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Abstract 

Objective Seventy-five percent of stroke survivors, caregivers, and health care professionals (HCP) believe current 
therapy practices are insufficient, specifically calling out the upper extremity as an area where innovation is needed 
to develop highly usable prosthetics/orthotics for the stroke population. A promising method for controlling upper 
extremity technologies is to infer movement intention non-invasively from surface electromyography (EMG). How-
ever, existing technologies are often limited to research settings and struggle to meet user needs.

Approach To address these limitations, we have developed the  NeuroLife® EMG System, an investigational device 
which consists of a wearable forearm sleeve with 150 embedded electrodes and associated hardware and software 
to record and decode surface EMG. Here, we demonstrate accurate decoding of 12 functional hand, wrist, and fore-
arm movements in chronic stroke survivors, including multiple types of grasps from participants with varying levels 
of impairment. We also collected usability data to assess how the system meets user needs to inform future design 
considerations.

Main results Our decoding algorithm trained on historical- and within-session data produced an overall accuracy 
of 77.1 ± 5.6% across 12 movements and rest in stroke participants. For individuals with severe hand impairment, we 
demonstrate the ability to decode a subset of two fundamental movements and rest at 85.4 ± 6.4% accuracy. In online 
scenarios, two stroke survivors achieved 91.34 ± 1.53% across three movements and rest, highlighting the potential 
as a control mechanism for assistive technologies. Feedback from stroke survivors who tested the system indicates 
that the sleeve’s design meets various user needs, including being comfortable, portable, and lightweight. The sleeve 
is in a form factor such that it can be used at home without an expert technician and can be worn for multiple hours 
without discomfort.

Significance The NeuroLife EMG System represents a platform technology to record and decode high-resolution 
EMG for the real-time control of assistive devices in a form factor designed to meet user needs. The NeuroLife EMG 
System is currently limited by U.S. federal law to investigational use.
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Introduction
Stroke is a leading cause of long-term disability in the 
United States, affecting more than 800,000 people per 
year [1]. Unilateral paralysis (hemiparesis) affects up to 
80% of stroke survivors, leaving many to struggle with 
activities of daily living (ADLs) including the ability to 
manipulate objects such as doors, utensils, and cloth-
ing due to decreased upper-extremity muscle coordi-
nation and weakness [2]. Restoration of hand and arm 
function to improve independence and overall quality 
of life is a top priority for stroke survivors and caregiv-
ers [3]. Intensive physical rehabilitation is the current 
gold standard for improving motor function after stroke. 
Unfortunately, 75% of stroke survivors, caregivers, and 
health care providers report that current upper extrem-
ity training practice is insufficient [4]. The development 
of user-centric neurotechnologies to restore motor func-
tion in stroke survivors could address these unmet clini-
cal needs through a range of different mechanisms, such 
as improving motivation, enhancing neuroplasticity in 
damaged sensorimotor networks, and enabling at-home 
therapy.

Assistive technologies (AT) hold potential to restore 
hand function and independence to individuals with 
paralysis [5]. ATs, including exoskeletons and func-
tional electrical stimulation (FES), can assist with open-
ing the hand and also evoke grips strong enough to hold 
and manipulate objects [6]. Additionally, these systems 
have been used therapeutically during rehabilitation to 
strengthen damaged neural connections to restore func-
tion [7]. A wide variety of mechanisms to control ATs 
have been investigated including voice [8], switch [9], 
position sensors [10], electroencephalography (EEG) 
[11], electrocorticography (ECoG) [12], intracortical 
microelectrode arrays (MEA) [13], and electromyography 
(EMG) [14]. Unfortunately, no single system has simulta-
neously delivered an intuitive, user-friendly system with a 
high degree-of-freedom (DoF) control for practical use in 
real-world settings [4].

Recent advances in portable, high-density EMG-
based (HDEMG) systems have the potential to over-
come several of these barriers and deliver an intuitive 
and entirely non-invasive AT control solution [15, 16]. 
While various EMG-based ATs exist, including the 
commercially available MyoPro Orthosis [15], most of 
these systems use a small number of electrodes and rely 
on threshold-based triggering [14]. Consequently, these 
systems have limited DoF control which constrains 
their practical use. Conversely, HDEMG systems con-
sisting of dozens of electrodes and leveraging machine 
learning approaches to infer complex movement 
intention can provide high DoF control, significantly 
expanding functional use cases as well as increasing the 

proportion of the stroke population that could benefit 
from these technologies [16–19]. Currently, HDEMG 
systems are primarily research systems and are not 
optimized for usability, including being difficult to set 
up, requiring manual placement of electrodes, and 
being non-portable and bulky, which can hinder the 
successful translation of technologies [4].

To address these limitations, we developed the 
 NeuroLife® EMG System to decode complex fore-
arm motor intention in chronic stroke survivors while 
simultaneously addressing end user needs. The EMG 
system was designed to be used as a control device for 
various end effectors, such as FES systems and exo-
skeletons. Additionally, the system was specifically 
designed to meet user needs in domains previously 
identified as high-value for stroke survivors: donning/
doffing simplicity, device setup and initialization, port-
ability, robustness, comfortability, size and weight, and 
intuitive usage [4]. The sleeve is a wearable garment 
consisting of up to 150 embedded electrodes that meas-
ure muscle activity in the forearm to decode the user’s 
motor intention. A single zipper on one edge of the 
sleeve allows for a simplified and streamlined donning 
and doffing by the user and/or a caregiver. The sleeve 
design facilitates an intuitive setup process as embed-
ded electrodes that span the entire forearm are consist-
ently placed, eliminating the need for manual electrode 
placement on specific muscles. The lightweight stretch-
able fabric, similar to a compression sleeve, was cho-
sen to enhance comfort for long-term use. The sleeve 
connects to backend Intan hardware housed in a light-
weight, 8 × 10″ signal acquisition module appropriate 
for tabletop upper-extremity rehabilitation. Overall, 
these design features help address critical usability fac-
tors for ATs [4].

