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Abstract

Background: Direct brain control of overground walking in those with paraplegia due to spinal cord injury (SCI) has
not been achieved. Invasive brain-computer interfaces (BCIs) may provide a permanent solution to this problem by
directly linking the brain to lower extremity prostheses. To justify the pursuit of such invasive systems, the feasibility of
BCI controlled overground walking should first be established in a noninvasive manner. To accomplish this goal, we
developed an electroencephalogram (EEG)-based BCI to control a functional electrical stimulation (FES) system for
overground walking and assessed its performance in an individual with paraplegia due to SCI.

Methods: An individual with SCI (T6 AIS B) was recruited for the study and was trained to operate an EEG-based BCI
system using an attempted walking/idling control strategy. He also underwent muscle reconditioning to facilitate
standing and overground walking with a commercial FES system. Subsequently, the BCI and FES systems were
integrated and the participant engaged in several real-time walking tests using the BCI-FES system. This was done in
both a suspended, off-the-ground condition, and an overground walking condition. BCI states, gyroscope, laser
distance meter, and video recording data were used to assess the BCI performance.

Results: During the course of 19 weeks, the participant performed 30 real-time, BCI-FES controlled overground
walking tests, and demonstrated the ability to purposefully operate the BCI-FES system by following verbal cues.
Based on the comparison between the ground truth and decoded BCI states, he achieved information transfer
rates >3 bit/s and correlations >0.9. No adverse events directly related to the study were observed.

Conclusion: This proof-of-concept study demonstrates for the first time that restoring brain-controlled overground
walking after paraplegia due to SCI is feasible. Further studies are warranted to establish the generalizability of these
results in a population of individuals with paraplegia due to SCI. If this noninvasive system is successfully tested in
population studies, the pursuit of permanent, invasive BCI walking prostheses may be justified. In addition, a simplified
version of the current system may be explored as a noninvasive neurorehabilitative therapy in those with incomplete
motor SCI.
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Introduction
Mobility after paraplegia due to spinal cord injury (SCI) is
primarily achieved by substituting the lost function with a
wheelchair [1]. However, the sedentary lifestyle associated
with excessive wheelchair reliance can lead to medical
co-morbidities, such as osteoporosis, heart disease, respi-
ratory illnesses, and pressure ulcers [2]. These conditions
contribute to the bulk of SCI-related medical care cost
[2]. Therefore, restoration of walking after SCI remains a
clinical need of high priority.
Current approaches to restoring ambulation after SCI

include the use of robotic exoskeletons [3, 4] and func-
tional electrical stimulation (FES) systems [5, 6]. These
devices, however, lack intuitive able-body-like supraspinal
control, as they typically rely on manually controlled
switches. In addition, these systems cannot exploit the
neuroplasticity of residual or spared pathways between
the brain and spinal motor pools [7]. Hence, novel means
of restoring intuitive, brain-controlled ambulation after
SCI are needed. If successful, such novel approaches may
drastically reduce SCI-related medical costs and improve
quality of life after paraplegia due to SCI.
Spinal cord stimulation has recently emerged as a

promising method to restore voluntary lower extrem-
ity movements to those with SCI [8, 9]. Brain-computer
interfaces (BCIs), which enable intuitive and direct brain
control of walking via an external device [10, 11], can
be seen as an alternative approach. Surveys indicate that
those with paraplegia due to SCI highly prioritize restora-
tion of walking as a way of improving their quality of life
[12, 13]. In addition, approximately 60 % of survey partic-
ipants expressed willingness to undergo implantation of
an invasive BCI device to restore ambulation [13]. How-
ever, before such a system can be pursued, it is necessary
to establish the feasibility of brain-controlled overground
ambulation. In this proof-of-concept study, we report on a
noninvasive BCI-controlled FES system capable of restor-
ing a basic form of overground walking to an individual
with paraplegia due to SCI. The study advances our exist-
ing BCI systems from applications such as walking in a
virtual reality environment (VRE) [14–16] and walking
with a treadmill-suspended robotic orthosis [10] to over-
ground walking [11]. If successfully tested in a population
of individuals with SCI, the proposed BCI-FES system
may lead to the development of a fully implantable BCI
system for restoring ambulation after SCI.

