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Abstract

Background: Increased resistance in muscles and joints is an important phenomenon in patients with cerebral
palsy (CP), and is caused by a combination of neural (e.g. spasticity) and non-neural (e.g. contracture) components.
The aim of this study was to simulate instrumented, clinical assessment of the hamstring muscles in CP using a
conceptual model of contracture and spasticity, and to determine to what extent contracture can be explained by
altered passive muscle stiffness, and spasticity by (purely) velocity-dependent stretch reflex.

Methods: Instrumented hamstrings spasticity assessment was performed on 11 children with CP and 9 typically
developing children. In this test, the knee was passively stretched at slow and fast speed, and knee angle, applied
forces and EMG were measured. A dedicated OpenSim model was created with motion and muscles around the
knee only. Contracture was modeled by optimizing the passive muscle stiffness parameters of vasti and hamstrings,
based on slow stretch data. Spasticity was modeled using a velocity-dependent feedback controller, with threshold
values derived from experimental data and gain values optimized for individual subjects. Forward dynamic
simulations were performed to predict muscle behavior during slow and fast passive stretches.

Results: Both slow and fast stretch data could be successfully simulated by including subject-specific levels of
contracture and, for CP fast stretches, spasticity. The RMS errors of predicted knee motion in CP were 1.1 ± 0.9° for
slow and 5.9 ± 2.1° for fast stretches. CP hamstrings were found to be stiffer compared with TD, and both
hamstrings and vasti were more compliant than the original generic model, except for the CP hamstrings. The
purely velocity-dependent spasticity model could predict response during fast passive stretch in terms of predicted
knee angle, muscle activity, and fiber length and velocity. Only sustained muscle activity, independent of velocity,
was not predicted by our model.

Conclusion: The presented individually tunable, conceptual model for contracture and spasticity could explain
most of the hamstring muscle behavior during slow and fast passive stretch. Future research should attempt to
apply the model to study the effects of spasticity and contracture during dynamic tasks such as gait.
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Background
Cerebral palsy (CP) is the most common neurological
disorder in children and is attributed to non-progressive
disturbances occurring in the developing fetal or infant
brain [1]. It is characterized primarily by neural deficits
(caused by the brain anomalies) and secondary by muscu-
lar and bone deformities [2, 3]. These deficits adversely
affect normal development of functional activities, such as
gait. Muscle hyper-resistance, i.e. increased tension in a
passively stretched muscle, caused by neural impairments
(spasticity and increased background activation) as well as
by passive tissue stiffness, is the most prevalent problem.
Spasticity is commonly defined as a velocity-dependent in-
crease in tonic stretch reflexes due to hyper‐excitability
[4], while stiffness is a mechanical resistance of the
myotendinous tissue as it is passively lengthened [5].
The exact pathophysiology of hyper-resistance is com-

plex and only partially understood. Specifically, there is
lack of consensus on the mechanisms of, and interaction
between, the neural and non-neural components of
hyper-resistance. For example, it is generally thought
that muscle stiffness occurs secondary to spasticity, with
prolonged activation causing short and stiff fibers [6].
Compared with muscles in typically developing (TD)
children, muscles in CP are smaller in cross sectional
area, volume and muscle belly length, while Achilles ten-
dons may be longer [7, 8]. However, studies on passive
fascicle length and pennation angles have been inconclu-
sive [9, 10], with some results indicating normal fascicle
lengths [11] and long sarcomeres in spastic muscles [12].
Recent studies also suggest that muscle stiffness in CP
already appears at an early age [13] and that maladapta-
tion to growth, rather than spasticity, plays a crucial role
in developing contractures [14].
The medial hamstrings are frequently affected by

hyper-resistance in CP. In comparison to TD muscles,
spastic hamstrings have been found to have lower ac-
tivation thresholds during passive stretch [15] as well as
altered muscle properties, including increased muscle
stiffness due to larger amounts of extracellular matrix
[16]. Recently, instrumented clinical tests to assess hyper-
resistance in the hamstrings have been developed, with
which both the biomechanical and electrophysio-
logical responses are recorded during a passive stretch
[17, 18]. Such tests yield a vast array of information
about joint resistance, joint angles, angular velocity, and
muscle electromyography (EMG). However, (instrumented)
clinical assessment provides limited information at
the underlying muscle level. This makes it difficult to
distinguish between the neural and non-neural components
of hyper-resistance, based on experimental data alone.
(Neuro-)musculoskeletal modeling is a powerful tool

