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Abstract
Practicing clinicians in neurorehabilitation continue to lack a systematic evidence base to personalize rehabilitation 
therapies to individual patients and thereby maximize outcomes. Computational modeling— collecting, analyzing, 
and modeling neurorehabilitation data— holds great promise. A key question is how can computational modeling 
contribute to the evidence base for personalized rehabilitation? As representatives of the clinicians and clinician-
scientists who attended the 2023 NSF DARE conference at USC, here we offer our perspectives and discussion 
on this topic. Our overarching thesis is that clinical insight should inform all steps of modeling, from construction 
to output, in neurorehabilitation and that this process requires close collaboration between researchers and 
the clinical community. We start with two clinical case examples focused on motor rehabilitation after stroke 
which provide context to the heterogeneity of neurologic injury, the complexity of post-acute neurologic care, 
the neuroscience of recovery, and the current state of outcome assessment in rehabilitation clinical care. Do we 
provide different therapies to these two different patients to maximize outcomes? Asking this question leads to 
a corollary: how do we build the evidence base to support the use of different therapies for individual patients? 
We discuss seven points critical to clinical translation of computational modeling research in neurorehabilitation— 
(i) clinical endpoints, (ii) hypothesis- versus data-driven models, (iii) biological processes, (iv) contextualizing 
outcome measures, (v) clinical collaboration for device translation, (vi) modeling in the real world and (vii) clinical 
touchpoints across all stages of research. We conclude with our views on key avenues for future investment 
(clinical-research collaboration, new educational pathways, interdisciplinary engagement) to enable maximal 
translational value of computational modeling research in neurorehabilitation.
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Background
On March 3rd and 4th 2023, the NSF DARE Conference 
(Transformative Opportunities for Modeling in Neuro-
rehabilitation), co-hosted by the University of Southern 
California (USC) and the University of Washington (and 
with additional support from the National Institutes of 
Health), took place at USC in Los Angeles, CA. The con-
ference brought together leading engineers, clinicians, 
computational scientists, rehabilitation researchers, rep-
resentatives from the National Institutes of Health and 
the National Science Foundation, and client advocates 
to discuss the state of the science and identify transfor-
mative opportunities for computational modeling to 
advance neurorehabilitation.

The workshop was divided into four main sections (a) 
Modeling adaptation and plasticity, (b) Modeling for per-
sonalization, (c) Modeling human-device interactions, 
and (d) Modeling in the wild. There was a mix of keynote, 
platform, and poster presentations in which speakers 
were asked to address the following questions: (i) What 
are challenges in your work related to neurorehabilitation 
that computational modeling can address? (ii) How has 
computational modeling supported your work, or could 
enhance your future work and what data are needed to 
support your modeling efforts? (iii) What is a key opportu-
nity and challenge you see for the future of computational 
modeling in neurorehabilitation?

As clinicians and clinician-researchers who attended 
this conference, here we offer our perspectives on the 
application of computational modeling to advance neu-
rorehabilitation. Our overarching view is that clinical 
insight should inform the construction of and outputs 
from computational models in neurorehabilitation, and 
that this process requires close (and repeated) collabo-
ration between researchers and clinicians. We start with 
two clinical case scenarios focused on upper extremity 
motor rehabilitation after stroke (inspired by real cases 
seen in a neurology clinic at a large academic medical 
center with dedicated, multidisciplinary neurorehabili-
tation specialists). We then discuss how computational 
models may, in the future, inform how we clinically 
approach these two distinct cases to maximize functional 
outcomes. We present seven fundamental discussion 
points to consider for clinical translation of computa-
tional models— (i) clinical endpoints, (ii) hypothesis 
versus data-driven models, (iii) biological processes, (iv) 
contextualizing outcome measures, (v) clinical collabora-
tion for device translation, (vi) modeling in the real world 
and (vii) clinical touchpoints across all stages of research. 
As there is a notable ‘language’ gap between clinical and 
computational fields, we also aim to provide discussion 
to bridge these gaps. We conclude by providing our view 
on promising future directions for this exciting field.