Methods
Participant screening
Ethical approval was obtained from the University of
California, Irvine Institutional Review Board (Irvine, CA,
USA). Candidates were recruited from a population of
individuals with chronic T6 – T12 SCI. They under-
went several screening procedures to rule out severe

spasticity, contractures, restricted range of motion, lower
extremity fractures, pressure ulcers, severe osteoporosis,
orthostatic hypotension, as well as affirm neuromuscular
responsiveness to FES (see Additional file 1 for details). A
physically active 26-year-old male with a T6 AIS B SCI,
with no motor function in the lower extremities and no
sensation below the injury level except for minimally pre-
served bladder fullness sensation, passed all the screening
requirements. He provided informed consent to partici-
pate in the study. He also consented to the publication
of the biomedical data and media, including photographs
and videos (consent to publish was also obtained from
every person featured in these photographs and videos).

Training procedure
The participant underwent BCI training to learn how
to ambulate within a VRE using attempted walking and
idling (i.e. relaxing) as a control strategy. This proce-
dure also generated an EEG decoding model that was
subsequently used in BCI-FES experiments. In addition,
since the supraspinal areas underlying human gait can
become suppressed after chronic SCI, it has been sug-
gested that motor imagery practice may facilitate their
reactivation [17]. Therefore, the purpose of the BCI-VRE
training was to also facilitate the reactivation of the brain
areas responsible for gait control. Finally, the participant
simultaneously underwent FES training to recondition his
lower extremity muscles in order to be able to stand and
walk overground using a FDA-approved commercial FES
system (Parastep I System, Sigmedics, Fairborn, OH).

BCI training
Similar to our prior studies [10, 15, 16], the participant
first underwent a BCI screening procedure to determine
if he could control the BCI in a VRE. Subsequently,
he underwent BCI training in order to further mas-
ter BCI-VRE control. Each BCI screening and training
visit entailed the same procedure that began with a 10-
min electroencephalogram (EEG) recording. During this
period, the participant engaged in 30-s-long alternating
epochs of attempted walking and idling while seated in
his wheelchair [10, 16]. A detailed description of this
procedure is given in Additional file 1.
Based on these data, an EEG decoding model was

generated offline using the methods described in
[10, 15, 16]. Briefly, the EEG epochs were segmented into
4-s-long trials of “Idle” and “Walk” class, transformed
into the frequency domain, and their power spectral den-
sities (PSDs) were integrated from 6 to 40 Hz in 2-Hz
bins. These spatio-spectral data were then subjected to
dimensionality reduction using classwise principal com-
ponent analysis (CPCA) [18, 19], and discriminating
features were extracted using approximate information
discriminant analysis (AIDA) [20]. Note that this feature
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extraction method is rooted in information theory [21]
and has been extensively tested in our prior BCI studies
[10, 15, 16, 22, 23]. More formally, one-dimensional (1D)
features f ∈ R were extracted by:

f = T�(d), (1)

where d ∈ R
B×C is a single trial of spatio-spectral data

(B–number of frequency bins, C–number of electrodes),
� : RB×C → R

m is a mapping from the data space to an
m-dimensional CPCA-subspace, and T : Rm → R is an
AIDA transformation matrix.
A Bayesian classifier was then designed as follows:

f � ∈
{

S1, if P(S1| f �) > P(S2| f �)

S2, otherwise
, (2)

where P(S1| f �) and P(S2| f �) are the posterior probabil-
ities of idling and walking classes, respectively, given the
observed feature, f �. They were found using the Bayes rule
P(Si| f �) = p( f �|Si)P(Si)/p( f �), i = 1, 2, where p( f �|Si)
is a conditional probability density function (PDF) eval-
uated at f �, P(Si) is the prior probability of the class, Si,
and p(f �) is the (unconditional) PDF. To simplify calcu-
lations, the conditional PDFs were modeled as Gaussians
with equal variances. Note that this rendered the Bayesian
classifier (2) linear [24]. The performance of the classifier
was evaluated offline through stratified ten-fold cross-
validation [25].
Each visit continued with online BCI operation,

