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Abstract

Background: Client-centred task-oriented training is important in neurological rehabilitation but is time consuming
and costly in clinical practice. The use of technology, especially motion capture systems (MCS) which are low cost
and easy to apply in clinical practice, may be used to support this kind of training, but knowledge and evidence of
their use for training is scarce. The present review aims to investigate 1) which motion capture systems are used as
training devices in neurological rehabilitation, 2) how they are applied, 3) in which target population, 4) what the
content of the training and 5) efficacy of training with MCS is.

Methods: A computerised systematic literature review was conducted in four databases (PubMed, Cinahl, Cochrane
Database and IEEE). The following MeSH terms and key words were used: Motion, Movement, Detection, Capture,
Kinect, Rehabilitation, Nervous System Diseases, Multiple Sclerosis, Stroke, Spinal Cord, Parkinson Disease, Cerebral
Palsy and Traumatic Brain Injury. The Van Tulder’s Quality assessment was used to score the methodological quality
of the selected studies. The descriptive analysis is reported by MCS, target population, training parameters and
training efficacy.

Results: Eighteen studies were selected (mean Van Tulder score = 8.06 ± 3.67). Based on methodological quality,
six studies were selected for analysis of training efficacy. Most commonly used MCS was Microsoft Kinect, training
was mostly conducted in upper limb stroke rehabilitation. Training programs varied in intensity, frequency and
content. None of the studies reported an individualised training program based on client-centred approach.

Conclusion: Motion capture systems are training devices with potential in neurological rehabilitation to increase
the motivation during training and may assist improvement on one or more International Classification of
Functioning, Disability and Health (ICF) levels. Although client-centred task-oriented training is important in
neurological rehabilitation, the client-centred approach was not included. Future technological developments
should take up the challenge to combine MCS with the principles of a client-centred task-oriented approach and
prove efficacy using randomised controlled trials with long-term follow-up.

Trial registration: Prospero registration number 42016035582.
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Background
People with central nervous system diseases such as
multiple sclerosis (MS), stroke and spinal cord injury
(SCI), demonstrate among others loss of motor and sen-
sory function in the upper and lower limbs. Due to
motor impairment in upper limbs, the performance of
activities of daily life, sports and leisure activities is af-
fected. Motor impairment in the lower limbs, affects
mobility in general and balance control during reaching
movement. The impairments of both upper and lower
limbs reduce functional independence and thus the qual-
ity of life of the individual [1–6]. Exercise therapy has
proven to improve impairments [7–9], therefore re-
habilitation is very important for these patients.
In neurological rehabilitation, training should be chal-

lenging, repetitive, task-specific, motivating, salient and
intensive to activate neuroplasticity [4]. Moreover, studies
have shown the importance and benefits of client-centred
task-oriented rehabilitation [10, 11]. The concept of
client-centredness not only incorporates patient’s wishes
and needs in their rehabilitation, but also actively involves
the patient in selecting goals for their own rehabilitation
process. Definitions of task-oriented training are still very
diverse, but it incorporates that training is directed to a
specific, functional, task [10, 12]. Task-oriented training
has been proven to be effective in arm-hand skilled per-
formance in stroke patients [12, 13], spinal cord [10] and
MS [14]. Spooren et al. [14] demonstrated the importance
of specificity of training and inclusion of ‘client-centred
training’ and ‘exercise progression’. Timmermans et al.
[12] concluded that training components, such as random
and distributed practice, together with feedback and clear
functional goals, should be incorporated in order to en-
hance the outcomes of task-oriented training. Despite the
advantages of a client-centred task-oriented approach with
regard to training outcome and motor learning, this ap-
proach requires individualised training schemes and
guidance of a therapist. Therefore a client-centred and
task-oriented approach is more time consuming and
costly for therapists and rehabilitation centres. Hence a
new approach is needed where client-centred task-
oriented rehabilitation can be administered without
extra costs and effort of therapists.
Technology-based rehabilitation systems such as ro-

botics and virtual reality (VR) are promising and may be
able to deliver a client-centred task-oriented rehabilita-
tion without extra costs and effort of therapists. Several
studies addressed the positive effects of robotics and VR
systems as additional therapy in neurological rehabilitation
[4, 15–19]. Robotics have shown positive effects such as
the enhancement of function and activity of affected limb
and increased motivation, but the costs of the devices is
high [3, 20]. In addition, the devices are often uncomfort-
able as the user needs to wear apparatuses on the body