to gain insight into the underlying pathology at a more
detailed level [19]. Thus far, most modeling studies of

spasticity during passive stretch have focused on the
ankle joint and have applied either simplified [20, 21], or
highly complex [22–25] muscle models. Other modeling
approaches have attempted to directly [26, 27] or indir-
ectly [28] assess the effect of stretch reflexes on gait. How-
ever, the complexity of pathological muscle behavior
during voluntary activation makes it very challenging to
validate such models with measured data. A detailed ana-
lysis of spastic hamstring behavior during passive instru-
mented clinical assessment using neuro-musculoskeletal
modeling could yield valuable information on tissue
as well as reflective muscle behavior, but is so far lacking
in literature.
Therefore, the aim of this paper was to simulate in-

strumented, clinical spasticity assessment of the hamstring
muscles in CP using a conceptual model of contracture
and spasticity. Specifically, we investigated whether we
could explain 1) increased resistance during slow passive
stretch (i.e. contracture) by altered passive muscle
stiffness; and 2) additional increased resistance during fast
passive stretch (i.e. spasticity) by a purely velocity-
dependent stretch reflex.

Methods
Eleven children with spastic CP (6 male, age 11.5 ± 3.4y;
weight 33.7 ± 12.8 kg) and 9 TD children (5 male; age
11.0 ± 3.2 y; 34.8 ± 13.5 kg) were included in the study.
Of the CP subjects, 8 were bilaterally affected and 3
unilaterally; 8 were classified as Gross Motor Function
Classification System (GMFCS) level I and 3 as II. All data
were collected as part of a larger study [29]. Patients
were selected from the available data set if the Modified
Ashworth Scale score of the hamstring muscles was 1 or
higher [30], i.e. a clinical sense of mild hyper resistance
(1 subject had a score of 1; 6 of 1+, and 4 of 2; with an
average Modified Tardieu Score of −78.5 ± 6.7°). Only
data on left legs were included for practical reasons. To
exclude patients with high background activation or
who were not relaxed, measurements with a root mean
square EMG (RMS-EMG) activity during slow passive
stretch higher than 10 % of that measured during max-
imum voluntary contraction (about 2 % of the stretches)
were excluded. Available data of 9 TD children were used
for comparison [17]. All subjects older than 11 years and
all parents signed an informed consent form. The data
collection protocol was approved by the medical ethics
committee of the KU Leuven University Hospital.
Instrumented spasticity assessment of the left leg ham-

strings was performed on all subjects (Fig. 1a; [17]). The
knee was stretched at a slow (>5 s for the entire range of
motion) and a fast (<1 s) stretch velocity, while the sub-
ject was laying supine with the left hip in 90°, and the
pelvis and thigh fixed by a second examiner. Knee angu-
lar displacement and velocity were recorded with inertial
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measurement units. The force applied to the shank by the
examiner was recorded with a hand-held 6 degrees of
freedom (DOF) force/torque sensor. The location of force
application relative to the knee joint axis was measured
manually parallel and perpendicular to the tibia. Surface
EMG was collected from the medial hamstrings and
rectus femoris (see [17] for measurement details).
A dedicated musculoskeletal model (Fig. 1b) was de-

veloped using OpenSim software [31]. The model was
adapted from the generic gait model (GAIT2392) and
included torso, pelvis, and left and right femur, tibia and
foot (of which torso and right leg for visualization only).
All joints were locked in 0°, except for the left hip, which
was locked in 90° as imposed during all measurements,
and the evaluated left knee, which was free to move until
full extension. All muscles were removed except for those
around the left knee, which were lumped to 5 major
muscle groups: hamstrings (HAM, representing semitendi-
nosus, semimembranosus and biceps femoris long head),
vasti (VAS, representing vastus lateralis, medialis and

intermedius), rectus femoris (RF), biceps femoris short
head (BFS), and gastrocnemius (GAS, representing gastro-
cnemius lateralis and medialis). The path of the lumped
muscles and the total muscle tendon length (optimal fiber
length plus tendon slack length) were equal to that of one
representative original muscle (biceps femoris long head
for HAM, vastus intermedius for VAS, and gastrocnemius
lateralis for GAS). Paths were selected based on other sim-
plified models (e.g. Gait10dof18musc.osim) and previous
literature [32]. To obtain myotendinous behavior repre-
sentative of the whole muscle group, the fiber to tendon
length ratio was averaged over all three muscles. The opti-
mal muscle force was taken as the sum of the represented
muscles’ forces. The ‘default activation’ was set to 0.01 for
all muscles.
The model was scaled to individual subject sizes based

on the subject’s height, leg length and tibia length, as
measured during clinical examination. Muscle strength
was scaled with the subject’s mass to the 2/3-power. Ex-
perimentally measured knee angles and applied forces