where 0.75-s-long segments of EEG data were wirelessly
acquired in real time every 0.25 s using a sliding window
approach. The PSDs of the EEG channels were then cal-
culated and integrated in 2 Hz-bins for each of these seg-
ments, and used as the input for the EEG decoding model.
The posterior probabilities, P(S1| f �) and P(S2| f �), were
calculated using the Bayes rule (see above), and were aver-
aged over a 1.5–2.0 s window to minimize false alarms
and omissions [10, 15, 16]. Before online BCI operation,
the BCI-VRE system was calibrated using a short proce-
dure (see Additional file 1 for details). During each online
experiment, the participant performed between one and
five goal-oriented, real-time BCI walking tasks. Specifi-
cally, he was instructed to utilize attempted walking and
idling to control the linear ambulation of an avatar and
make sequential stops at ten designated points within the
VRE [14–16]. The goal of the task (see Fig. 1) was to walk
the avatar at a constant speed and complete the course as
quickly as possible, while dwelling at each stop for at least
2 s. The online performances, expressed as the number of
successful stops and course completion time, were com-
pared to the results of Monte Carlo simulations to ascer-
tain whether control of the BCI system was purposeful
(details in Additional file 1). Note that despite demonstrat-
ing purposeful control during the BCI screening process,

Fig. 1 Virtual Reality Environment. A screenshot of the VRE. The traffic
cones next to the characters represent designated stops. A full point
was given for dwelling at each designated stop for at least 2 s, for a
total stop score of 10 points. A fraction of a point was given for
dwelling between 0.5 and 2 s (proportionate to the dwelling time)
and no point was given for dwelling less than 0.5 s. There was no
penalty for dwelling for more than 2 s, but this increased the course
completion time. As a benchmark, the course could be completed
in ∼205 s with a manually controlled joystick [15, 16]

the participant continued the BCI-VRE training through-
out the study. This provided the EEG decoding model for
subsequent BCI-FES experiments. It also allowed the par-
ticipant’s BCI-VRE performance to be tracked over time
and the presumed reactivation of the cortical gait areas to
occur.

FES training
To better understand the FES training procedures, a brief
description of the Parastep system’s operation is first pro-
vided. Namely, the Parastep achieves ambulation by acti-
vating the quadriceps and tibialis anterior muscles. This
is accomplished by placing electrode pairs bilaterally over
the femoral (immediately proximal to the knee) and deep
peroneal (immediately distal to the knee) nerves. Simul-
taneous bilateral activation of the quadriceps is used to
maintain the knee extension necessary for standing, while
a front-wheel walker is used for upper body stabilization.
A step is achieved with the following sequence: 1. the user
performs an anterior-lateral weight shifting maneuver; 2.
a brief electrical stimulation is delivered unilaterally to the
deep peroneal nerve while the corresponding quadriceps
are deactivated, thereby eliciting a triple-flexion reflex of
the leg (i.e. combination of foot dorsiflexion, knee flex-
ion, and hip flexion); 3. the user’s leg swings forward due
to the anteriorly shifted center of gravity; 4. the quadri-
ceps are reactivated to maintain a standing position. The
Parastep system’s adjustable parameters are the step dura-
tion (controlled manually by the subject via buttons) and
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stimulation current for bilateral femoral and deep per-
oneal nerves. Based on these five parameters, the sys-
tem generates pre-programmed stimulation sequences for
walking movements.
The FDA-approved guidelines for the Parastep system

require users to recondition their muscles prior to engag-
ing in FES-mediated walking. This reconditioning also
facilitates improved cardiopulmonary endurance. To this
end, the participant performed strength and endurance
training of the quadriceps using the FES device. Once the
participant regained sufficient strength and endurance,
and demonstrated the ability to stand using the FES
system, the training sessions progressed to FES-assisted
overground walking. This included learning the coordi-
nation of movements such as weight shifting, front-wheel
walker advancement and leg swing, which facilitate FES-
mediated walking. A more detailed description of these
procedures is provided in Additional file 1. It should be
noted that the FES training was also used to empirically
determine the stimulation parameters. More specifically,
the time necessary to perform the weight shifting, walker
advancement, and leg swing determined the step rate.
The stimulation amplitude for each femoral nerve was
determined as the minimal amount of current necessary
to achieve a standing posture. Similarly, the stimulation
amplitude for each peroneal nerve was determined by
finding the minimal current necessary to elicit an ade-
quate triple-flexion response and step. Note that these
parameters were later used in the BCI-FES experiments as
described below.
The FES training continued until the participant could

walk the length of the overground walking course (3.66 m)
without any intervention from the physical therapist.
To prevent falls and provide partial body-weight sup-
port, FES walking was performed while the participant
was mounted in a body-weight support system (ZeroG,
Aretech, Ashburn, VA).