Main text
Case 1
DS is a 38-year-old left-handed otherwise healthy man 
who presented with acute onset left-sided weakness, sen-
sory loss, and difficulty speaking. He was found to have a 
stroke starting in the right sensory cortex (S2), extending 
downward through the corona radiata to the posterior 
insula, and involving the parietal and temporal opercu-
lum (Fig. 1).

His neurologic examination at the time of acute hos-
pital discharge (day 4 post-stroke) was notable for dys-
arthric (slurred) speech, moderate expressive > receptive 
aphasia, complete left-sided sensory loss, left-sided 
neglect, and no left-sided motor strength. His upper 
extremity Fugl-Meyer (UE-FMA) score was 4 out of a 
total possible 66 points, representing severe hemiplegia 
(no movement) with intact reflexes. He was unable to 
ambulate. He was assigned a Modified Rankin Scale of 
five on discharge (severe disability, bedridden and requir-
ing constant nursing care and attention). He was dis-
charged to inpatient rehabilitation where he received 15 h 
per week of occupational, physical, and speech therapy 
for six weeks. He used an ankle-foot orthosis (AFO) and 
a quad cane to ambulate at home and required contact 
guard for these activities. He had substantial improve-
ment in function while at inpatient rehabilitation and was 
discharged home with a plan to start outpatient therapy.

Three months after his stroke, his neurologic exam was 
notable for a mild expressive aphasia (difficulty speaking 
fluently), mild agrammatism, and moderate dysarthria. 
His upper extremity Fugl-Meyer motor component score 
had improved to 11 but still indicated severe hemipa-
resis. His sensory function remained impaired to light 
touch throughout the left hemibody and propriocep-
tion throughout the left hemibody. On gait assessment, 
while still requiring an AFO and quad cane, he was able 
to ambulate over short, level distances within the home 
without physical assistance but under family/caregiver 
supervision but without physical assistance.

At two years post-stroke, his upper extremity Fugl-
Meyer had improved to 37, a 26 point change from his 
3-month visit. He was using his left affected arm and 
hand mainly to support his unaffected side in doing activ-
ities of daily living. He continued to wear an AFO and 
was otherwise independent with gait (without the quad 
cane or other assistive devices) but continued to walk 
slowly and had difficulty in crowds. His language, while 
still slow, was functional at home, and he noticed contin-
ued improvements with speech therapy. He underwent 
implantation with Vagus Nerve Stimulation (a recently 
FDA-approved device for upper extremity rehabilitation 
[1]) and received 6-weeks of paired Vagus Nerve Stimula-
tion-rehabilitation, after which his Fugl-Meyer improved 
by 5 points to 42 (out of 66 total points).
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Case 2
ER is a 68-year-old right-handed woman with extensive 
past medical history (diabetes, high blood pressure, high 
cholesterol, bilateral internal carotid artery atherosclero-
sis, prior stroke 10 years ago affecting her left-side from 
which she recovered). She was found by her husband 
unable to move her right side and unable to speak. MRI 
showed a shower of ischemic strokes in the left middle 
cerebral artery territory involving the left frontal and 
parietal lobes as well as the head of the left caudate and 
left insula (Fig.  1). There was additional evidence of a 
chronic right parietal infarct, multiple chronic lacunar 
infarcts, and severe white matter disease.

At the time of acute hospital discharge (ten days post-
stroke), she was able to move her right upper extremity 
against gravity although she had limited coordination 
and clumsy finger and hand movements. She was able 
to name simple objects and repeat short phrases but was 
noted to have limited verbal output. She was transferred 
to inpatient rehabilitation, where she received three 
hours of OT, PT, and SLP (one hour each) per day for one 
month and was noted to have limited clinical improve-
ment over this period. She was subsequently transferred 
to a skilled nursing facility for two additional weeks (doc-
umentation on frequency and duration of therapy during 
this time was unavailable) and subsequently discharged 
home. She received one month of home therapy (visiting 