In this work, we demonstrate that our EMG system can 
extract task-specific myoelectric activity at high temporal 
and spatial resolution to resolve individual movements. 
Based on EMG data collected from seven individuals 
with upper extremity hemiparesis due to stroke, trained 
neural network machine learning models can accurately 
decode muscle activity in the forearm to infer movement 
intention, even in the absence of overt motion. We dem-
onstrate the viability of this technique for online decod-
ing, as two subjects used the system for closed-loop 
control of a virtual hand. This online demonstration is a 
promising step towards using HDEMG sleeves for high 
DoF control of ATs based on motor intention. Finally, 
we present usability data collected from study partici-
pants that highlight the user-centric design of the sleeve. 
These data will be used to inform future developments 
to deliver an effective EMG-based neural interface that 
meets end user needs.
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Methods
Subjects
Seven individuals (3 female, 4 male; 60 ± 5 years) with a 
history of stroke participated in a study that recorded 
EMG using the NeuroLife EMG System while attempt-
ing various hand and wrist movements. Additionally, 
data were collected from seven able-bodied individu-
als (4 female, 3 male; 27 ± 1  years) to serve as a general 
comparison of EMG data and to benchmark decoding 
algorithms. Able-bodied subjects were employees of Bat-
telle Memorial Institute, but none were authors of this 
work. Data were collected as part of an ongoing clini-
cal study being conducted at Battelle Memorial Institute 
that was approved by the Battelle Memorial Institute 
Institutional Review Board. All participants provided 
written informed consent before participation, in accord-
ance with the Declaration of Helsinki. Demographics of 
study subjects with stroke are provided in Table 1 (data 
on able-bodied participants can be found in Additional 
file 1: Table 1). Eligibility criteria were set to recruit adult 
chronic stroke survivors with hemiparesis affecting the 
arm and hand that were able to follow 3-step commands 
and communicate verbally. Specific inclusion and exclu-
sion criteria are listed in the Additional file 1: Methods.

During the first session prior to EMG data collection, 
standardized clinical assessments were performed by a 
licensed occupational therapist in all subjects with stroke. 
These included the upper extremity section of the Fugl-
Meyer (UE-FM) to assess upper extremity motor impair-
ment, the Box and Blocks test to assess manual dexterity, 
and the Modified Ashworth test to assess spasticity of the 
finger, wrist, and elbow flexors. Based on predetermined 
exclusion criteria, an eighth subject was removed from 
data analysis due to hemispatial neglect affecting their 
ability to consistently follow movement cues.

Experimental setup
Subjects sat facing a computer monitor with their arms 
placed on a table, and the sleeve on the paretic arm for 
participants with stroke (Fig. 1). The sleeve was placed 

on the right arm for able-bodied subjects, regardless 
of handedness. The sleeve comprises a stretchable fab-
ric with an embedded array of electrodes (Additional 
file  1: Fig. S1). Depending on the forearm size of the 
participant, a small, medium, or large sized sleeve was 
used containing 128 electrodes (64 channel pairs), 142 
electrodes (71 channel pairs), or 150 electrodes (75 
channel pairs), respectively. Each electrode is 12  mm 
diameter, spaced 25  mm apart, and wrap the forearm 
from elbow to wrist. With a flexible and lightweight 
nylon-Lycra hybrid material, the sleeve wears like a 
compression sleeve and weighs 180, 195, and 220  g 
for the small, medium, and large sleeves, respectively. 

Table 1 Demographics of subjects with stroke and clinical metrics

Subject UEFM Time since stroke, 
years

Side of paresis UEFM Hand MAS Finger MAS Wrist

13,762 36 6 Right 6 1 1

29,562 22 4 Right 2 1 1

30,458 32 3 Left 6 1 1

47,513 19 4 Right 4 1 0

61,204 8 6 Right 0 4 3

87,134 7 7 Right 0 4 4

98,473 38 6 Right 7 0 0

Fig. 1 Illustration of experimental data collection procedure. 
Subjects were seated in front of a computer monitor with the sleeve 
on their impaired arm, and their arms placed on the table. The 
sleeve was connected to a custom-built EMG signal acquisition 
module, which then connected to a laptop computer. Images 
of hand postures were shown on the monitor and the subject 
followed along to the best of their ability. Each recording block 
was approximately 2–3 min in length and involved hand posture cues 
interleaved with rest periods. The recording block began with an 8-s 
lead in rest period. Each cue and rest period presentation time 
were randomly selected between 4 and 6 s for subjects with stroke. 
An operator ran the data collection software and observed EMG 
signals during data collection to ensure proper recording of data
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A zipper on the ulnar edge of the sleeve allows for 
easy donning and doffing. Prior to donning, an elec-
trode solution spray (Signaspray, Parker Laboratories, 
Fairfield, NJ) was applied to the subject’s forearm to 
improve signal quality. Bipolar EMG signals were sam-
pled at 3  kHz with a gain of 192  V/V using an Intan 
Electrophysiology Amplifiers (Intan RHD2000, Intan 
Technologies, Los Angeles, CA) [20]. An embedded 
electrode in the sleeve near the elbow was used as a 
reference for all bipolar amplifiers. The sleeve was 
connected to a custom-built, 8 × 10″ footprint, EMG 
signal acquisition module, which then connected to a 
laptop computer (Fig.  1 and Additional file  1: Figure 
S1a).

The subjects were instructed to attempt a series of 
hand, wrist, and forearm movements. A series of images 
of the desired hand movement was presented on a com-
puter monitor, and the subjects were instructed to 
attempt each movement shown to the best of their abil-
ity. Subjects were instructed to attempt the movement 
at 25–50% of their subjective maximal effort to mini-
mize muscle fatigue and co-contractions throughout the 
session.

The following movements were collected during the 
session: Hand Close (Power Grip), Hand Open, Index 
Extension, Thumb Flexion, Thumb Extension, Thumb 
Abduction, Forearm Supination, Forearm Pronation, 
Wrist Flexion, Wrist Extension, Two Point Pinch, and Key 
Pinch. These movements were identified by a licensed 
occupational therapist as highly relevant functional 
movements for dexterous hand use, and these move-
ments have been used in similar studies [21]. Record-
ing blocks consisted of a single movement repeated 10 
times (referred to as “single blocks”), or multiple move-
ments repeated within a single recording block (referred 
to as “mixed blocks”). Every block began with an 8 s rest 
period, followed by alternating movement and rest peri-
ods. During mixed blocks, a collection of movements 
(e.g., Hand Close, Hand Open, Forearm Supination) were 
randomly presented to the subject with interleaved rest 
periods. Before beginning the block, subjects were shown 
the movement(s) in the upcoming block. For subjects 
with stroke, the time for each movement was randomly 
selected from a uniform distribution between 4 and 6 s, 
and rest time was randomly selected between 4 and 6 s. 
For able-bodied subjects, the movement and rest times 
were both set randomly between 2 and 3 s. The cue and 
rest times were shortened in able-bodied subjects due to 
faster movement times and the expectation of simpler 
decoding compared to the subjects with stroke. In the 
last recording session, a usability questionnaire assessing 
user needs (adapted from [4]) was given to stroke sub-
jects to evaluate the usability of the current sleeve design 

(responses from subjects are presented in Additional 
file 1: Table 5).

We collected data from each stroke subject across 3–4 
sessions lasting < 2  h each. Data from all sessions were 
used to train the classifiers, with the last half of the data 
from the final session held out for testing. The sleeve was 
not doffed before collection of the test dataset in the final 
session. The total amount of training data per movement 
for subjects with stroke are shown in Additional file  1: 
Figure S3. For able-bodied experiments, data were col-
lected in a single session with a total of 10 repetitions 
for each movement. The first 5 repetitions were used for 
training, and the last 5 repetitions were used for testing, 
without doffing the sleeve between. This structure was 
designed to simulate an envisioned use case in which a 
decoding algorithm would be calibrated for a rehabilita-
tion session using both previous session data and data 
from a short same-day calibration protocol.