BCI-FES Experiments
The BCI-FES walking experiments were initiated once the
participant completed the FES training. This was accom-
plished by first integrating the BCI and FES systems using
a dedicated microcontroller. In addition, the step rate
and stimulation amplitudes (as determined above) were
pre-programmed into the microcontroller such that the
left and right steps cycle automatically. A motion sensor
system was then developed and synchronized with the
BCI-FES system for the purpose of facilitating the perfor-
mance assessment. A more detailed description of these
steps is provided in Additional file 1. Finally, the EEG
decoding model from the most recent BCI training ses-
sion was loaded into the BCI system. The participant then
undertook suspended BCI-FES walking tests followed by
overground BCI-FES walking tests.

Suspendedwalking tests
Prior to overground walking, suspended walking tests
were performed to establish whether the participant could
purposefully operate the BCI-FES system. First, the par-
ticipant was positioned∼1 m from a computer screen and
suspended using the ZeroG support system so that his
feet were ∼5 cm off the ground (see Fig. 2). This allowed
the execution of BCI-FES-mediated walking and stand-
ing without having to maintain postural stability, perform
weight shifting, or advance the front-wheel walker. The
participant then followed 30-s-long alternating “Idle” and
“Walk” visual computer cues for a total of 180 s with the
goal of controlling the standing and walking functions of
the BCI-FES system in real time. Finally, the participant’s
performance (details below) was assessed using video, BCI
state, and motion sensor data.

Overgroundwalking tests
For overground walking tests, the participant utilized the
system to walk along a 3.66-m-long linear course with
three cones positioned 1.83 m apart (Fig. 1). He was
instructed to walk and stand at each cone for 10–20 s
via verbal cues given by the experimenter. Subsequently,
he used an attempted walking strategy to initiate BCI-
FES-mediated walking to progress to the next cone. Note
that the duration of standing at each cone was random-
ized to minimize anticipation by the participant. Also
note that the ZeroG system was used during these tests
to provide partial body-weight support and prevent falls.
Overground walking tests were repeated as tolerated by
the participant. Video, BCI state, and motion sensor data
were recorded to assess the performance during this task.

Performance assessment
The subject’s performances in the suspended and over-
groundwalking tests were derived based on the video, BCI
state, and gyroscope data. Specifically, they were quanti-
fied by calculating the cross-correlation and information
transfer rate (ITR) between the externally supplied cues
and BCI-FES-mediated responses. In the suspended walk-
ing tests, the timings of the visual cues were obtained
from the BCI computer. In the overground walking tests,
the timings of the auditory cues were extracted from the
video recordings. In both types of tests, the epochs of BCI-
FES mediated responses were extracted from the gyro-
scope data. Similar to above, purposeful BCI-FES control
was ascertained by comparing these cross-correlations
to those achieved by Monte Carlo simulations (details
in Additional file 1). In addition, the instances of false
alarms and omissions were recorded, where a false alarm
was defined as the presence of BCI-FES-mediated walk-
ing within any intended idling epoch, while an omission
was defined as the absence of BCI-FES-mediated walk-
ing within any intended walking epoch. Finally, in the
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Fig. 2 Experimental setup. Left: The suspended walking test. In response to “Idle” or “Walk” cues displayed on a computer screen (not shown) the
participant modulates his EEG by idling or attempting to walk. EEG is sent wirelessly (via Bluetooth communication protocol) to the computer,
which processes the data and wirelessly sends a decision to either “Idle” or “Walk” to a microcontroller. The microcontroller (placed in the belt-pack)
drives the FES of the femoral and deep peroneal nerves to perform either FES-mediated standing or walking (in place). Right: The overground
walking test. In response to verbal cues, the participant performs BCI-FES mediated walking and standing to walk along a linear course and stop at
three cones positioned 1.8 m apart. The basic components are: the BCI-FES system, motion sensor system (two gyroscopes and a laser distance
meter), and the ZeroG body weight support system to prevent falls. The information flow from EEG to FES is identical to that of the suspended
walking test. Note that the participant’s face was scrambled due to privacy concerns

overground walking tests, the laser distance meter was
used to confirm that the subject ambulated along the
course and stopped at the cones.