and patients have difficulty using such devices [3]. Al-
though a few studies include some aspects of a client-
centred approach in robotic rehabilitation, it remains very
difficult to incorporate a full client-centred approach be-
cause of the wide variety of choices that can be made (e.g.
difficult to select individual parameters, specific move-
ments or activities, to use objects, etc. [19, 20]. VR, on the
other hand, is a computer-based technology that allows
users to interact with simulated environments and receive
feedback on performance. VR also stimulates the increase
of intensity of movements, therefore it may facilitate
motor learning and neuroplasticity through repetition and
increased intensity during task-oriented training [2–4].
Compared to the traditional methods used in motor re-
habilitation of patients with neurological disorders, VR has
some advantages: 1) patients can perform different re-
habilitation exercises, recreated in a virtual way (i.e. virtual
rehabilitation exercises), 2) VR can set up the features
of the exercises, control their performance and acquire
relevant data from the patient’s performance, and 3)
VR can facilitate the interaction between patient and
system through a variety of available devices, such as
MIT-Manus, RemoviEM, etc. [21, 22]. Non-immersive
video games are also a form of VR. They are developed
by the entertainment industry for healthy population
and home use making it less costly and more accept-
able. Markerless (i.e. without markers or sensors on the
body) motion capture systems (MCS) such as Nintendo
Wii and Playstation Move, make use of non-immersive
video games and have been used in VR rehabilitation.
Studies showed an increase in motivation for rehabilita-
tion as well as improvement in motor function and cor-
rectness of movement after training. Although the results
are positive, these commercially available MCS systems
with VR have to date limited utility in rehabilitation for
impaired populations [1, 3, 4]: the standard games are too
difficult or progress too quickly, they do not provide
impairment-focused training (e.g. no treatment towards
flexion synergies), and do not specifically address inde-
pendent home usability and safety [1]. Only a few studies
have looked into customising Kinect games for stroke, but
no specific focus was payed to the coordination patterns
which are important in stroke recovery, reducing compen-
sation strategies, or usability and safety for independent
home use [1, 23]. At present, validity and accuracy of the
Microsoft Kinect in clinical assessment is strong regarding
postural control and standing balance [24, 25]. The repro-
ducibility of Kinect when analysing planar motions is simi-
lar to traditional marker-based stereophotogrammetry
systems [26]. Although there is an increasing number of
studies involving markerless motion capture systems in
neurological rehabilitation, the knowledge and evidence of
training content and training efficacy with Kinect or other
markerless motion capture systems is scarce [24, 27].

Knippenberg et al. Journal of NeuroEngineering and Rehabilitation  (2017) 14:61 Page 2 of 11



Because little is known about the various markerless
MCS used in neurological rehabilitation, their imple-
mentation in rehabilitation training, and effectiveness as
a potential device in client-centred task-oriented training,
the present study aims to investigate 1) which (markerless)
motion capture systems are used as training devices in
neurological rehabilitation, 2) how they are applied, 3) in
which target population, 4) what the content of the train-
ing is and 5) what the efficacy of training with MCS is.

Methods
Search strategy
A computerised search was conducted in PubMed, Cinahl,
Cochrane Database and IEEE. Studies were collected up to
December 2016.
The following Medical Subject Headings (MeSH) and

key words were used: (“Motion”[Mesh] OR “Move-
ment”[Mesh] OR motion[Title/Abstract] OR move-
ment[Title/Abstract] AND detection[Title/Abstract]
OR capture[Title/Abstract] OR kinect[Title/Abstract])
AND (“Rehabilitation”[Mesh] OR rehabilitation[Title/
Abstract]) AND (nervous system diseases[MeSH Terms]
OR nervous system diseases[Title/Abstract] OR multiple
sclerosis[MeSH Terms] OR multiple sclerosis[Title/Ab-
stract] OR stroke[MeSH Terms] OR stroke[Title/Abstract]
OR spinal cord[MeSH Terms] OR spinal cord[Title/Ab-
stract] OR parkinson disease[MeSH Terms] OR parkinson
disease[Title/Abstract] OR brain injuries, traumatic[MeSH
Terms] OR brain injuries, traumatic[Title/Abstract] OR
cerebral palsy[MeSH Terms] OR cerebral palsy[Title/Ab-
stract]) NOT (“Eye”[Mesh] OR eye[Title/Abstract] OR
“Speech”[Mesh] OR speech[Title/Abstract]).
Two review authors (EK & JV) conducted the search

and the inclusion of the articles.

Inclusion criteria
Studies were included when persons with nervous sys-
tem diseases, such as MS, stroke, SCI, cerebral palsy,
etc., were involved in an intervention study or trial in
which a markerless MCS was used in the rehabilitation
program to improve the upper or lower limb function or
balance control. All studies published in English, French,
German and Dutch were included. All quantitative study
designs, except systematic reviews were included in this
review.

Exclusion criteria
Studies on healthy subjects, children or animals were ex-
cluded. Training with robotics or exoskeletons were also
excluded. Studies involved with eye or speech motion
capture, gait/fall capture, movement intent and motion
assessment were not eligible for further analyses.