To assess each subject’s ability to perform the move-
ments without any assistance, each movement was 
scored by a licensed occupational therapist based on a 
scoring scheme adapted from the Action Research Arm 
Test (ARAT) [18]. The “observed movement score” was 
ranked using the following categories: 0 = no movement; 
1 = incomplete range of motion; 2 = complete range of 
motion but impaired; 3 = normal.

Pre‑processing, windowing, and feature extraction
The EMG data were bandpass filtered (20–400 Hz, 10th 
order Butterworth filter), and a 60  Hz notch filter was 
applied similar to previous studies [23]. The root mean 
square (RMS) was extracted using consecutive 100  ms 
data windows with no overlap (Fig.  2B, C). For decod-
ing of movement intent during a given time window, the 
current window and three preceding windows were used, 
totaling 400  ms of RMS data used for each prediction. 
Next, the training data were normalized (mean = 0, vari-
ance = 1) and the testing data were normalized using the 
mean and variance from the training data.

Classification of movement intention in stroke partici-
pants was performed in two different ways: (1) using the 
2.5 s center window during a cue or rest period, or (2) on 
the continuous timeseries data. For the 2.5 s center win-
dow method, the middle 2.5 s of each cue and rest period 
during a block was extracted (Fig. 3A). This resulted in a 
total of 22 predictions of 100  ms binned RMS data per 
cue (2.5  s with the first three 100  ms bins removed for 
containing out-of-window data at the beginning of the 
cue). This method was applied to both the training and 
testing datasets to reduce noise from motion artifact 
and transient muscle activation by removing the transi-
tion periods, similar to previous studies [24]. This dataset 
was used to evaluate different machine learning models 
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for decoding the user’s movement intent. In able-bod-
ied subjects, classification was performed as described 
above but with a 1.5 s center window during a cue or rest 
period, resulting in a total of 12 predictions. These data 
are presented in Fig.  3 for participants with stroke and 
Additional file 1: Figure S5 for able-bodied subjects.

For decoding of continuous timeseries data, we per-
formed a dynamic cue shifting technique to account for 
the variability in the subject’s ability to respond to the 
onset and offset of cues. Latency between cue onset and 
the onset of EMG activity is a persistent problem within 
decoding that can lead to significant deficits in algo-
rithm performance and is exacerbated in data recorded 

from subjects with neurological impairments such as 
stroke. Traditionally, these onset and offset variabilities 
are handled by shifting cues a predetermined amount of 
time based on reaction times [25] or by assigning each 
cue manually [21]. However, these methods still fail to 
capture the full distribution of onset and offset variabil-
ity. Here, we use an automated approach to dynamically 
shift cue labels to match the EMG activity. The average 
EMG signal was aligned with the intended cue times, 
and residuals were calculated between the EMG signal 
and the signal mean for each cue segment. The transition 
point between segments was then iteratively optimized to 
minimize the sum of squared residuals (Additional file 1: 

Fig. 2 Representative EMG data recorded from subject with stroke. A Filtered EMG data recorded from 3 separate channels on the NeuroLife Sleeve 
during 3 movements: Hand Open (HO), Forearm Supination (FS), and Hand Close (HC). B Heatmap of normalized RMS activity, with the channel 
number on the y-axis and time on the x-axis. Note the activity across clusters of electrodes for each of the 3 separate movements. C Normalized 
RMS activity mapped to the sleeve orientation, with a legend showing the orientation of the sleeve mapping (flex. = flexors, ext. = extensors). Note 
the location of EMG activity is spatially located near the related musculature for each of the 3 movements
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Figure S4). Cue timings were shifted up to a maximum 
time of 2 s beyond the intended cue time.

Classification
Classification was performed using all recording blocks 
(single and mixed). Importantly, the testing consisted 
of the final 4 recording blocks of data collected for that 
subject. In other words, none of the training set occurred 
later in time than the testing set to prevent data leakage 
of time dependent signal fluctuations that could signifi-
cantly influence decoding performance.

Three classifiers were compared: a logistic regression 
(LR) model [26], a support vector machine (SVM) [27], 
and a neural network (NN). For the LR and SVM mod-
els, data were additionally preprocessed using principal 
component analysis for dimensionality reduction, keep-
ing components that accounted for > 95% of the variance. 
LR and SVM models were trained using the scikit-learn 
toolbox [28] in Python 3.8. To optimize hyperparam-
eters for both LR and SVM, a grid search on the training 
data with fivefold cross validation was applied to tailor a 
specific model for each subject. Hyperparameter C was 
varied from 1e-4 to 1e4 for LR, and hyperparameters C 
and Gamma were varied from 1e-4 to 1e4 for SVM. The 
best performing model hyperparameter combinations for 
each were selected for evaluation.

The NN was developed in Python 3.8 using the FastAI 
package [29]. FastAI defaults were used for train-
ing except where noted. The model architecture takes 
an input of a flattened N channels × 4 array from the N 
channels of the sleeve and 4, 100  ms windows of mean 
RMS signal. The input layer connects to two fully-con-
nected dense layers, with size 1000 and 500 respectively, 
with batch normalization and the ReLU activation func-
tion between layers. The final layer had 13 classes cor-
responding to the 12 cued movements and rest. Finally, 
a Softmax activation function was applied to the model 
outputs to provide prediction probabilities for each of the 
movements. The predicted movement for a given time 
point was the movement with the greatest prediction 
probability. The training procedure used label smoothing 
cross entropy loss (p = 0.9) and the Adam optimizer. Dur-
ing training, dropout was applied to each layer with 20% 
probability to prevent overfitting. The learning rate was 
optimized using the FastAI learning rate finder tool [29]. 
Each model was trained for 400 epochs with early stop-
ping criterion, using the one cycle training policy from 
FastAI.

To simulate massed practice rehabilitation exercises, 
participants repeated movements with interleaved rest. 
We evaluated the decoding algorithms with two comple-
mentary metrics relevant to this use case and commonly 
used for similar applications. Accuracy was defined as the 

percentage of 100  ms time bins predicted by the classi-
fier to be the same as ground truth similar to our group’s 
previous decoding study [30]. Accuracy is a standard 
classification metric and provides a high temporal reso-
lution metric of performance. Chance level accuracy was 
determined based on the percentage of labels equal to 
the majority class (Rest; 50.41%), which represents the 
accuracy of a naïve classifier. Since the majority class pre-
diction yields the highest chance level accuracy of any 
random strategy in a 13-class problem (e.g. stratified, uni-
form, or majority), we chose to use this method to rep-
resent the naïve decoder option for all reported chance 
levels. When decoding a subset of the full 12 movement 
set (Fig. 4), the rest cues directly before each target move-
ment were sampled to maintain rest at 50% of the sam-
pled dataset to avoid biasing the results. We also present 
success rate as a decoding performance metric, similar to 
previous studies [25]. A movement is considered success-
ful if there is at least 1 s continuous period within a cue 
that is correctly decoded as the intended movement. The 
success rate is then calculated as the percentage of cues 
which are considered successful. This metric approxi-
mates an observer rating each cue as a binary success or 
failure and is more aligned with how a user would per-
ceive performance.