Fig. 1 Measurement and model set-up. a Measurement set-up showing (1) inertial sensors, (2) EMG electrodes and (3) hand-held 6 - DOF force
transducer; b OpenSim model used with 5 lumped muscles around the knee, and the applied force as measured experimentally
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were imported to OpenSim. The measured 6-DOF force
was applied to the shank segment at the same location
relative to the knee as measured experimentally. An in-
verse dynamic (ID) analysis was run in OpenSim to ob-
tain the net knee moment, representing the sum of all
(passive plus active) internal muscle moments around
the knee.
As a model for contracture, passive muscle properties

for HAM and VAS were optimized to match the slow-
velocity net knee moment versus knee angle curve. The
other three muscles were found to have negligible effect,
as they were not in their end range of motion in any part
of the assessment. The two parameters that determine the
passive force-length curve in the Thelen muscle model
[33] were adjusted, i.e. the parameters FmaxMuscleStrain
(‘S’, the passive muscle strain at maximum isometric
muscle force) and KshapePassive (‘K’, the exponential
shape factor for the passive force-length relationship). An
fminsearch optimization algorithm was used (Matlab
2010, The Mathworks), with the default values in Open-
Sim (S = 0.6; K = 4) as starting values, and no boundaries.
To test the robustness of the optimization, additional dif-
ferent starting values were used, and this was found to
have negligible effect. A muscle analysis was performed
for each set of S and K, to obtain the total muscle knee
moments generated by all five muscles. The sum of all
muscle moments was compared with the net knee mo-
ment from the ID analysis. In the optimization, the RMS
error between the two curves was minimized. The optimal
S and K values for HAM and VAS, as well as the associ-
ated RMS error were obtained for each subject.
To test how well the model could predict measured

motion, forward dynamic (FD) simulations were per-
formed for all assessments. The measured initial position
and applied forces were used as input, while predicted
knee angle and muscle activity were output of the simu-
lations. The passive muscle properties S and K were set
to the optimal values for each individual for all FD simu-
lations. First, the slow stretch data were simulated for
both TD and CP, to verify that the model was capable of
replicating data using FD simulations. Second, the fast
stretch data were simulated to predict the effect of
stretch reflexes in CP, and to obtain a reference in TD.
To model spasticity during the CP fast stretch simula-

tions, a stretch reflex controller was developed in Open-
Sim. This controller imposed a velocity-dependent muscle
excitation any time a fiber was stretched above a certain
threshold velocity, according to:

Emðt þ tdÞ ¼
G⋅vmðtÞ j vmðtÞ > T

0 j vmðtÞ ≤ T

(

with Em the muscle excitation for muscle m, td a time
delay factor representing the stretch reflex delay, G a gain

factor representing the severity of the enhanced reflex, vm
the fiber velocity of muscle m, and T the threshold
velocity. The controller was implemented as a plug-in in
OpenSim and is freely available on https://simtk.org/
home/spasticitymodel [34]. td was set to a fixed value of
30 ms, representing the shortest possible stretch reflex
delay as found in the literature [35]. Based on the mea-
sured data, threshold values were determined as the stretch
velocity 30 ms before onset of EMG of the muscle-tendon
complex (thus assuming that muscle fiber velocity equals
muscle-tendon velocity, which is reasonable considering
the low forces). EMG onset was identified using the
method of Staude and Wolf [36]. Gain values were set to 0,
1, 2 and 4 for each subject, which was found to cover the
range of potential values. As no notable EMG activity was
seen in any of the TD subjects’ fast stretches, the stretch
reflex controller was only applied during CP fast stretch
simulations.
To validate the FD results, predicted knee angles were