Methodological assessment
Two review authors (EK and JV) independently assessed
the methodological quality of all selected studies with
the Van Tulder’s Quality assessment scale [28]. This
scale scores the internal validity (score 0–11), descriptive
criteria (score 0–6) and the statistical criteria (score 0–
2) of randomized controlled trials (RCT) and controlled
clinical trials (CCT), but was also used to evaluate the
quality of studies with another study design. The items
“Was the care provider blinded for the intervention” and
“Was the patient blinded to the intervention” of the in-
ternal validity score were considered to be not applicable
as care providers and patients are aware of the training
they provide or receive. The interrater reliability of the
individual items was tested using the Cohen’s Kappa
[29]. The total Van Tulder score (0–17) was calculated
after any disagreements were discussed and resolved.

Data extraction
The type of motion capture system, the patient group
and training components used in all selected studies
were described to answer the first two aims of this sys-
tematic review. The following training components were
extracted: the ICF training level, trained body part
(upper limb, lower limb or full body), format of content
(exercise, game or task), real-object or VR, training com-
ponents (e.g. weeks, frequency, etc.), feedback, use of
client-centred approach and training outcome. In order
to describe the training outcome of the studies (third
aim), only studies with a good methodological quality
(i.e. score of nine or higher) were incorporated, nine be-
ing the quality cut-off point of 50% (on 17 items) sug-
gested by Van Tulder [28].

Results
Additional file 1: Figure S1 summarizes the stages of the
article search and the inclusion/exclusion process. A
total of 638 articles were identified and after exclusion
by screening on title/abstract (n = 549), 66 articles were
selected for further evaluation. Fifty articles were further
excluded by screening full-text and two references were
added. At the end, 18 papers were selected and analysed.

Methodological quality of the included articles
Table 1 presents the Van Tulder score of the 18 selected
papers including the score of internal validity, the de-
scriptive score, statistical score and total score.
There was disagreement on nine of the 306 items on

the Van Tulder score, resulting in a mean Cohen’s kappa
score of 0.91 between the two raters, which is consid-
ered an excellent agreement [30].
After consensus on all items, the mean Van Tulder

score was 8.06 ± 3.67 (mean ± standard deviation (SD)),
with a mean internal validity score of 3.11 ± 2.11 (out of
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9), a mean descriptive score of 3.16 ± 1.54 (out of 6) and
a mean statistical score of 1.78 ± 0.43 (out of 2). Overall
it can be stated that the internal validity and descriptive
score were low. This may be due to the use of the Van
Tulder scale for all designs while the scale is developed
especially for RCTs and CCTs.
Six out of 18 studies included a control group,

consisting of five RCTs and one CCT [31]. Although
five of the 18 included studies were RCT’s [2, 3, 21,
32, 33], only one study was single blinded [21]. No
studies were double blinded. All studies had short-
term follow-up measurements performed, while only
two had long-term follow-up measurements per-
formed [34, 35].
The six selected studies with a Van Tulder score of 9

or higher will be used to describe training efficacy [28].
These six studies had a mean Van Tulder score of
12.33 ± 2.16 (mean ± SD).

Type of motion capture system
Three different types of MCS were used, as shown in
Table 1. Sixteen studies involved training with Microsoft
Kinect system [1, 3, 5, 6, 21, 23, 31–34, 36–41], one
study used Gesture Xtreme (which was not described in
detail in the original publication) [2] and one study used
a motion capture platform but did not further specify
the system [35].

First and most frequently used MCS is the Microsoft
Kinect. The Microsoft Kinect is an infrared motion cap-
ture device used for interactive computer games,
intended for the Xbox 360 game console. The device en-
ables users to control and interact with the virtual reality
environment via infrared camera and depth sensor, with-
out the need for a remote controller. Movement of the
user is provided in full-body 3D motion detection cap-
abilities and gesture recognition, captured in real time
and feedback is provided immediately. It is commercially
available at low cost [3, 34, 36].
The second system described, is the Gesture

Xtreme. This is a virtual gaming system that uses pat-
ented video gesture control software and immersive
technology. The system transports your body into a
computer generated landscape. Human body gestures
make it possible to interact with the virtual world in
real time [2, 42].
Third, Shiri et al. [35] describe their system as a mo-

tion capture platform which is operated with a standard
laptop and a low-cost webcam. Patients have to wear a
white robe and black sleeveless vest against a blue back-
ground for the system to be able to recognise the person.
This novel VR system replaces the impaired arm of the
patient by a virtual one. The virtual arm is controlled by
the patients who use a mouse, trackball or joystick to ma-
nipulate the virtual arm. The system integrates self-face

Table 1 Van Tulder score of each selected study, system used and subjects

Reference Design Van Tulder score System Patient (n)

IV DC SC Total

Bao 2013 [34] Case series 2 4 2 8 Kinect Subacute stroke (5)

Brokaw 2014 [1] Case study 1 1 1 3 Kinect Chronic stroke (1)

Chang 2011 [36] Case study 1 1 1 3 Kinect Dementia and brain injury (2)

Jaume-i-capo 2014 [6] Case series 1 4 2 7 Kinect Cerebral Palsy (8)

Lee 2013 [31] CCT 3 3 2 8 Kinect Chronic stroke (14)