Real‑time demonstration
In separate sessions, we tested the performance of the 
decoder online in two stroke subjects (Subjects 13,762 
and 30,458) to demonstrate the ability to predict a user’s 
motor intention in real-time. An occupational therapist 
identified a bottle pouring task as an appropriate massed 
practice therapy task shared for both of these subjects 
based on their personal abilities. The movements Hand 
Open, Hand Close, and Forearm Supination were fur-
ther chosen by the therapist as movements for which the 
NeuroLife EMG system may be programmed to control 
FES or an exoskeleton to assist the subjects. We used a 
decoder trained to classify these movements and rest 
for this real-time evaluation of a simulated use case. The 
same NN architecture described above was used dur-
ing this real-time demonstration. Data collected from 
this online decoding session is referred to as the real-
time demonstration dataset. The NN decoder was built 
using two blocks of training data that was collected dur-
ing the online decoding session. Each block contained 5 
repeats of three movements (Hand Close, Hand Open, 
Forearm Supination) with interleaved rests. EMG data 
was filtered using identical filters as the offline method 
described above. RMS was extracted using consecutive 
100  ms data windows with no overlap, and the current 
window and three preceding windows were used, total-
ing 400  ms of RMS data for each prediction. Training 
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data were normalized (mean = 0, variance = 1) and the 
online data were normalized using the mean and vari-
ance from the training data. Cue labels were shifted by 
300  ms to account for reaction time of the participant. 
To avoid unintentional flipping between states in the 
online system, the NN class output probabilities needed 
to exceed a threshold of 0.6 to change the decoder class 
prediction from the previous prediction. Additionally, a 
stable decoder output was required to change decoder 
state, therefore two consecutive samples of the same pre-
diction class were required to update the final class pre-
diction. An experimenter then prompted each subject 
with randomized cues with the online decoder running. 
A virtual hand on the computer screen reflected the real-
time movement detection. An experimenter manually 
labeled cues provided to the participant and the decoding 
accuracy was calculated. Videos of these blocks for each 
subject can be found in Additional file 1: Media 1 and 2. 
Following the online session, NN models were re-trained 
on the same real-time demonstration dataset using the 
same methods described above for a comparison of 
online and offline performance. These data are presented 
in Fig. 6.

Statistical analysis
All comparisons were planned in the experimental 
design a priori. Normality of distributions were tested 
using Lilliefors tests. Significant differences were deter-
mined using paired t-tests (Fig. 3C) and unpaired t-tests 
(Figs.  3D, 4A) and where appropriate. Significant differ-
ences for multiple comparisons were determined using 
one-way ANOVAs followed by Tukey HSD tests (Fig. 3C, 
D). Alpha of 0.05 was used for single comparisons. To 
correct for multiple comparisons, a Bonferroni-corrected 
alpha of 0.0167 was used for Fig. 3D and an alpha of 0.025 
was used for Fig.  5A. The p-value for the correlations 
were determined using Wald Test with t-distribution of 
the test statistic (Additional file 1: Figure S10). Statistical 
tests for each comparison are noted in the text. Statisti-
cal analysis was performed in Python 3.8 using SciPy and 
Statsmodels. In all figures, * indicates p < 0.05, ** indicates 
p < 0.01, and *** indicates p < 0.001. Error bars indicate 
mean ± SEM in all figures.

Usability assessment
Usability is a critical factor in the long-term adoption 
of an AT. Inconveniences of setup and comfort, as well 
as frustrations with reliability can often lead to even-
tual device abandonment. Therefore, in our final EMG 
recording session with each participant, we collected 
initial usability data of the NeuroLife Sleeve for use in 
chronic stroke survivors to help guide future develop-
ment efforts. The questions posed to subjects here were 
adapted to investigate overarching themes mentioned by 
stroke survivors, caregivers, and HCPs for the use of an 
assistive technology [4]. Subjects answered each ques-
tion on a 1 to 5 scale, and questions were targeted at the 
following categories: simple to apply, comfort for long-
term use, freedom of movement during use, functional-
ity / lightweightness and portability, potential for clinical 
and home use, and overall aesthetic design of the device 
(Additional file  1: Table  5). Subjects were instructed to 
consider a use case in which the NeuroLife EMG System 
(sleeve and signal acquisition module) is used to control a 
FES or exoskeleton system when responding. For usabil-
ity metrics with more than one question (e.g. simple to 
apply), the mean value was scored for that assessment.

Results
Movement intention can be inferred from forearm EMG 
activity of subjects with stroke using the NeuroLife EMG 
system
Removing the transition periods and focusing on periods 
of consistent activity yielded a standardized dataset to 
compare performance of various models (Fig. 3A). Heat-
maps of EMG activity across the sleeve are shown for one 
subject with stroke (Fig.  3B). These heatmaps highlight 
the visual differences between forearm EMG activity 
across the various movements. In contrast to the heat-
maps of able-bodied subjects (Additional file  1: Figure 
S2), EMG activity is less localized in the heatmaps of sub-
jects with stroke. This trend is consistent across stroke 
severity, with more severely impaired subjects having less 
localized forearm EMG activity (Additional file 1: Figure 
S9). These results are consistent with previous reports of 
lack of independent muscle control following stroke [31].

Fig. 3 Decoding hand and wrist movements using the NeuroLife EMG System. A Illustration depicting the data used for training and testing 
the decoder. The presentation of the cue is shown as a black bar on the top of the plot, and the middle 2.5 s of the cue presentation is used 
for analysis. B Heatmaps of various movements from a subject with stroke. C Decoding performance comparing 3 models: LR (Logistic Regression), 
SVM (Support Vector Machine), and NN (Neural Network). The NN outperforms both the LR and SVM models (paired t-test NN vs. SVM, p = 9.3 ×  10–3; 
NN vs. LR, p = 9.1 ×  10–4). D Association between the observed movement score and decoder performance of the neural network (One-way ANOVA, 
Accuracy (%): F[3, 80] = 13.38, p = 3.7 ×  10–7). The decoder struggles learning to predict movement attempts in which there was no observable 
movement (movement score = 0), and performs similarly when there is observable movement (movement score ≥ 1). E Confusion matrix 
for a subject with stroke detailing the decoding performance across all movements

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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To validate our decoding pipeline, we tested decoding 
performance in able-bodied subjects across all 12 move-
ments with the expectation of highly accurate decod-
ing using three different approaches. Overall, the NN 
obtained 96.8 ± 0.5% accuracy and outperformed LR 
and SVM models, which had 91.5 ± 0.8% and 90.8 ± 1.2% 
accuracy, respectively (Additional file  1: Figure S5; 
One-Way ANOVA: F[3, 10] = 4015, p = 9.02 ×  10–16; 
paired t-test NN vs. LR, p = 5.8 ×  10–5; NN vs. SVM, 
p = 1.6 ×  10–3). These decoding results are consistent in 
the dataset comprised of subjects with stroke attempt-
ing all 12 movements, where the NN obtained 77.1 ± 5.6% 
accuracy, and outperforms the LR (69.0 ± 5.4%) and 
SVM models (66.6 ± 6.9%) (Fig.  3C; One-Way ANOVA: 
F[4, 12] = 64.02, p = 5.41 ×  10–8; paired t-test NN vs. LR, 
p = 9.1 ×  10–4; NN vs. SVM, p = 9.3 ×  10–3). In summary, 
the NN outperforms the LR and SVM when decoding 
forearm EMG activity to infer movement intention. All 
subsequent analyses were performed in subjects with 
stroke using the NN for decoding.