Fig. 1 MRI Neuroimaging for Patient Case Presentations. Selected axial MRI diffusion weighted (left column) and fluid-attenuated inversion recovery 
(FLAIR) images for DS and ER patient case scenarios. These images were obtained at the time of acute stroke presentation (arrival of patients to the hos-
pital). Bright areas on diffusion-weighted images indicate restricted diffusion (in these cases acute stroke). Note the R MCA distribution stroke for patient 
DS and the scattered L MCA distribution stroke for patient ER. Also note the severe leukoariosis (white matter hyperintensities in the periventricular areas) 
present for patient ER on FLAIR sequence

 



Page 4 of 10Lin et al. Journal of NeuroEngineering and Rehabilitation           (2024) 21:18 

OT, PT, SLP, two times per week), after which therapy 
was discontinued due to poor participation in activities 
and lack of clinical improvement.

Six months after her stroke, her examination was nota-
ble for very limited expressive and receptive language 
across all tasks presented. There were significant pro-
cessing speed delays seen throughout the examination. 
Response to ideomotor and orobuccal praxis commands 
were delayed and atypical. In the right upper extremity, 
she had normal tone and full active range of motion with 
near full strength throughout on confrontational test-
ing. She demonstrated perseveration and poor motor 
planning. In the lower extremities, she had full strength 
bilaterally. She had intact sensation to light touch and 
proprioception throughout. She required contact guard 
to close supervision assist. Recommendations were 
made to in her outpatient neurology clinic to attempt to 
re-initiate home therapy (OT, PT, SLP) with a focus on 
cognitive-motor interactions, but it was unclear how out-
patient therapy or home services could be arranged given 
lack of access.

For further details of patient cases, see supplemental 
material 1.

Summary of cases
These two cases, both focused on upper extremity motor 
impairments and recovery after stroke, are inspired by 
real-life cases seen in a multidisciplinary neurorehabili-
tation clinic. They illustrate important and generalizable 
points in clinical neurorehabilitation (for stroke but also 
for other acute neurologic injuries such traumatic brain 
injury, spinal cord injury) and, more broadly, about the 
realities of clinical care for patients with neurological 
injuries that are relevant to the context of computational 
modeling.

  • There is a large degree of heterogeneity in patient 
presentation both acutely after stroke and in more 
chronic phases. In addition to initial presentation 
(i.e., severity of injury and size and location of 
stroke), there are a very large number of factors that 
influence recovery and response to rehabilitation 
such as pre-morbid functional status, co-morbid 
medical conditions, psychosocial factors, and acute 
interventions received. For instance, DS was a 
relatively healthy individual prior to his stroke with 
few risk factors, whereas ER was older, had several 
comorbidities, and several social determinants 
of health-related issues that might preclude her 
recovery to optimal levels of function. Taking 
these factors into account, what is their respective 
potential for recovery? Is it likely that they would 
respond similarly to the same interventions? What is 
needed to help them both respond optimally?

  • There are distinct time-based stages of recovery 
after neurologic injury. Stroke recovery is typically 
divided into acute, subacute, and chronic phases, 
with each phase characterized by different biological 
processes [2]. Superimposed on different biologic 
phases of recovery is a complex post-acute care 
continuum [3] with changing clinical care teams and 
widely varying amounts and types of rehabilitation 
therapy administered [4]. Moreover, access to 
clinical rehabilitation is variable and influenced 
by a number of factors including geographic 
location, socioeconomic circumstances, insurance, 
personal factors, and support [5]. DS and ER both 
transitioned through different care settings (acute 
stroke hospitalization, inpatient rehabilitation, 
skilled nursing facility) in the acute and subacute 
phases of recovery and had different access to 
outpatient rehabilitation in the chronic phase. 
Would intervening sooner and with more intensity 
have had a positive impact or negative on each of 
these patients? What is the best combination of 
rehabilitation interventions that we could make 
available to DS and ER during each phase of recovery 
that will lead to the greatest improvements for each 
of them?