Levin 2012 [2] RCT 8 5 2 15 GestureXtreme Subacute stroke (12)

Lloréns 2012 [5] Case series 1 3 2 6 Kinect Chronic stroke (15)

Lloréns 2015 [32] RCT 7 5 2 14 Kinect Chronic stroke (20)

Lloréns 2015 [33] RCT 6 5 2 13 Kinect Chronic stroke (30)

Lozano-Quilis 2014 [21] RCT 5 5 2 12 Kinect MS (11)

Palacios-Navarro 2015 [39] Case series 3 3 2 8 Kinect PD (7)

Pastor 2012 [23] Case study 2 1 1 4 Kinect Chronic stroke (1)

Pompeu 2014 [37] Case series 3 2 2 7 Kinect PD (7)

Shiri 2012 [35] Case series 3 4 2 9 Motion capture platform (Sub)acute stroke (6)

Sin 2013 [3] RCT 4 5 2 11 Kinect Chronic stroke (35)

Summa 2015 [41] Case series 2 1 1 4 Kinect Chronic stroke and TBI (4)

Summa 2015 [40] Case series 2 3 2 7 Kinect PD (7)

Ustinova 2013 [38] Case series 2 2 2 6 Kinect Chronic, mild-to-moderate TBI (9)

IV internal validity, DC descriptive criteria, SC statistical criteria, CCT controlled clinical trial, RCT randomized controlled trial, MS multiple sclerosis, PD Parkinson’s
disease, TBI traumatic brain injury
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viewing online with mirror visual feedback, but the name
of the system is not further specified.

Target population
Different target populations with neurological problems
were involved in the studies. However, the majority of the
studies (n = 11) included persons with stroke [1–3, 5, 23,
31–35, 41], of which eight with chronic stroke [1, 3, 5, 23,
31–33, 41]. Other patient groups where only described in
one to three studies and included dementia and brain in-
jury [36], cerebral palsy [6], MS [21], Parkinson’s disease
[37, 39, 40], traumatic brain injury [38].
Sample size of the studies varied between one (case

study) [1, 23] and 35 (RCT) [3] with a mean age between
32.3 years [38] and 76.4 years [31].
Regarding patient group and type of MCS, half of the

selected studies used the Kinect with stroke patients
[1, 3, 5, 23, 31–34, 41].

Training content
As shown in Table 2, there is a wide variety between the
training content of the included studies (i.e. ICF training
level, the body part trained, content of the training, exer-
cise, game or task, use of real- and/or virtual object, the
feedback mechanism used, and training intensity).
Most studies (n = 11) reported a training specifically

on the ICF activity level, it was remarkable that in two
studies the training program was targeted towards the
ICF activity and participation level [2, 36].
Eight studies focused on upper limb training [1–3, 23,

31, 34–36], while six studies concentrated on lower limb
training [5, 21, 32, 33, 39, 41] and only four studies
trained the full body [6, 37, 38, 40].
The study of Pastor et al. [23] was the only study that

provided an upper limb training on the ICF body func-
tions and structures level. In this study a game was de-
veloped where the patient needs to select images that

Table 2 Training parameters of all selected studies

Reference ICF
level

Body
part

Content Format Real-object
or VR

Feedback Weeks or
sessions

Frequency

Bao 2013 [34] A UL Fruit Ninja: Slicing fruit Games VR Visual 3 weeks 5 × 1 h/week

Brokaw 2014 [1] A UL Functional reach and shoulder
abduction with elbow extension

Games VR Visual 4 weeks 5 × 1 h/week

Chang 2011 [36] A + P UL Preparing pizza Tasks VR Visual and
auditory

Unknown 2 sessions/day

Jaume-i-capo 2014 [6] F FB Standing and reaching
movements

Exercises VR Visual and
auditory

24 weeks 1 × 20 min/week

Lee 2013 [31] A UL Kinect sports and Kinect
adventures

Games VR Not
mentioned

6 weeks 3 × 30 min/week

Levin 2012 [2] A + P UL Goal-directed reaching tasks Games VR Visual 3 weeks 3 × 45 min/week

Lloréns 2012 [5] A LL Stepping exercises for balance
control

Exercises VR Not
mentioned

20 sessions 3–5 × 45 min/week

Lloréns 2015 [32] A LL Stepping exercises for balance
control

Exercises VR Not
mentioned

4 weeks 5 × 1 h/week

Lloréns 2015 [33] A LL Stepping exercises for balance
control

Exercises VR Not
mentioned

20 sessions 3 × 45 min/week

Lozano-Quilis 2014
[21]

F + A LL Balance and weight Exercises VR Visual 10 weeks 1 × 1 h/week

Palacios-Navarro 2015
[39]

A LL Lateral leg movement Exercises VR Visual 5 weeks 4 × 30 min/week

Pastor 2012 [23] F UL Reaching target Exercises VR Visual 2 weeks 5 × 10-20 min/day