Next, we investigated the relationship between the sub-
ject’s ability to perform a movement unassisted and our 
ability to accurately decode that movement. Generally, 
decoding performance improved as the observed move-
ment score increased (Fig.  3D; One-way ANOVA: F[3, 
80] = 13.38, p = 3.7 ×  10–7). A comparison of decoding 
accuracy based on movement score was computed using 
a Tukey HSD test (Additional file 1: Table 3). For move-
ments with visible motion (score ≥ 1), the overall decod-
ing accuracy was 85.7 ± 3.2%, whereas for movements 
where the subject had no visible motion (score = 0) the 
accuracy dropped significantly to 27.3 ± 3.2% (Chance: 
4.0%) (Movement Ability: Movement score = 0 vs. Move-
ment score = 1–3: unpaired t-test, p = 3.9 ×  10–9). We also 
investigated the relationship between decoding accu-
racy and the assessed clinical metrics (Additional file 1: 
Figure S10). We observed moderate and significant cor-
relations (Wald Test) between decoding performance 
and the UEFM Hand subset, and both the MAS wrist 
and fingers scores. In summary, these data suggest that 

EMG decoding performance decreases as impairment 
increases across a variety of clinical metrics assessing 
various aspects of dysfunction.

Next, we investigated decoding performance of indi-
vidual movements in subjects with stroke. The confu-
sion matrix with individual movements for one subject is 
shown in Fig. 3E. The best performing movements across 
subjects were Wrist Flexion and Index Extension with an 
average accuracy of 68.7 ± 2.2%. On average across sub-
jects, the worst performing movements were Forearm 
Supination and Thumb Abduction, with an average accu-
racy of 39.4 ± 9.9% (Additional file 1: Figure S6). The suc-
cess rate per movement type for one subject is presented 
in the right column of the confusion matrix (Fig. 3E). The 
overall grand average success rate across all movements 
and rest achieved 75.9 ± 4.2%. The top movements quan-
tified by successes/attempts were Index Extension: 23/30 
Wrist Flexion: 20/30, and the bottom movements were 
Forearm Supination: 14/43 and Thumb Abduction: 17/43.

Decoding movement subsets to achieve high performance 
in subjects with severe stroke impairments
As the decoding performance of our algorithms was 
dependent on the presence of visible movement in our 
subjects, we next investigated the association of hand 
impairment severity based on the Upper Extremity Fugl-
Meyer Hand Subscore (UEFM-HS) with observed move-
ment scores and decoding performance (Fig.  4A). Both 
the observed movement score and decoding performance 
in subjects with severe hand impairment (UEFM-HS < 3) 
were significantly different than in individuals with mod-
erate or mild hand impairment (UEFM-HS ≥ 3) (Aver-
age movement score: unpaired t-test UEFM-HS < 3 vs. 
UEFM-HS ≥ 3, p = 0.02; Decoding accuracy: unpaired 
t-test UEFM-HS < 3 vs. UEFM-HS ≥ 3, p = 0.006). To bet-
ter understand if a smaller subset of movements could 
be decoded in the presence of severe impairment, we 
assessed if sufficient signal was present to decode general 
muscle activity during cued movement periods compared 
to rest. Practically, this decoding scheme would enable an 

(See figure on next page.)
Fig. 4 Decoding hand and wrist movements in subjects with severe hand impairment (UEFM-HS < 3). A Left: Comparison of severe (UEFM-HS < 3) 
and mild (UEFM-HS ≥ 3) subject impairment average movement scores (Average movement score: unpaired t-test UEFM-HS < 3 vs. UEFM-HS ≥ 3, 
p = 0.02). Right: Comparison of NN decoding performance for severe and mild subject impairments (Decoding accuracy: unpaired t-test 
UEFM-HS < 3 vs. UEFM-HS ≥ 3, p = 0.006). B Decoding performance of NN binary classifier for UEFM-HS < 3 subjects comparing Rest and Move 
in which Move is made up of combining all 12 movements into a single class. Confusion matrix of subject 61,204 for the two-class problem. 
The observed movement score is the average of all movements observed movement scores. The two-class decoder can reliably distinguish 
the difference between a resting and moving state. C Decoding performance of NN model when restricting classes to Rest, Hand Close, and Hand 
Open. Confusion matrix of lowest performing subject (61,204) for the three-class problem. The three-class decoder is not sufficient to distinguish 
the movements reliably. D Decoding performance of NN model when restricting classes to Rest and the top 2 movements for each subject 
for a total of three classes. Confusion matrix of subject 61,204 for the three-class problem. Focusing on movements specific to subjects increases 
the robustness of decoder performance
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Fig. 4 (See legend on previous page.)
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individual with severe hand impairment to control an AT 
with a single movement. We separated the problem into 
two classes (Rest vs. Move), where the “Move” class con-
sists of the 12 different movements combined into one 
class (Fig. 4B). The NN decoder was able to achieve high 
performance in individuals with severe hand impair-
ment with 86.7 ± 2.6% accuracy and 85.2 ± 3.6% success 
rate (Successes/Attempts; Rest: 164/185, Move: 151/185). 
These results indicate that the surface EMG collected 
from individuals with severe hand impairment is suffi-
cient for binary scenarios.

Encouraged by the binary decoder performance, we 
extended our analysis to include key functional move-
ments for restoring grasp function, namely Rest, Hand 
Close, and Hand Open (Fig. 4C). In this 3-class scenario, 
the rest periods before each movement were downse-
lected from the full 12 movement dataset to keep chance 
accuracy decoding at 50%. With these key movements 
in individuals with severe hand impairment, the decod-
ing performance achieved 85.4 ± 6.4% accuracy and 
88.0 ± 7.7% success rate (Successes/Attempts; Rest: 45/46, 
Hand Close: 22/23, Hand Open: 14/23). While decod-
ing the movements to enable Hand Close and Hand 
Open is ideal for intuitive control of an AT, alternatively 
decoded movements with the greatest performance can 
be mapped to the most impactful functional movements. 