  • Different neurologic deficits (motor, sensory, 
cognitive, language) recover to different degrees and 
with different time courses after neurologic injury, 
indicating that resolution of the neurovascular injury 
and plasticity differ across the brain’s neural systems 
(vis-à-vis different neuroanatomical locations) 
after stroke (modality-specific recovery) [6, 7]. 
There are interactions among deficits and their 
recovery, that reflect interactions amongst these 
neural systems. There are further interactions 
between neurologic variables, and premorbid health 
as well as social determinants of health [8, 9]. For 
instance, DS had a right middle cerebral artery 
stroke, presenting with language and speech motor 
deficits, left-sided weakness, sensory loss (he is a rare 
case of left-hand dominant with language centers 
localized to right hemisphere). Language, speech, 
and sensory function recovered well over time 
while motor function remained impaired despite 
intense rehabilitation. ER, in the context of multiple 
co-morbid medical conditions and prior stroke, 
had a left middle cerebral artery stroke, presenting 
with language and right-sided motor deficits. Her 
primary motor deficits recovered very well but 
her functional recovery was limited by cognitive 
and motor planning impairments. Capturing data 
related to these neurologic variables and baseline 
personal characteristics, in addition to the type, 
timing and dosing of interventions, would provide 
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valuable insights to inform how to manage DS and 
ER most effectively for the greatest value and positive 
outcomes.

  • Outcome measures in neurorehabilitation are not 
currently systematically gathered or standardized as 
part of clinical practice. Similarly, current approaches 
to rehabilitation therapy are not quantified or 
standardized [10]. Outcome measures in DS’s 
courses were captured and entered into a database 
as part of a research study; there was a lack of 
quantitative outcomes during ERs recovery course. 
There are limited current efforts to standardize 
and pool rehabilitation data. Would a standardized 
approach to clinical neurorehabilitation that included 
quantitative outcomes data collection create new 
insights and strategies to ultimately improve 
outcomes for DS and ER?

Key questions and discussion
Should we treat the two presented patients (DS and ER) 
differently? This is a critical question for practicing reha-
bilitation clinicians. The therapy a given person receives 
is, by definition, personalized — clinicians are trained to 
consider individual factors and goals when working with 
their clients. However, we do not yet have a systematic 
and causal evidence base to consistently tailor rehabilita-
tion treatments to specific patients to optimize outcomes. 
Such an evidence basis is required to move from unstruc-
tured personalization to a systematic and structured 
precision rehabilitation approach. This represents a key 
challenge and opportunity for computational modelling 
in neurorehabilitation. Altogether, our cases and discus-
sion lead to a fourth and critical question for the appli-
cation of computational modeling to neurorehabilitation: 
(iv) how can computational modeling help build the 
evidence base for precision neurorehabilitation? Spe-
cifically, what structure and level of details should com-
putational modeling approaches have? Moreover, how 
should we collect, analyze, and model neurorehabilita-
tion data so that, in the future, clinicians can be informed 
of the most likely therapies and therapeutic parameters 
(e.g., dose, frequency) that might be most likely to sup-
port optimal recovery for individuals such as DS and ER? 
Here we put forward seven discussion points (Table 1) 

for computational modeling projects that we think will 
be critical for this effort. The first four are suggestions for 
computational neurorehabilitation modelers to improve 
the translatability of their work for greater clinical rel-
evance, and the last two are opportunities for increased 
collaboration.

Identify your ultimate clinical endpoint, even if translation 
is far in the future
For modeling in neurorehabilitation, it is important to 
keep in mind the intended clinical endpoint. Is the ulti-
mate goal a better way to diagnose or stratify patients 
(i.e., cluster groups of patients into those with simi-
lar characteristics for clinical trials)? Or is the goal to 
advance or develop a therapy (i.e., optimize parameters 
of brain stimulation [11])? Note, of course, that there 
may be very valuable fundamental modeling that is not 
immediately related to a clinical endpoint. Fundamental 
modeling, for example of intracortical neural dynamics 
[12] or of corticospinal motor control [13], could pave 
the way for more informed rehabilitation therapies in the 
future. We propose, whether the model has immediate or 
more distant clinical application, there is consequential 
value to explicitly stating the eventual clinical application 
(e.g., improving brain-computer interface decoding for 
assistive use in people with paralysis [14–16] or optimiz-
ing rehabilitation protocols [13]). Something as simple as 
starting a modeling project with the statement: “The ulti-
mate clinical goal of this computational model is to …”, 
would be incredibly helpful for translating utility between 
computational modelers and clinical partners.