compared with measured knee motion, and muscle exci-
tation as evoked by the stretch reflex controller was
compared with measured EMG. Both comparisons were
done qualitatively by looking at the graphs, and for knee
motion also quantitatively by calculating the RMS differ-
ence between the curves. A distinction was made be-
tween the stretch phase, in which the knee was moved
quickly to its end range of motion, and the hold phase,
in which the knee was held stationary at this end range
of motion. In total 1 s of data was simulated for all FD
simulations. The muscle fiber length and velocity during
the CP fast stretch simulations were also analyzed, to
gain further insight in the working mechanisms of the
stretch reflex controller.
For statistical analysis, the optimal S and K parameters

and the RMS error of the optimization were compared
between TD and CP using a Mann–Whitney U test. This
non-parametric test was chosen because of the small
sample and non-normally distributed data. The RMS
errors of the FD simulations for knee angle were also com-
pared between TD and CP using a Mann–Whitney U test,
and between different gain values in CP using a Kruskal-
Wallis test. The level of significance was set to p < 0.05.

Results
Optimization of passive muscle properties
The net knee moments as obtained from the ID analysis
revealed that the CP children had a steeper knee moment-
angle curve (Fig. 2a, dashed lines), and hence overall stiffer
knee extensor muscles (vasti and rectus femoris) and knee
flexor muscles (hamstrings and gastrocnemius). These
measured net knee moment-angle curves could almost
perfectly be replicated by optimizing K and S for ham-
strings and vasti (Fig. 2a, solid lines). The fit for CP was
slightly better than for TD, with an RMS error between the
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measured and modeled knee moment of 0.10 ± 0.06 Nm
for CP and 0.24 ± 0.12 Nm for TD (p = 0.004, Table 1).
Figure 2b shows the passive force-length curves for

these optimized S and K values, averaged over all TD
and CP subjects. The CP hamstrings had significantly
lower S values compared with TD, with only 57 ± 11 %

stretch at optimal muscle force versus 82 ± 20 % for TD
(p = 0.004; Table 1). Shape factor K tended to be higher
in CP (p = 0.057), indicating a more concave curve in CP
than in TD. For the vasti, S and K both tended to be
lower in CP, but these differences were not significant
(p = 0.08 and p = 0.32 respectively). All muscles were
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Fig. 2 Knee moment-angle and muscle force-length curves. a Knee moment-angle curve for typically developing (TD, grey) and cerebral palsy
(CP, black) children, averaged over all subjects. Inverse dynamic results of the measurement are shown (dashed), as well as the optimized results
of the muscle analysis (solid). b. Active and passive muscle force-length curves, based on the optimized passive properties S and K as averaged
over all TD (thick grey) and CP (thick black) subjects, for hamstrings (solid) and vasti (dashed). The TD vasti curve mostly underlies the CP vasti
curve. Default active and passive curves (thin lines) are based on Thelen (2003) and typically assumed equal for all muscles, both only scaling in
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Table 1 Optimization and forward dynamic simulation results

TD (N = 9) CP (N = 11) Effect size p-value
TD vs CPmean ± std mean ± std

Muscle properties

S hamstrings 0.77 ± 0.15 0.57 ± 0.11 −0.20 0.008

K hamstrings 3.59 ± 0.63 4.65 ± 1.27 1.07 0.057

S vasti 4.21 ± 8.19 1.40 ± 1.73 −2.82 0.080

K vasti 16.12 ± 15.28 8.73 ± 3.95 −7.40 0.322

optimization error (Nm) 0.24 ± 0.12 0.10 ± 0.06 −0.14 0.004

FD RMS errors (°)

FD slow 3.58 ± 2.38 1.12 ± 0.95 −2.46 0.006

Stretch Only FD fast - no spas 6.17 ± 3.60 19.20 ± 6.76 13.03 0.000

FD fast - spas G1 14.59 ± 7.28

FD fast - spas G2 9,00 ± 5,08

FD fast - spas G4 9.61 ± 5.94

FD fast - spas Gopt 5.95 ± 2.13 0.766a

Stretch + Hold FD fast - no spas 10.55 ± 5.62 18.12 ± 5.81 7.57 0.016

FD fast - spas G1 17.85 ± 9.25

FD fast - spas G2 15.27 ± 8.60

FD fast - spas G4 12.19 ± 4.75

FD fast - spas Gopt 10.40 ± 4.59 0.941a

Abbreviations: TD typically developing, CP cerebral palsy, S passive muscle strain at optimum muscle force, K shape factor of passive force-length curve,
FD forward dynamic results, G1-4 stretch reflex gain factors of 1 to 4, Gopt optimal gain factor (0,1,2, or 4) per subject
aSpas Gopt results were statistically compared against TD no spas
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found to be much more compliant than the default Open-
Sim Thelen muscle, except for the CP hamstring muscles.