Thus, we tested decoding only the top performing move-
ments for each subject (Fig. 4D). When comparing Rest 
and the top two movements for each individual, decoding 
performance achieved 91.0 ± 3.9% with a grand average 
success rate of 90.6 ± 4.2% (see Additional file 1: Table 4 
for full details). This performance was comparable to the 
decoding performance of individuals with UEFM-HS ≥ 3 
on 12 movements (87.6 ± 3.4%) and provides a reasonable 
alternative for subjects with more severe impairments.

Decoding continuous forearm EMG data in real‑time 
scenarios in chronic stroke survivors
To demonstrate the utility of the NeuroLife EMG Sys-
tem to interpret muscle activity from the forearm to 
act as a control signal for assistive devices, we tested 
our decoding algorithms in a continuous dataset. Fol-
lowing a stroke, the ability to contract and relax muscle 
groups is slowed and highly variable [32], which conse-
quently makes automated labeling of cues using a static 
time shift (e.g., 800  ms) for training machine learning 
models imprecise. To account for this cue onset and off-
set variability, we first performed a dynamic cue shift-
ing technique to automatically shift cue labels to match 
EMG activity (Additional file  1: Figure S4A). An aver-
age of 843 ± 95 ms of cue data per cue change or a grand 
average of 16.1 ± 1.0% of the full cue data stream across 

Fig. 5 Decoding hand and wrist movements in a continuous EMG dataset. A Dynamic cue shifting significantly improved accuracy compared 
to no cue shift (Cue shift: paired t-test Dynamic vs. None, p = 0.020). There was no significant difference between a dynamic cue shift and static 
800-ms cue shift (approximately the average cue shift across subjects) (Cue shift: paired t-test Dynamic vs. Static 800 ms, p = 0.22). B Confusion 
matrix detailing performance from one subject in the continuous dataset. C Time series plot depicting decoder class probabilities across time. The 
presented cue is shown in above the time series plot as a rectangular colored bar with the color corresponding to the movement class
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all subjects was shifted using this technique (Additional 
file  1: Figure S4B). To verify this method, we compared 
decoding performance with and without cue shifting. 
Dynamic cue shifting significantly improved decoding 
performance achieving 74.7 ± 5.0% overall with no cue 
shift achieving 62.5 ± 6.7% (Fig.  5A; Cue Shift: paired 
t-test Dynamic vs. None, p = 0.020). However, we found 
no significant difference in decoding accuracy between 
dynamic cue shifting and a static 800  ms cue shift 
(70.5 ± 5.4% decoding accuracy) representing an estimate 
of the average dynamic shift (Fig.  5A; Cue Shift: paired 
t-test Dynamic vs. Static 800  ms, p = 0.22). One subject 
(13,762) had an increase in decoding performance from 
a static shift, while the rest of the subjects experienced 
a decrease or no change in performance, suggesting that 
the dynamic cue shift was the most robust technique for 
our analyses.

Using the dynamic cue shifting technique, we investi-
gated decoding performance of individual movements in 
the continuous dataset. The confusion matrix with indi-
vidual movements for a single subject is shown in Fig. 5B. 
The best performing movements across subjects were 

Wrist Flexion and Wrist Extension, with an average accu-
racy of 61.2 ± 5.0%. The worst performing movements 
across subjects were Forearm Supination and Thumb 
Abduction, with an average accuracy of 29.5 ± 9.0%. A 
continuous time series plot of all movement probabili-
ties is shown in Fig. 5C Shaded regions indicate the cued 
movement with the probability of the movement type 
decoded based on motor intention.

To assess whether the NN decoder could be used in 
real-time situations, inference testing was conducted 
using a Surface Book 2 with NVIDIA GeForce GTX 1060 
GPU. The NN decoder was trained using cued move-
ment data collected at the beginning of the session, 
totaling 1526 sample bins (2.54  min) for subject 13,762 
and 3000 sample bins (5.0  min) for subject 30,458. The 
trained NN decoder was exported and loaded in using 
the Open Neural Network Exchange (ONNX) Runtime 
[33] for inference testing. NN forward model prediction 
times on average took less than 1 ms (307 ± 49 µs). Tak-
ing the entire preprocessing pipeline into consideration 
in addition to the NN forward prediction, the total infer-
ence time was 23.1 ± 4.4 ms. Since the resulting inference 

Fig. 6 Online decoding of hand and wrist movements. A Confusion matrix of subject 30,458 from the online decoding session. B Online 
decoding performance for both subjects on the real-time demonstration dataset. C Time series plot depicting decoder class probabilities 
across time for subject 30,458. The presented cue is shown above the time series plot as a rectangular colored bar with the color corresponding 
to the movement class



Page 13 of 18Meyers et al. Journal of NeuroEngineering and Rehabilitation            (2024) 21:7  

time is under 100 ms (time bin for RMS feature calcula-
tion), the NN model was deemed suitable for real-time 
inference.

We next tested the decoder online to verify closed-loop 
control of a virtual hand on two stroke subjects (13,762 
and 30,458) using the NN model. The confusion matrix 
with individual movements tested during the online test-
ing for Subject 30,458 are shown in Fig.  6A. The best 
performing movement was Forearm Supination, with 
an overall accuracy of 97.1%. The continuous time series 
plot of movement probabilities for Subject 30,458’s online 
decoding session is shown in Fig. 6C. Finally, videos from 
the online sessions are shown in Additional file 1: Media 
1 & 2, with the user following along with movements 
cued from an experimenter, and the decoded motor 
intention controlling a virtual hand on the computer 
monitor. These videos demonstrate the online decoding 
accuracy and responsiveness of the system and highlight 
the utility of the NeuroLife EMG System for eventual 
closed-loop control of upper-extremity devices.

The NeuroLife Sleeve meets usability needs of chronic 
stroke survivors
Summary data from the usability questionnaire sug-
gest that the NeuroLife Sleeve meets many user needs 
(Fig.  7). Subjects answered questions on a scale of 1 to 
5 with higher values indicating stronger agreement. In 

general, subjects were optimistic that they could don and 
doff the NeuroLife Sleeve with the help of a caretaker in 
their home (3.60 ± 0.28). Concerns were generally cen-
tered around the pre-application of the conductive spray 
and relative positioning of the system, which we are 
actively addressing in our next design iteration. During 
sessions, subjects had the sleeve donned for > 1.5 h, and 
all participants reported general satisfaction with the 
overall comfort of the device (4.57 ± 0.20). The sleeve was 
designed with a lightweight stretchable fabric, and par-
ticipants were generally satisfied with the ability to move 
their arm while the sleeve was donned (4.07 ± 0.32). Sub-
jects were highly confident (4.07 ± 0.22) that they could 
wear the sleeve during functional light activities around 
their home, suggesting that the sleeve is non-restric-
tive, lightweight, portable, and promising for home use. 
A commonly overlooked barrier to widespread adop-
tion of assistive technologies is user acceptance of the 
overall look and feel of the device [4]. All subjects were 
extremely satisfied with the overall design of the sleeve 
(4.36 ± 0.24). In general, they were all very excited for the 
opportunity to use the sleeve with the “general favora-
bility” metric receiving the highest score of 4.79 ± 0.15. 
In summary, the usability results from the current study 
provide promising early data that the NeuroLife Sleeve 
can meet end user needs with directions on where to 
improve for future iterations.