Pompeu 2014 [37] A FB Kinect adventures Games VR Visual and
auditory

14 sessions 3 × 1 h/week

Shiri 2012 [35] A UL Arm movements Games VR Visual 10 sessions 2–3 × 45 min/week

Sin 2013 [3] A UL Kinect sports and Kinect
adventures

Games VR Visual and
auditory

6 weeks 3 × 1 h/week

Summa 2015 [41] F LL Reaching target Exercises VR Visual 6–10 sessions 1 h

Summa 2015 [40] A FB Reaching target Exercises VR Visual 10 sessions 2 × 40 min/week

Ustinova 2013 [38] F + A FB Coordination and postural
control

Exercises Mixed Visual and
auditory

15 session 2–4 × 50-55 min/
week

ICF International Classification of Functioning, Disability and Health, F function, A activity, P participation, UL Upper limb, LL Lower limb, FB Full body,
VR Virtual reality
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randomly appear in a cell of a 2 × 2 to 6 × 6 grid on the
screen, depending on the game. Selecting an image is
done by locating the cursor inside the appropriate cell by
moving the hand. The images used, such as furniture or
transportation means, differ every session, but is not chan-
ged in accordance to the patient’s interest [23]. The two
studies that offered upper limb training on ICF activity
and participation level included performing the vocational
task of preparing pizza and goal-directed reaching tasks in
a virtual supermarket [2, 36]. The remaining five studies
performing upper limb training, focused on the ICF activ-
ity level [1, 3, 31, 34, 35], mainly performing standard
Kinect games [3, 31, 34]. The four studies who trained the
whole body, focused on ICF function, activity or the com-
bination of function and activity level [6, 37, 38, 40]. Four
out of six studies that trained the lower limbs, focused on
activity level by performing stepping exercises for balance
control [5, 32, 33] and lateral leg movement [39]. One
other study on lower limbs, trained on function and activ-
ity level and performed balance and weight exercises [21].
The last study on lower limb focused on ICF functional
level by performing pelvis movements [41].
Training content included tasks [36], standardised ex-

ercises [5, 6, 21, 23, 32, 33, 38–41] or games [1–3, 31,
34, 35, 37]. Four out of six studies used the commer-
cially available games such as Fruit Ninja [34] or Kinect
Sports and/or Kinect Adventures [3, 31, 37] while only
two studies took the interest of the patients into account
by using visual targets or games, based on the patients’
interest [6, 31]. In the study of Lee et al. [31], the pa-
tients had to choose one Kinect Sports game (i.e. Boxing
or Bowling) and one Kinect Adventures game (i.e. Rally
Ball, 20,000 leaks or Space Pop). Jaume-i-Capo et al. [6]
used targets on the screen that could easily be changed
into images that are of interest for each user, e.g. football
club images. In only one study patients were given the
choice of using a real object during training [38].
None of the studies included a client-centred task-

oriented approach, such as the Canadian Occupational
Performance Measure (COPM). All studies used stan-
dardised exercises or games, with respect to therapeutic
goals and focused on the impaired body part or func-
tionality, but never involving the patient in the process.
Only two studies take patient’s interest into account by
using images of their interests [6] or give the patient a
choice in which game to play [31].
With regard to feedback during and/or after training,

most studies (n = 9) only used visual feedback [1, 2, 21,
23, 34, 35, 39–41]. Five studies provided a combination
of visual and auditory feedback [3, 6, 36–38] and four
studies did not mention their type of feedback [5, 31–33].
The diversity in the training duration and intensity

was large over the different studies ranging from only
two [23] to 24 weeks of training [6], with a frequency of

one to five times a week and sessions of 20 min to 1 h a
day. It should be noted that the study with the longest
training duration (i.e. 24 weeks), offered the lowest in-
tensity of only once a week for 20 min [6].

Training efficacy
An overview of the selected studies (Tulder score ≥ 9),
their intervention and their mean outcome is presented
in Table 3 for upper and lower limb.
Focusing on the upper limb, in the studies of Levin et

al. [2] and Shiri et al. [35], MCS therapy was performed
without conventional therapy. Whereas in the study of Sin
et al. [3] a combination of conventional therapy with MCS
therapy was used. With regard to within group differ-
ences, all three studies reported improvement on one or
more outcome measures [2, 3, 35]. The improvement was
significant in two studies [3, 35], one study only reported
effect sizes [2], especially on WMFT, FMA and BBT.
A between group comparison was only possible in

two out of the three studies, as Shiri et al. [35] pre-
sents a case series design. Levin et al. [2] and Sin et
al. [3] reported a positive result in favour of the ex-
perimental group. Levin et al. [2] reported a larger ef-
fect of training on the WMFT-FAS in the VR group
at post-test compared to conventional group. Both
post training (with an improvement post training in
five out of the six subjects in the experimental group
in contrast to three out of six in de control group)
and at follow-up (four out of six subjects from the
experimental group in contrast to two from the con-
trol group), more subjects from the experimental
group maintained their improvements at 1 month
follow-up as opposed to control group. The other
part of the WMFT, i.e. WMFT-TIME, did not show
any remarkable effects [2]. Sin et al. [3] reported a
significant difference between the experimental group
and the control group at post-test for Active Range
of Motion (AROM) of all joint movements in shoul-
der, elbow and wrist, FMA motor function and BBT.
At follow-up (i.e. 6 weeks post treatment), the experi-
mental group improved significantly better than the
control group for AROM of shoulder and elbow, but
not of the wrist, FMA and BBT.
Two studies used and reported the Motor Activity