Results
Training
The timeline of the study procedures, including the BCI
and FES training, is summarized in Fig. 3. Note that while
the participant obtained perfect BCI-VRE control (no
omissions or false alarms) after only 11 h of BCI training,
the BCI training continued until the end of the study in
order to verify that the participant could maintain a high-
level of BCI control. In addition, the participant com-
pleted the FES training after only 19 FES training sessions,

or ∼22.5 h of physical therapy, which is shorter than the
Parastep manufacturer’s nominal recommendation of 32
one-hour sessions.

BCI training
The performances achieved during the BCI training pro-
cedures are shown in Fig. 4. Note that the Bayesian
classifier (2) achieved an offline classification accuracy
significantly above the chance level (50 %) on the sec-
ond visit, and a near-perfect classification accuracy by
the 15th visit. This translated into a near-perfect level of
control during the goal-oriented real-time BCI walking
task within the VRE (Additional file 2), which is evi-
dent by the decrease in mean course completion time

Fig. 3 Timeline. Experimental time line of the study
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Fig. 4 BCI training performances over time. BCI training performances over time. Top: Offline performances (%) of the Bayesian classifier (2), as
determined through the cross-validation procedure described in the BCI training section. The bar plots represent ± standard deviation (std). Bottom:
Real-time, online BCI-VRE performances expressed as the course completion time (left) and successful stop score (right), determined as explained in
Fig. 1. The bar plots represent ± std, and data points with no bars indicate that only one VRE session was performed on that day. Note that the
participant performed less VRE sessions as the study progressed to make time for more BCI-FES walking sessions

and increase in successful stop score. The EEG decoding
models resulted in spatio-spectral features that converged
to similar frequencies and brain areas across visits (see
Additional file 1). A sample of these features is depicted
in Fig. 5, where areas under electrodes CP3, CPz, and
CP4 were deemed by the decoding model as important for
classification of attempted walking and idling. Note that
these areas approximately correspond to the motor and
somatosensory cortices. Spectral analysis confirmed the
physiological basis of these features, as event-related syn-
chronization (ERS) was observed at CP3 and CP4 in the
low-β band (13 – 16 Hz), and event-related desynchro-
nization (ERD) was observed at CPz in the high-β band
(23 – 28 Hz).

FES training
The participant typically performed one or two FES train-
ing sessions per week. The progression of his FES training
is described in detail in Table 1 below. After the visit
19, he demonstrated proper overground walking using
the Parastep system. During this training period, it was
empirically determined that the participant required 4 s
to perform each FES-mediated step. This step rate was
programmed into the microcontroller, as explained in the
BCI-FES Experiments subsection above. It was also deter-
mined that for the suspended walking test, the participant
required a nominal stimulation of 120 mA at the femoral
nerve, and 50 mA at the deep peroneal nerves. These val-
ues were somewhat higher for the overground walking
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Fig. 5 EEG feature extraction maps. Top: Feature extraction maps obtained by a combination of CPCA and AIDA for classification of attempted
walking versus idling. The spatial distribution of features is shown for the frequency bands centered at 15 Hz and 25 Hz, where the features with
values close to ±1 are more important for classification. The maps were generated from data collected during the last visit. Bottom: Log power
spectral density (PSD) during idling (blue) and walking (green) at electrodes CP3, CPz, and CP4, where shaded regions represent error bars.
Underneath the PSD plots are the corresponding signal-to-noise ratio (SNR) plots with significant SNRs (p < 0.01) represented by red lines. Note the
event-related synchronization (ERS) in the 13–16 Hz range (at CP3 and CP4) and event-related desynchronization (ERD) in the 23–28 Hz range (at CPz)
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Table 1 FES training activities across visits. The participant required 19 visits (∼22.5 h of physical therapy) to comfortably walk 3.66 m

Day since 1 – 17 22 – 38 43 – 59 75 – 117
start of study

Visit no. 1 – 4 5 – 9 10 – 14 15 – 19

FES screening, Standing, posture Weight-bearing support, Front-wheel walker
strength training, and alignment balance, management, stepping,
standing endurance weight shifting locomotion

tests, namely, 130 mA for the femoral nerve, and 70 mA
and 60 mA for the left and right deep peroneal nerves,
respectively. These stimulation parameters were also used
for subsequent BCI-FES tests.
During FES training, the participant experienced a

sprain of the left ankle, which was caused by his outside
activities. This condition was resolved after one week of
rest and periodic icing. The participant also experienced
occasional light headedness during his initial attempts of
FES-mediated standing and walking. However, this was
no longer an issue after the participant progressed to
BCI-FES-mediated walking. No other adverse events were
observed.