Forward dynamic results
The knee angle curve during slow passive stretch was
almost perfectly replicated in the FD simulations for all
CP children, with an RMS error of 1.1 ± 0.9° (Fig. 3b), thus
indicating that predictive FD simulations of the clinical
tests were accurate when the correct parameters were
chosen. For the TD children, the fits were slightly less
good, but still reasonable (RMS error of 3.6 ± 2.4°, Fig. 3a).
Even though passive muscle stiffness was not opti-

mized for the fast stretches, the FD simulated knee an-
gles for TD matched well with the measured knee
angles, except for on average a small overshoot towards
the end range of motion (Fig. 3c). The RMS error for
the stretch phase only (until 0.6 s in TD) was 6.2° ± 3.6°
(Table 1). For all but one CP subjects, the FD simula-
tions without spasticity were clearly overshooting the
measured knee angle (Fig. 3d). Adding spasticity reduced
the overshoot and improved the fit considerably. Table 2
shows the RMS error values of predicted versus mea-
sured knee angles during fast stretches in children with
CP obtained with different gain values in the stretch-
reflex controller. The optimal gain, i.e. the gain with the
lowest RMS error during the stretch phase (until 0.4 s

in CP), is indicated per subject in bold. Most subjects had
a best fit with a gain of 2 or 4, while two had a lower score
with a gain of 1 and one had a best fit with a gain of zero
(i.e. no spasticity). The average RMS error for predicting
the knee angle with the most optimal gain value was of
5.9 ± 2.1°, which was comparable to the value for the TD
children without the addition of spasticity. Towards the
end range of motion, almost all subjects still had an over-
shoot even with the inclusion of spasticity (Fig. 3d), as also
illustrated by an approximately 4° higher RMS error for
the complete stretch and hold phase, compared with only
the stretch phase (Table 1).

Muscle fiber activity, length and velocity
Muscle activity came on (by definition) 30 ms after the
stretch reflex controller was activated, and for all subjects
the measured and simulated muscle activity was qualita-
tively very comparable during the main part of the stretch
phase (several examples in Fig. 4). However, after the
stretch phase, sustained EMG was seen in the experimen-
tal data, which was not predicted by our purely velocity-
dependent spasticity model.
The sudden increase in muscle activation as illustrated

in Fig. 4 resulted in a clear break in the muscle fiber
length and velocity and thus in a lower peak fiber length
and peak fiber velocity, as illustrated for a typical
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example CP subject in Fig. 5. With increasing gain
values, more spiky patterns in length, velocity and activity
were found.

Discussion
In this study, an individually tunable, conceptual model
of contracture and spasticity was developed, and tested
on instrumented clinical assessment of the hamstrings in

children with CP and TD children. It was found that in-
creased resistance during slow passive stretch in both
TD and CP could be simulated well by only adjusting
passive muscle stiffness. Fast passive stretch could be
reasonably well replicated for TD, while the addition of
a purely velocity-dependent stretch reflex controller sig-
nificantly improved the fast stretch simulations in CP.
Muscle stiffness parameters S and K were highly vari-

able between subjects and substantially different in both
TD children and children with CP from the generic
muscle model parameters derived from Thelen [33]. Par-
ticularly for the vasti, we found a gross underestimation
of the original values indicating excessive passive stiff-
ness in the generic model. This is in line with previous
studies also showing excessive passive stiffness of the
quadriceps for this same model [37, 38], and the present
results emphasize the magnitude of this discrepancy. In
the gastrocnemius, the opposite has been reported, with
the generic model indicating less passive stiffness than
experimentally determined for both TD and CP [39].
These findings affirm the importance of individually tun-
ing model parameters that aim to explain healthy and
pathological pediatric muscle properties.
In line with previous findings [40], we did not find sig-

nificant differences between CP and TD children for the
passive stiffness properties of the vasti. This may be due