Log, a clinical measurement of perceived performance
on ICF activity level [2, 35]. Levin et al. [2] reported that
both the frequency (MAL-AOU; Amount of Use) and
quality (MAL-QOM; Quality of Movement) of daily arm
use was unchanged in both experimental and control
group while training was done on both ICF activity and
participation level. Shiri et al. [35] reported a significant
improvement on the MAL in general after training
which was focused on ICF activity level.
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Only one study performed a long-term follow-up at 3
months post treatment [35]. Shiri et al. [35] is the only
case series selected and performed a long-term follow-
up measurement after 3 months post treatment. Levin
et al [2] performed a follow-up measurement, but
only 1 month after the intervention.
Regarding the lower limb, the training duration and in-

tensity was very different (as shown in Table 3). Although
training parameters are divers, all three lower limb studies
used the same tool, i.e. Kinect [21, 32, 33].
The study of Llorens et al. [33] focused on the difference

between therapy in home-based situation (experimental
group) and therapy in rehabilitation centre (control
group). It is also the only study of the lower limb that
measured at follow-up after 1 month of finishing training
in which improvement was retained.
All studies reported a significant effect on the Berg

Balance Scale (BBS) with both studies of Llorens et al.
showing significant improvement in the experimental as
well as in the control group [32, 33]. Lozano-Quilis et al.
only reported a significant improvement on the BBS in
the experimental group [21]. One study reported a sig-
nificant improvement on both subscales of the Tinetti
Performance Oriented Mobility Assessment, i.e. balance
and gait (respectively POMAb and POMAg), and Brun-
nel Balance Assessment (BBA) in both experimental and
control group [33]. Lozano-Quilis et al. [21] further

showed significant improvement of the POMAb subscale
in both groups. Two studies used the 10-m walking test
(10MWT) and both reported significant improvement in
the experimental as well as in the control group [21, 32].
The study that assessed the difference in the use of

MCS between home and hospital setting did not reveal
any significant difference [33]. The other studies showed
significant differences between group in favour of the
experimental group measured by several outcome mea-
sures, i.e. BBS and 10MWT [21, 32]. Other than the
BBS and 10MWT, Lozano-Quilis et al. [21] presented
significant group by time effect on SLB right foot and
significant group effect on the Time “Up and Go” test
(TUG).
The only study who included motivation and usabil-

ity, was the study of Llorens et al. (2015). Regarding
motivation, a positive trend was found on the Intrin-
sic Motivation Inventory (IMI) and System Usability
Scale (SUS) after the intervention. In addition, Llo-
rens et al. [33] also found that overall expenses were
cheaper in home-based programs in relation to the
clinical program.
As all three studies focussing on lower limb use the

Kinect, it can be stated that function and/or activity
training of the lower limb with Kinect gives significant
effect within groups on clinical outcome measures who
focus on ICF activity level.

Table 3 Training outcome in upper and lower limb studies

Reference Body
part

Design Intervention Clinical outcome measures Results (ICF level)

Subjects
(n)

ICF
level

Weeks or
sessions

Frequency ICF level Motor outcome Within
group

Between group

Levin 2012
[2]

UL RCT Subacute
stroke (12)

A + P 3 weeks 3 × 45 min/
week

F + A FMA upper extremity, CSI,
RPSS, BBT, WMFT, MAL,
patients comments

FES, AES Stronger effect of training
on WMFT in VR group at
post-test compared to
conventional group.

Shiri 2012
[35]

UL Case
series

(Sub)acute
stroke (6)

A 10
sessions,
4 weeks

2–
3 × 45 min/
week

F + A + P FMA, WFMT, MAL, DY,
BBT, VAS Pain, SF-36

F*, A*,
P£

NA

Sin 2013 [3] UL RCT Chronic
stroke (40)

A 6 weeks 3 × 1 h/
week

F + A AROM upper extremity,
FMA, BBT

F*, A* F*, A*

Lloréns
2015 [32]

LL RCT Chronic
stroke (20)

A 4 weeks 5 × 1 h/
week

A BBS, POMAb, POMAg, BBA,
10MWT; Short Feedback
Questionnaire

A* A*

Lloréns
2015 [33]

LL RCT Chronic
stroke (30)

A 20
sessions

3 × 45 min/
week

A BBS, POMAb, POMAg, BBA,
SUS, IMI, cost

A* No significance found

Lozano-
Quilis 2014
[21]