Fig. 7 Summary of the NeuroLife Sleeve usability data from subjects with stroke. Each subject with stroke ranked the NeuroLife Sleeve based on 6 
usability domains. Group data is presented for each of the 6 domains
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Discussion
In this study, we demonstrate decoding of motor inten-
tion using the NeuroLife EMG System in people with 
upper-extremity hemiparesis due to chronic stroke. 
Based on high-density surface EMG data collected from 
the forearm, 12 functional hand, wrist and forearm move-
ments were classified with high accuracy. Overall decod-
ing accuracy was associated with the subject’s ability to 
perform the movement (quantified here as observed 
movement score), with greater functional movement 
corresponding with higher decoding accuracy. Even in 
movements with little to no movement capacity (move-
ment score ≤ 1), the system was able to accurately dif-
ferentiate movement intent, albeit with some decrease 
in performance. Furthermore, we report that decoding 
performance was associated with a variety of different 
aspects of impairment such as overall motor impairment 
and spasticity. We also demonstrate online decoding of 3 
task-relevant movements and rest for closed-loop con-
trol of a virtual hand, highlighting the decoding accuracy, 
speed and responsiveness of the system. Usability data 
demonstrated that the sleeve is comfortable and light-
weight, allowing stroke survivors to wear the sleeve for 
extended periods of time without restricting their move-
ment. In summary, this work demonstrates the Neu-
roLife EMG System’s utility as a wearable, user-friendly 
device to infer movement intention in stroke survivors 
with severe motor impairments.

Previous studies have demonstrated decoding of motor 
intention using surface EMG in the upper extremity in 
chronic stroke survivors [21, 34–36]. In these studies, a 
range of machine learning techniques, impairment lev-
els of the participants with stroke, and types of move-
ments were investigated. The classification accuracy we 
measured was comparable to previous work with simi-
lar movement sets, although differences in study meth-
odology restrict direct comparison. We found that a NN 
model outperformed the LR and SVM models in both 
able-bodied and stroke subjects across all movements. 
However, decoding accuracy decreased in stroke sub-
jects with severe motor impairments. Specifically, we find 
our hardware and NN decoding techniques provide high 
performance in able-body (96.8% accuracy) and stroke 
(85.7% accuracy) participants if visible movement was 
observed. Included in the 85.7% accuracy are movements 
where participants had incomplete or impaired range of 
motion, indicating that we could consistently decode the 
subject’s intent to move despite their inability to prop-
erly complete the movement. These movements would 
be strong candidates for improvement with an EMG-
controlled assistive device. Our complete 12-movement 
survey is helpful for understanding what movements may 
be decodable for each subject and may be appropriate 

for facilitating ATs in individuals with moderate or mild 
hand impairments. However, those with severe hand 
impairments are unlikely to be able to accurately control 
that many movements. Instead, it may be desirable to use 
only a subset of movements customized to the individual, 
that they can accurately control.

A dynamic cue shifting technique may present a more 
robust and automated solution to account for differences 
among subjects. Improvement in decoding performance 
from using dynamic cue shifting is likely due to: (1) 
improved accuracy of the timing of cue onset and offsets 
in the training data which gives a better representation of 
each movement and thus better decoding performance, 
and (2) more accurate testing alignment and better test-
ing parameters. These results suggest that cue labeling 
can substantially affect overall decoding performance in 
online decoders, and intelligent cue labeling can improve 
overall performance. Though we only briefly assessed our 
system’s online decoding capabilities, our initial results 
suggest that online EMG decoding of motor intention 
is possible, though more subjects and functional move-
ments are needed to increase robustness.

Recent studies have shown encouraging results using 
a limited set of manually placed electrodes, which may 
account for some performance differences compared to 
our results [21, 35]. Moreover, localizing electrodes to 
muscle activity critical to grasp production can be an 
effective strategy to minimize system complexity. The 
optimization of electrode placement and reduction of 
hardware complexity is a planned future direction for 
the NeuroLife Sleeve. Additional studies have used 
similar numbers of channels as we have presented [21, 
37, 38]. However, the system presented here stream-
lines system setup with a single zipper closure aligned 
by easily recognizable anatomical landmarks, the elbow 
and radial styloid process. Usability around donning/
doffing is a key concern for adoption of AT, and systems 
with extensive setup procedures risk poor acceptance 
in clinics, rehabilitation settings, and the home. Prior 
studies have also shown that time domain features, 
such as RMS, combined with NN approaches can out-
perform more classical statistical or machine learning 
approaches [21]. Our results agree with these findings, 
further supporting that high density EMG record-
ings have sufficient complexity to leverage the recent 
developments in deep learning. We extend the findings 
of previous studies by presenting an easy-to-don and 
doff wearable device that removes the need for manual 
placement of electrodes. This reduces the necessary 
setup time and ensures consistent placement of record-
ing electrodes across sessions. Additionally, we present 
data to support the real time performance of the decod-
ing paradigm. This study provides evidence that the 
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device can decode motor intention with high perfor-
mance across a variety of subjects, and we demonstrate 
decoding speed that is fast enough to reliably perform 
real-time inference alongside data collection. Nota-
bly, processing in this context did not involve remov-
ing transition periods during training or online testing, 
indicating the system’s robustness to motion artifact. 
Finally, we present a viable, automated cue shifting 
method that removes the necessity for manual relabe-
ling and improves system performance.

Usability is an important factor for clinical technologies 
to assist with stroke rehabilitation by supporting motiva-
tion for consistent and active training. While existing AT 
solutions show promising results, these systems tend to 
focus on the technology and often fall short in the user-
centric designs. Most clinical ATs involve manual place-
ment of patch electrodes and long calibration procedures 
which limits the amount of practice that can be achieved 
within a given rehabilitation session. Furthermore, many 
systems are bulky and lack portability, which can limit 
patient adoption for use outside of rehabilitation training 
and into the home [39]. The system evaluated here uses a 
lightweight wearable and reusable sleeve connected with 
a ruggedized cable to an 8 × 10″ signal acquisition mod-
ule. Further work is required to ensure this system’s relia-
bility a variety of home and non-laboratory contexts, but 
here we demonstrate that the NeuroLife EMG System 
can address many usability concerns of current technolo-
gies while providing robust decoding of motor intention. 
In combination with soft exoskeletons or FES, the sleeve 
can drive intention-based training coupled with func-
tional movements in a user-centric form factor.

