for
data collection and validation of the means of comparing
data from different measurement systems.

The studies by West and Latka and Brach and colleagues
also return us to hypotheses originally put forth by Gabell
and Nayak over two decades ago [1]. They speculated that
stride time variability reflects gait timing mechanisms and
the pattern generator of gait, while variability of support
time and step width more closely reflect balance control.
Future studies are needed to unravel the various aspects of
gait variability and their nonlinear interactions (in this
respect, the potential of the animal models comes to fore),
to identify the mechanisms that are responsible for each
of the complementary measures of the stride-to-stride
fluctuations in gait, and to work out the relationship
between balance control and gait variability. The basal
ganglia and dopamine-sensitive networks apparently par-
ticipate in the regulation of gait variability while visual
feedback apparently does not play a critical role in healthy
adults. We lack, however, a good understanding of the
neural center(s) that generates and regulates gait timing
and are left to speculate why the maintenance of gait var-
iability may be influenced by cognitive challenges, at least
certain types under specific conditions. It has become
clear that more sinus rhythm heart rate variability is (gen-
erally) "good", while more stride time variability is (gen-
erally) "bad" The final words on the value and
interpretation of the variability of multiple other aspects
of gait (e.g. step width variability), their inter-dependence
and the relationship to the variability of other motor con-
trol tasks await the results of future studies [63,65,68,84-
88].
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