LL RCT MS (11) F + A 10 weeks 1 × 1 h/
week

F + A BBS, POMAb, SLB, 10MWT,
TUG, SEQ

F*, A* F*, A*

UL Upper limb, LL Lower limb, RCT randomized controlled trial, ICF International Classification of Functioning, Disability and Health, F function, A activity,
P participation, WMFT Wolf Motor Function Test, FMA Fugl Meyer Assessment, MAL Motor Activity Log, AROM Active Range of Motion, BBT Box and Blocks Test, CSI
Composite Spasticity Index, RPSS Reaching Performance Scale for Stroke, DY Dynamometer, VAS Visual Analogue Scale, SF-36 Short Form 36, MS Multiple Sclerosis,
BBS Berg Balance Scale, POMA Tinetti Performance Oriented Mobility Assessment (b = balance subscale; g = gait subscale), 10MWT 10 m walking test, BBA Brunnel
Balance Assessment, SUS System Usability Scale, IMI Intrinsic Motivation Inventory, SLB Single Leg Balance Test, TUG Time Up and Go test, SEQ Suitability
Evaluation Questionnaire
*: significant p value (p < 0.05) in one or more outcome parameters; £: significant p value (p < 0.05) in pre- vs posttest; not at follow-up; ES: Effect size
NA: Not applicable
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Discussion
The aim of this study was to investigate 1) which mar-
kerless MCS are used as training devices in neurological
rehabilitation, 2) how they are applied, 3) in which target
population, 4) what the content of the training and 5) ef-
ficacy of training with MCS is. In general, the results of
this systematic review demonstrate that only a limited
number of studies investigated the effects of an upper or
lower limb training with (markerless) motion capture
systems in people with a neurological disease. The
Kinect was mostly used, performing exercises in a virtual
environment was mostly applied, stroke was the main
target population and the upper limb the most trained
body part. Interventions focused mainly on ICF activity
level and visual feedback was the most common used
form of feedback. A large variety of training parameters,
e.g. content, frequency and intensity, was found. None
of the studies reported a client-centred task-oriented ap-
proach. All studies reported (significant) improvement
in upper and lower limb, on one or more ICF levels,
mostly in favour of the experimental MCS group.
The Microsoft Kinect was the most used MCS in the

selected studies (n = 18). Several studies reported advan-
tages of Microsoft Kinect compared to, e.g. robotics or
Nintendo Wii. As people using Kinect-based systems do
not have to wear sensors or markers on the body or hold
them [26], they are found to be more appealing, com-
fortable, enjoyable and more intuitive to use [21, 27, 33,
39, 40]. It is also commercially available at low cost and
can be used at home [26, 27, 33, 39, 40]. These findings
are in compliance with two qualitative studies [43, 44].
Knippenberg et al. [43] investigated the opportunities of
markerless MCS by assessing the expectations and re-
quirements of therapists and patients towards the use of
MCS and Microsoft Kinect in neurological rehabilita-
tion. It was found that the main advantage for patients
was the possibility of using the Kinect without assistance
of a therapist and to exercise at home [43]. Palacios-
Cena et al. [46] reported a high degree of adherence
(86.02% completed sessions) and satisfaction (87.4% of the
sample was highly satisfied) when performing a Kinect vir-
tual home-exercise program [44]. The main disadvantages
of the Microsoft Kinect are the lack of fine movement
capturing and restrictions in shoulder joint biomechanical
accuracy [27]. Nevertheless, the validity and accuracy of
Microsoft Kinect in clinical assessment is strong for pos-
tural control and standing balance, as well as reproducibil-
ity when analysing planar motion [24–26].
Although the Microsoft Kinect has already been used

and implemented in neurological rehabilitation, it is not
yet adjusted to the specific needs of neurological re-
habilitation [1, 3, 4, 39]. For example standard games
used in therapy are motivating, but performance has to
be closely monitored as overexertion injuries can occur,

and games are not always adapted to individual therapy
goals. Furthermore, improvement on in-game scores do
not necessarily correlate with actual functional improve-
ment [27]. Also, in the studies included in this review,
lots of different forms of applications with MCS are
used, which makes comparing the content of training
difficult. Hence the lack of consistent evidence on effect-
iveness regarding functional improvement.
With regard to the included subjects, the most fre-

quently enrolled study population were people with a
chronic stroke (n = 13). Other studies included subjects
with acute and subacute stroke, dementia, MS, Parkin-
son’s disease or brain injury. This is in relation with the
larger prevalence in stroke population than e.g. MS or
cerebral palsy [45–47]. However, other patient groups
than chronic stroke, such as MS, Parkinson’s Disease,
etc., might also benefit a broader implementation of
markerless MCS [6, 21, 27, 37, 39, 40, 48]. Especially
when developers implement a client-centred task-oriented
approach into the system.
The study sample ranged from one subject (case study)