Based on user feedback from the current study, the 
sleeve design meets various end user needs. The design 
allows for use on either arm, and the stretchable, light-
weight fabric design was reported by participants to be 
comfortable without limiting natural arm movements. 
Aesthetically, subjects were pleased with the sleeve 
design and advocated that they would use the system 
at home for rehabilitation and activities of daily living 
given the opportunity. Participants mostly agreed that 
the sleeve was straightforward to don and doff during the 
study with the help of the researchers and believed that 
they could apply the sleeve with the help of a caretaker. 
However, participants identified the simplicity to apply 
the sleeve as an area that is currently lacking, and partici-
pants were not confident in being able to apply the sleeve 
independently without assistance. This is an identified 
area for future development and will be the focus of next 
design iterations to enable at-home use. Despite this cur-
rent usability limitation, participants indicated that not 
only would they feel comfortable performing rehabilita-
tion therapy at home but are excited for the possibility of 

using the sleeve as a therapy tool indicated by the highest 
score for general favorability.

This study expands the scope of previous EMG decod-
ing studies by presenting the performance of a novel 
algorithm across a wider range of subjects, UEFM score 
of 7 to able-bodied, in offline and online contexts while 
highlighting the importance of usability. The data collec-
tion was designed to simulate a realistic use case in which 
EMG-controlled ATs are used to assist in tabletop task-
oriented upper-extremity rehabilitation. This study indi-
cates the practicality and usability of AT control using 
this EMG system and highlights the shortcomings of 
decoding in severely impaired subjects and low observed 
movement scores. These findings will inform future 
work for the field of EMG decoding and may inspire new 
approaches for EMG-controlled ATs in the space of reha-
bilitation suitable for severely impaired stroke survivors.

The present study provides an initial demonstration of 
the NeuroLife EMG System to decode motor intention 
in chronic stroke survivors while simultaneously meet-
ing needs, but some limitations merit consideration. We 
did not age match the able-bodied subjects to the stroke 
subjects, which may have affected comparisons between 
the two groups of subjects. Data was not collected from 
the non-paretic arm in the stroke subjects, although we 
do provide data from able-bodied subjects to demon-
strate high-accuracy decoding to validate our approach. 
While the reported results indicate that the Neurolife 
EMG System can be used to decode motor intention in 
a package that meets end user needs, there is still room 
for improvement in various areas, including refinement 
of decoding algorithms, the sleeve design and related 
hardware, and eventual applications. Future work refin-
ing decoding algorithms will focus on overall improve-
ments to decoding performance by leveraging many of 
the advancements made in recent years in the field of 
deep learning [40]. We will investigate the use of more 
sophisticated neural network models, including recur-
rent neural networks (RNNs), transformers optimized 
for time series modeling which could improve overall 
decoding accuracy, specifically for participants with lim-
ited movement capability [41, 42]. Advanced neural net-
work models may also aid in our ability to identify altered 
states of muscle activity, including spasticity and fatigue 
[43, 44]. To better address inter-session variability, we 
will apply various machine learning techniques including 
unsupervised learning, data augmentation, and domain 
adaptation [45–48] to fully leverage multiple datasets to 
reduce setup and calibration times for new users. This 
study used about 30  min of intrasession data for train-
ing of 13-class decoders, but with further development of 
these techniques, similar performance may be achieved 
with a much shorter decoder recalibration sequence after 
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an initial training session. We demonstrated high per-
formance using only 3  min of training data in a 4-class 
online decoding scenario, which may be acceptable for 
some use cases. Our current model architecture does not 
consider the spatial information available in the sleeve. A 
future direction for feature extraction and decoder archi-
tecture is to include features that capture this relational 
data between electrodes to create decoders that are less 
sensitive to positional changes, such as convolutional, 
transformer, or graph neural networks. Improvements to 
data quality itself can be accomplished with visual rein-
forcement to subjects. An online decoding system that 
displays the decoded intention may be more beneficial to 
subject engagement over the image cues used in the cur-
rent study. While we provide the initial proof-of-concept 
demonstration of the NeuroLife EMG System here, the 
data collected during the study was not representative of 
how the system will be ultimately deployed as an assis-
tive device. For example, in the current study, subjects 
kept their elbow stationary on the table during move-
ments and did not interact with objects, both of which 
can significantly influence forearm EMG activity and 
thus decoding performance. Future studies will focus on 
capturing training data in more complex situations, such 
as during reach and grasp tasks and object manipula-
tions, to develop decoders robust to movement such as 
the spatial decoders described above. We also assumed a 
class distribution based on the target use-case of occu-
pational therapy in which Rest periods occur in between 
movements (~ 50% of the time). However, this method 
oversamples the Rest class, which can mask poor perfor-
mance of other movements which are more functionally 
relevant thus limiting comparisons to other decoding 
studies. For this study, we determined the chance level 
using a naïve decoder (i.e., always predicting the major-
ity class). We acknowledge that this baseline is depend-
ent on the class distribution, thus we also present the 
success rate metric which is designed to approximate a 
therapist judging binary success for each movement cue 
(and ignoring rest periods). Future work will examine dif-
ferent decoders and metrics, including those decoders 
presented here in Fig.  3C. Similarly, the decoding per-
formance presented here was in the absence of assistive 
device control. Commonly used assistive devices, includ-
ing FES and exoskeletons, may interfere with EMG activ-
ity when active and thus can significantly affect decoding 
performance [34, 49]. Our group is working to integrate 
FES functionality within the same EMG recording elec-
trodes to eliminate the need for additional hardware, 
such as an exoskeleton or additional patch electrodes. 
Future work from our group will focus on develop-
ing algorithms that can decode EMG during FES activ-
ity. Furthermore, integration with assistive technologies 

will change the sleeve form factor as well as the backend 
hardware. The usability assessment in this study focused 
primarily on the sleeve component of the EMG system. 
Future work will include optimization of the backend 
hardware for space efficiency and portability with stud-
ies evaluation of the complete system usability. With a 
technology that incorporates EMG and FES into a single 
consolidated sleeve, the system has the potential to help 
support motor recovery and assist in ADLs [14, 25].

Conclusion
The focus of this study was to validate the NeuroLife 
EMG System by decoding hand, wrist, and forearm 
movements and collect usability data from subjects with 
stroke. We demonstrate accurate EMG decoding of 12 
different movement classes with a neural network in both 
able-bodied and stroke subjects. Decoding accuracy in 
stroke subjects was associated with the movement abil-
ity of each subject. The decoding results were consist-
ent with similar myoelectric intention-based studies. We 
demonstrate online decoding and closed-loop control of 
a virtual hand with high accuracy, speed, and responsive-
ness. Finally, we present data on the common usability 
factors of assistive devices including the simplicity, com-
fortability, portability, and weight of the sleeve. Overall, 
all subjects reported good to outstanding ratings for each 
of the usability categories, indicating that the NeuroLife 
EMG System can provide accurate decoding of upper 
extremity motor intention while meeting the usability 
needs of end users.
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