Distinguish upfront between hypothesis-driven and data-
driven models
Big data collection in medicine can be used as either a 
means to perform parameter estimation for a hypothesis-
driven or as purely statistical (data-driven) representation 
of the condition or patient [17]. The hypothesis-driven 
approach generally contains equations that encode 
hypothetical causal mechanisms or interactions that 
need to be tuned (i.e., to estimate the true values of the 
parameters of the model) to a particular patient or situ-
ation. These models are, in fact, the computational rep-
resentation of a predictive hypothesis. For example, one 
recent study simulated a neural network of corticospinal 

Table 1 Key points for clinical translation of projects involving computational modeling in neurorehabilitation
• Identify your ultimate clinical endpoint, even if translation is far in the future
• Distinguish between hypothesis-driven and data-driven models
• Be precise about hypothesized biological processes and levels of abstraction
• Understand and contextualize outcome measures
• Clinical and computational collaboration are necessary to move neurorehabilitation devices into the clinic
• Modeling rehabilitation data “in the wild” will introduce new sources of variability but is essential for clinical translation
• Increasing clinical touchpoints (data collection, device testing, brainstorming and discussion) is a good research investment
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neurons controlling finger extension by pre-specifying 
relationships between corticospinal neurons, motor neu-
rons, and finger extension torque [13]. The ultimate goal 
was to study mechanisms of cortical reorganization after 
stroke and better parameterize rehabilitation protocols. 
Data-driven models are more of a “black-box” approach 
where statistical or regression models, artificial neural 
networks, etc. use large amounts of data to represent a 
population in general, and the relationship of a particular 
patient to a general population of patients. As such, they 
are descriptive representations that can be of value, but 
lack a pre-defined mechanistic hypothesis. If the under-
lying mechanisms are known, hypothesis-driven models 
are preferred. Data-driven models can also be very use-
ful, especially for providing a starting point to under-
stand key relationships.

Be precise about hypothesized biological processes and 
levels of abstraction
The DARE conference featured a number of important 
talks dedicated to adaptation, learning, and plasticity. 
Here we emphasize the importance of using explicit ter-
minology, which will inform parameters of equations that 
model these processes. “Plasticity” has become a widely 
used and somewhat catch-all term referring to topics 
ranging from biological to phenomenological. Perhaps 
the most well-known type of plasticity is known as Heb-
bian, referring to the synaptic principle that “neurons 
that fire together, wire together” [18, 19]. Mechanisms 
of Hebbian synaptic plasticity have been shown to be 
regulated by millisecond resolution spike-timing depen-
dent rules [20]. Indeed, some forms of brain stimula-
tion for neurorehabilitation are thought to operate via 
such mechanisms [21]. And there is promise in recent 
treatment protocols for rehabilitation based on these 
principles [22]. But one should be reminded that not all 
plasticity underlying experience-dependent change is 
Hebbian [23, 24]. Similarly, learning encompasses a wide 
range of phenomena ranging from low-level mechanisms 
to high-level cognitive decisions [25]. Adaptation is one 
form of learning but there are other forms as well, each 
engaging distinct neural substrates [26]. Being precise 
and specific about the plastic and learning processes 
involved in a proposed rehabilitation treatment (and 
thus explicitly defining the variables and parameters for 
computational models to predict outcomes) will lead to 
greater interpretability of results, rationalization for why 
different patients (D.S. and E.R.) might respond differ-
ently to the same treatments, and help build the transla-
tional knowledge base underlying clinical rehabilitation.