[1, 23] to 35 (RCT) [3] and the methodological quality
based on Van Tulder Score, was low (8.06 ± 3.67). When
looking at the selection of the six studies with at least a
Van Tulder score of 9, the sample size was still low, ran-
ging from six (case series) [35] to 35 (RCT) [3] subjects.
Hence, no meta-analysis could be performed and con-
clusions about efficacy should be made with caution.
It is known from the principles of training physiology

and motor learning that duration, intensity and content
of training are important factors for effectiveness of the
training [12, 49, 50]. Despite this knowledge, the wide
variety on training duration, intensity and content was
remarkable in the selected studies. Due to this wide var-
iety, general assumptions should be made with caution.
Regarding duration, the intervention ranged from 2
weeks [23] to 24 weeks [6]. This was probably due to
practical considerations such as availability of subjects in
rehabilitation centres, and to the fact that most studies
considered themselves a pilot and/or feasibility study be-
fore larger and longer interventions are planned. Regard-
ing intensity, some studies compared the intervention
training with conventional training, a combination of
intervention and conventional training with the same in-
tensity and duration, or intervention plus conventional
rehabilitation training versus conventional rehabilitation
alone. The latter has more rehabilitation time, creating a
bias in favour of the new intervention training.
Within the selection of six studies with good methodo-

logical quality, it is shown that there is an improvement
on most clinical outcome measures after intervention
using MCS in combination with virtual reality, with a
major focus on ICF activity level. This might be related to
task-specific effects of motor learning [14, 51]. Also, the
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improvement might be due to the gaming-aspect as
people tend to be more motivated compared to conven-
tional therapy. But only two studies performed an out-
come measurement specifically for motivation: Llorens et
al. [33] and Summa et al. (2015) assessed motivation with
the IMI [33, 41]. Although the study of Llorens et al.
(2015) was an RCT, the experimental group as well as the
control group received training with the Kinect. Therefore,
the high results in both groups on the IMI, without signifi-
cant differences, suggests that all patients considered
the training with Kinect motivating [33]. This is in accord-
ance with studies regarding virtual reality, who state that
when offering virtual rehabilitation exercises, patients are
more motivated to perform the exercises [21, 27] and their
adherence to the treatment is greater [21].
Regarding the use of assessments, a wide variety of as-

sessment instruments was used, especially in upper limb.
The upper limb is considered more complex as opposed
to the lower limb [52], which is probably the reason why
there were more unique assessments used in the differ-
ent studies. Also, the fact that two out of three lower
limb studies were performed by the same researcher
[32, 33], could be of influence. The wide variety of assess-
ment instruments makes comparison between studies
more difficult and interpretation of efficacy of training
should be made with caution.
It was remarkable that only two (case series) studies had

long-term follow-up measurements performed [34, 35].
As a consequence no assumptions can be made to occur-
rence of true neuroplasticity.
The limited number of studies is likely due to the

novelty of using commercially available motion capture
systems such as Microsoft Kinect in rehabilitation. In
this review, all selected studies were published in the
last 5 years, which is in compliance with results of
Saposnik et al. [4] and Webster et al. [44]. Saposnik et al.
[4] reviewed literature specifically concerning all kinds of
VR in stroke rehabilitation, not the use of MCS [4]. While
Webster et al. [44] reviewed the applications specifically
with Kinect in elderly care and stroke rehabilitation [27].
It also has to be noted that maybe not all relevant arti-

cles came forward using the described search strategy.
For example the term “Kinect” was included in the
search, which provides a selection bias. However, even
though the term was explicitly used, other devices were
included as well. Another example is the term “rehabili-
tation”. By using the term “rehabilitation”, other articles
such as Colomer et al. [53] and Shih et al. [54] did not
came forward using the search strategy because the term
“exergaming” was used instead [53, 54].
No client-centred task-oriented approach was used in

the selected studies, as they used standardised exercises
for all patients. There were only two studies that took
the patient’s interest into account by either using images

that corresponded with the patient’s interests [6], or by
letting the patient choose between a previously set of
exercises [31]. While people’s interests are important, a
client-centred approach goes much further by actively
involving them in selecting their own goals. Imple-
menting a client-centred task-oriented approach might
be time consuming, especially with a novel system such
as the Microsoft Kinect, but has established its value
[10–14]. Therefore, future research is needed with im-
plementation of a client-centred task-oriented approach
in combination with markerless MCS such as Microsoft
Kinect.

Conclusion
There are different types of MCS used in neurological
rehabilitation, but Microsoft Kinect is mostly used. Most
applications target stroke patients and focus on upper
limb training. None of the included studies used a
client-centred and task-oriented approach.
Because there are a few RCT and CCT and few studies

with long-term follow-up, it is difficult to prove efficacy
based on the studies included in this review. However,
there is a potential to use MCS in combination with a
client-centred task-oriented approach. Even more, future
technology developments should take up the challenge
to combine MCS with the principles of a client-centred
task-oriented approach and prove efficacy using RCT with
long-term follow-up.
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