Suspended walking tests
Once the BCI and FES training were completed, the sus-
pended walking experiments were performed on visits 20
and 21 (Additional file 3). The performance metrics of
these tests, including the cross-correlation and lag, num-
ber and duration of false alarms and omissions, and the
ITR, are presented in Table 2. The participant achieved a
very high level of control during this task, as evidenced
by cross-correlations as high as 0.957 and ITRs as high as
3.643 bit/s with no false alarms or omissions. The subject’s
performance in both of the suspended walking tests was
purposeful (p < 0.01), according to the criterion outlined
in Additional file 1.

Overground walking tests
Given the promising results above, the participant started
the overground walking tests on visit 20 (immediately
after the first suspended walking test), and continued

Table 2 The subject’s performances in the suspended walking
tests

Visit no. ρ Lag (s) ITR (bit/s) FA FA duration (s) OM

20 0.917 3.00 3.041 1 1.75 0

21 0.957 4.25 3.643 0 0 0

Avg. 0.937 3.630 3.342 0.500 0.880 0

Cross-correlation (ρ), lag, and ITR between the cues and the participant’s
FES-mediated walking are shown. The number of false alarms (FA), FA duration, and
number of omissions (OM) are also shown

these tests until the end of the study (visit 30). In total,
30 overground walking tests were performed over a 19-
week period (see Fig. 2). Between one and six overground
walking tests were performed on each visit, with each test
having an average duration, written in the format mean
(standard deviation), of 3.234 (0.743) min. Over time, the
participant was able to perform more tests per visit (see
Additional file 1). An average cross-correlation between
experimenter’s verbal cues and BCI-FES response (i.e.
leg movement recorded by gyroscopes, see Fig. 6 and
Additional file 4) was 0.775 (0.164) with a 2.861
(4.229) s lag. Note that ∼60 % body-weight support
was applied throughout these tests. This value was
chosen since it approximates the contribution of the
upper body in the total body weight. It was also
found to be comfortable for the participant and ade-
quate to prevent falls via the ZeroG’s fall detection
algorithm.
The participant had an average of 2.333 (2.039) false

alarms (Table 3) and no omissions across all overground
walking tests and visits. Comparison to the Monte Carlo
simulations also revealed that all 30 overground walking
tests were performed with purposeful control (p < 0.01).
Furthermore, he was able to achieve ITRs similar to the
suspended walking tests. In particular, he had an average
ITR of 2.298 (0.889) bit/s across all overground walking
tests, with a maximum ITR of 3.676 bit/s achieved during
the second overground walking test on the 28th visit (see
Fig. 6). Finally, no adverse events were observed during
BCI-FES-mediated overground walking.

Discussion
This study represents the first demonstration of an indi-
vidual with paraplegia due to SCI purposefully operat-
ing a noninvasive BCI-FES system for overground walk-
ing in real time. The participant initially operated the
system while being completely suspended, and subse-
quently translated this skill to an overground walking
condition. He achieved a high level of control and main-
tained this level of performance during a 19-week period.
These results provide a proof-of-concept for direct brain
control of a lower extremity prosthesis to restore basic
overground walking after paraplegia due to SCI.
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Fig. 6 Representative space-state-time plot. The best overground walking test results (data from the 2nd test on the 28th visit). The beginning and
end of yellow blocks mark the onset of the “Walk” and “Idle” verbal cues, respectively, given by the experimenter. Red blocks represent periods when
the BCI system was in the walk state; otherwise, the system is in the idle state. Green and blue blocks represent leg movements recorded by the
gyroscopes. The laser signal (blue trace) represents the space-time plot, i.e. the participant’s position within the course as measured by the laser
distance meter. Note that there is a delay between the onset of the “Idle” cue and the BCI idle state. This latency includes the time required for the
participant’s cognitive processing and EEG to change, as well as the time required for BCI processing. The discrepancy between the onset of the idle
state and gyroscope signals is due the fact that transitions from the walk to idle state can be decoded at any time during the pre-programmed 4-s
step cycle. For example, if the state transition occurs during an uninterruptible leg swing, the participant will finish the leg swing despite the BCI
system being in the idle state (e.g. the first green block). If, on the other hand, the state transition occurs after a leg swing, the leg will be stationary
even before the system enters the idle state (e.g. the second green block). Finally, the discrepancy between the gyroscope signals and the distance
meter is due to the participant only progressing when the front-wheel walker is advanced, which happens once every 4 s. Hence, all the leg
movements prior to walker advancement will be registered by the gyroscope, however, they will not contribute to a position change