Table 2 Individual RMS errors (°) of predicted versus measured
knee angles during the stretch phase

Subject Gain = 0 Gain = 1 Gain = 2 Gain = 4

CP01 29.60 13.99 5.13 5.45

CP02 14.45 10.13 5.77 4.85

CP03 22.95 14.64 7.51 7.89

CP04 24.49 23.48 12.29 9.06

CP05 8.34 13.51 18.93 25.30

CP06 26.12 18.98 13.33 7.41

CP07 12.03 6.32 7.30 14.60

CP08 19.47 26.96 12.77 6.41

CP09 12.05 4.19 2.69 8.28

CP10 18.61 7.77 2.49 11.27

CP11 23.08 20.46 10.78 5.23

Lowest RMS-error values per subject are indicated in bold
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to the large spread in the data and the difficulty of ac-
curately estimating these parameters separately, espe-
cially for TD. This was likely related to the fact that the
vasti muscles were not fully stretched to their end range
of motion in our experimental data. For this reason, S
and K were more dependent on each other for the vasti
than for the hamstrings, as the stiffness curve was only
in its lag phase and not shaped enough to give a good
estimate for both S and K. As our focus was on the ham-
string muscles, the vasti stiffness parameters were mainly
used to allow for good predictive simulations. To better
estimate the stiffness parameters for the quadriceps, mea-
surements up to full knee flexion should be included.
Unlike previous modeling studies [39, 41], we opted to

alter the passive properties of the hamstrings and vasti
muscle tissue rather than altering its gross morphology.
Specifically for the medial hamstrings, Smith et al. [16]
has shown that increased collagen content in the mus-
cles’ extra cellular matrix is a main contributor to in-
creased muscle stiffness. Furthermore, examination of
biopsies taken from the flexor carpi ulnaris of children
with CP and TD children indicated significant increases

in the connective tissue reinforcement of neurovascular
tissues penetrating the muscle [42]. Yet, several studies
have also reported that muscles from subjects with CP
have reduced muscle volumes, shorter muscle bellies
and shorter optimal fiber lengths compared to those of
TD children [7, 16, 43]. Our finding that altered passive
muscle stiffness could fully explain the experimentally
measured moment angle curves during slow stretch, in-
dicates that our contracture model may capture all these
underlying causes of passive muscle stiffness, without
changing the active muscle behavior.
During fast passive stretch, altering the passive muscle

properties alone resulted in a reasonable simulation in
TD, but not in CP. The small overshoot seen in TD
(Fig. 3c) may be due to viscosity, which was not included
in our model. Reflex activity is not likely to play a role in
TD fast stretches, as no notable EMG activity was seen
in any of the TD subjects, and hence this was not in-
cluded in our simulations. In CP, a much larger over-
shoot was seen during fast passive stretches, and adding
velocity-dependent reflex activation to the hamstrings
significantly improved the fit to the level of TD. This
demonstrates that the purely velocity-dependent con-
troller could predict much of the increased resistance
due to fast stretch. The large variation in gain factors
among the subjects (Table 2) indicates the variability in
spastic reactions among children with CP. For example,
one subject with CP had hardly any overshoot in his
kinematics during a fast stretch, no difference between
measured and simulated end range of motion, and a best
fit with measured data if no spasticity was included
(Table 2, CP05). Interestingly, this was also the subject with
the lowest measured RMS EMG during the fast stretch and
also the lowest clinical Modified Ashworth Scale (1, where
all others were 1+ or higher). Thus, spasticity played only a
minor role in this subject, which was confirmed by our sim-
ulations. Current clinical assessment scores, such as the
Modified Ashworth, tend to cluster muscles into broad se-
verity categories, thereby limiting their ability to differenti-
ate between subjects or to detect response to treatment.
Conversely, the proposed model allows data from the in-
strumented assessment to be individually tuned, therefore
providing a wider range of possible outcomes with which
to compare subjects or study the effect of treatment.
Prolonged muscle activation after the fast passive