The decoding models for real-time BCI control yielded
EEG classification features that were spatially distributed
over the motor and somatosensory cortices. A bilaterally-
distributed ERS in the low-β band (13 – 16 Hz) and a
centrally-distributed ERD in the high-β band (23 – 28 Hz)
were especially prominent. These findings are consistent
with prior studies [26, 27], where foot motor imagery

Table 3 Cross-correlation (ρ) between verbal cues and
gyroscopemovement, ITR, number of false alarms, and false alarm
rate for the 30 overground walking tests performed. Note that the
false alarm rates were calculated using the total idling duration.
No omissions occurred during any overground walking session

n = 30 Average Std. Dev. Best

ρ 0.775 0.164 0.987

Lag (s) 2.861 4.229 2.742

ITR (bit/s) 2.298 0.904 3.676

FA 2.333 2.073 0

FA Rate (FA/s) 0.043 0.039 0

The best session results (on the 28th visit) are shown in the last column

resulted in an ERS primarily over the hand represen-
tation areas, and an ERD over the foot representation
area. These phenomena were observed in both the μ

(8 – 12 Hz) and β (13 – 30 Hz) bands, and are thought
to represent an activation of foot representation area
with simultaneous inhibition of networks underlying hand
movements [26, 27].
The participant achieved and maintained a high level

of performance during the BCI-VRE, suspended walking
and overground walking tests. In comparison to the sus-
pended walking conditions, there was a notable increase
in the false alarm rate during overground walking. This
drop in performance could be explained by an increase
in EEG noise produced by movements, such as postu-
ral stabilization or weight shifting. Nevertheless, the false
alarm rate decreased toward the end of the study, presum-
ably due to the participant’s better understanding of the
task as well as practice with operating the BCI. Anecdo-
tally, the participant was also able to carry a light con-
versation during these experiments without interfering
with the function of the system. This robustness in real-
time control, together with a high-level of performance
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sustained across months, indicates that BCI-FES mediated
restoration of basic walking function after SCI is feasible.
Future studies will focus on testing the function of

this system in a population of individuals with SCI. If
successfully tested in a larger population, this system
may represent a precursor to invasive BCI systems for
overground walking. Namely, the cumbersome nature of
the current noninvasive system makes its adoption for
restoration of overground walking unlikely. This limita-
tion can potentially be addressed by a fully implantable
BCI system, which can be envisioned to employ invasively
recorded neural signals, such as electrocorticogram or
action potentials, as well as implantable spinal cord stimu-
lators [8] or FES systems [28]. Such a fully implantable sys-
tem would eliminate the need to mount and unmount the
equipment, such as an EEG cap, bioamplifier and a com-
puter, thereby making the implantable system more prac-
tical and aesthetically appealing. Using an invasive system
may also be the only viable approach to deliver cortical
stimulation for restoring lower extremity sensation during
walking. Nevertheless, the noninvasive system presented
here may become a safe test bed to determine which indi-
viduals are good candidates to receive these invasive neu-
roprostheses, once they become available. Furthermore,
a simplified future version of the current system may
be applied as neurorehabilitative therapy for those with
incomplete SCI, whereby residual connections between
the brain and spinal motor pools may be strengthened
through activity-dependent plasticity mechanisms [29]. In
summary, the system reported here represents an impor-
tant step toward the development of technologies that can
restore or improve walking in individuals with paraplegia
due to SCI.
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Additional file 4: Overground walking test. The participant follows
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