stretch in CP was not predicted by our model and may,
together with viscosity, help explain some discrepancies
between the measured and simulated kinematics during
the end range of motion in CP. Such activation may be
contradictory to the classical definition of spasticity as
being velocity-dependent [4], but is in line with multiple
experimental studies that have reported tonic activation
during passive stretch of spastic muscles [44–47], and par-
ticularly in the hamstrings [15]. A possible explanation for
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the continued activation may be that alterations in the
membrane properties of alpha motor neurons increase
their sensitivity to afferent input. This in turn triggers per-
sistent inward currents (PIC) that lead to prolonged
depolarization states called plateau potentials. Following
loss of normal central regulation, PIC and plateaus can re-
sult in continuous low-level motor output [48]. Alterna-
tively, length-dependent activity, even at slow stretch, has
been found during passive muscle stretch especially in the
hamstrings [15], and may help explain the prolonged
activity. However, the amplitude of length-dependent
activity during slow stretch was low in subjects selected
for the current study, so this is likely only a minor effect.
Although these different mechanisms may all play a

role, we believe that model complexity should be, in first
instance, avoided. A model with many parameters may
fit well with the measured data (low bias), but the accur-
acy with which each parameter can be estimated is
prone to being compromised (high variance). Addition-
ally, when multiple dependent parameters are included
in a model, optimization algorithms tend to adjust only
that parameter that has the most influence on the error,
even though experimental data may show otherwise. In
this study, we attempted to model the measured data
with as low a number of optimizable model parameters
as possible, choosing those parameters that are physiolo-
gically most likely to be altered in CP. As length, vel-
ocity, and force (or acceleration) feedback are highly
interdependent, distinguishing between their effects,
based on externally measured data or simulations, will
be difficult. Jansen et al. [26] included both length and
velocity feedback in forward-dynamic simulations of gait,
and found that both feedback types resulted in patho-
logical gait characteristics as seen post stroke. The effect
of length and velocity feedback were however highly
similar and therefore difficult to distinguish. Similarly,
the effects of increased muscle stiffness, increased ten-
don stiffness, and reduced fiber and tendon length are
highly related and would all result in steeper joint
moment-angle curves if included in the model. We
chose not to alter tendon length or stiffness, as there is
limited evidence that these contribute to the overall
hamstrings stiffness in CP, while Achilles tendons in CP
have even been found to be more compliant [49–51]. Fi-
nally, we also had to lump the hamstrings and vasti
muscle groups, as many of the individual muscle param-
eters were interdependent, and hence it was not possible
to reliably estimate them separately. The resulting
lumped hamstring is not representative of any of the in-
dividual hamstrings heads on its own, but rather of the
total muscle, allowing us to better understand the overall
behavior. The absolute values of the model parameters
are likely influenced by the path chosen and would have
been slightly different had we chosen for instance the

semimembranosus or semitendinosus path. However,
the differences between CP and TD are not expected to
be influenced by this effect, and our conclusions are
therefore independent of the muscle path chosen.
In future studies, richer experimental data sets, for in-

stance including active force generating tests and ultra-
sound measurements, could provide additional information
about the underlying muscle properties and behavior. This
could allow for more accurate estimation of additional
model parameters such as fiber and tendon lengths
and active muscle properties, as well as a better distinction
between the individual hamstrings heads. Simulation of
additional data sets per muscle, application to other joints
and muscles, and inclusion of a larger sample of subjects
could also help to further validate our conceptual model
for contracture and spasticity. If complemented with
personalized skeletal geometry, for instance as obtained
from MR images [52, 53], comprehensive patient-specific
models could be generated.
As such, our individually tuned model for contracture

and spasticity could be applied to simulate more clinic-
ally relevant tasks such as gait. In this way, the model
may help identify to what extent passively measured
(pathological) muscle properties and motor control affect
dynamic tasks, and should be subject to treatment. To
help speed up such applications, the stretch reflex control-
ler as well as the underlying source code are made freely
available online on the simtk website [34].

Conclusion
This paper shows that passive muscle properties, i.e.
muscle strain S and shape factor K, of hamstrings and vasti
can be individually estimated based on slow stretch instru-
mented spasticity assessment data, and can fully explain
muscle behavior during slow passive stretch. Hamstring
muscle properties were found to be stiffer in CP and vari-
able between subjects. A purely velocity-dependent spasti-
city model (individually tuned for its Gain) can predict
muscle response during fast passive stretch in terms of pre-
dicted knee angle, muscle activity, fiber length and velocity.
Only after the fast stretch phase, simulated and measured
knee angles and muscle activity started to deviate, as sus-
tained muscle activity, not dependent on velocity, was not
predicted by our model.
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