Understand and contextualize outcome measures
There is a large current emphasis in neurorehabilitation 
on outcomes data collection; big data frameworks will 

undoubtedly lead to very valuable insights for neurore-
habilitation [27, 28]. When modeling data, key attention 
to specific outcomes and their context is extraordinarily 
important. For example, one recent study showed that the 
Modified Rankin Scale, a very commonly used outcome 
measure for acute stroke trials, does not distinguish dif-
ferences among or clinically meaningful changes within 
rehabilitation-related outcomes [29]. One useful frame-
work for contextualizing outcomes is the International 
Classification of Functioning, Disability, and Health (ICF) 
classification system [30] that structures functioning and 
disability in different hierarchical levels: (i) body struc-
ture/impairment, (ii) activity limitation, and (iii) partici-
pation restriction. For upper extremity hemiparesis after 
stroke, these levels would correspond to, respectively, (i) 
loss of strength and motor control, (ii) decreased ability 
to complete an action or task, and (iii) decreased involve-
ment in work, productivity, or social situations leading 
to diminished quality of life. Note that levels of the ICF 
can uncouple from each other — that is, while impair-
ment and activity and participation are all broadly associ-
ated, they can dissociate. In the case of participation, a 
patient with complete limb loss can continue to partici-
pate, be productive at work, and engage in social activi-
ties with assistive equipment to enjoy a good quality of 
life. The uncoupling of activity limitations and impair-
ment are a bit more subtle but very relevant to model-
ing. The difference can also be stated as distinguishing 
between compensation (using abnormal movement pat-
terns to accomplish a task) versus restitution (true neu-
ral and behavioral recovery). For example, to successfully 
accomplish the same reaching task, a patient could gain 
additional degrees of elbow extension (restitution, mini-
mizing impairment) or flex the whole trunk forward to 
reach the distance (compensation) [31]. Developing com-
putational models (i.e., using kinematic data) that can dif-
ferentiate between restitution and compensation would 
be incredibly valuable [32]. Overall, when modeling data, 
it is critical to consider what the data being collected in 
rehabilitation represent and ideally establish models that 
span and link ICF levels [33]. 

Clinical and computational collaboration are necessary to 
move neurorehabilitation devices into the clinic
Devices hold tremendous promise for neurorehabilitation 
given their flexible programmability, but clinicians and 
computational neuroscientists need to work together to 
understand their capabilities and limitations and to figure 
out how to personalize them. A quick read of one of the 
largest upper limb stroke rehabilitation robotic trials per-
formed to date would seem to indicate that robots have 
limited efficacy for improving outcomes [34]. However, 
a closer read would reveal that robots effectively deliver 
high-repetition training at doses that are impractical 
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to deliver in current clinical care: the robots in the VA-
ROBOTICS trial delivered over 1000 movement rep-
etitions per session, an order of magnitude above the 
∼  30 known to be achieved in current clinical care [35]. 
Other large scale clinical trials have shown similar overall 
results [36]. These recent large-scale trials have been suc-
cessful in harmonizing protocols and outcome measures 
across sites (to achieve their relatively large N) [37]. But 
large, multi-site trials of devices (including robots) have 
not yet been able to achieve personalization to patient-
specific characteristics (patient characteristics or pat-
terns of brain injury) [38]. That is, D.S. and E.R. would 
likely require very different robotic training protocols to 
maximize their recovery. Nor have large N robotic trials 
advanced principles that are fundamental to plasticity 
and learning. Recent smaller sized trials [39–41], which 
featured delivering upper extremity robotic therapy to 
improve movement quality, have shown promise in these 
directions but require further validation. In addition, 
robots (and other devices) have the capability to rigor-
ously assess patient-specific impairments and distinct 
aspects (dexterity, spasticity) of the stroke hemiparesis 
phenotype [42–47]. We predict such evidence-based per-
sonalization (systematic assessments of deficits coupled 
with delivery of specific movement patterns) will be 
required for robotic rehabilitation studies to show greater 
efficacy than standard of care. Importantly, multiple 
comparisons of conventional vs. robot-assisted therapies 
in stroke rehabilitation fail to show a clear advantage of 
one over the other. Additionally, the practical logistics of 
integrating robotic therapies to clinical practice are often 
under considered, which highlights the need for early 
optimization of this through close interactions between 
engineers and clinicians [48]. Overall, robots and other 
devices hold tremendous promise for neurorehabilita-
tion given their programmability, but it will take future 
research (and close clinical collaboration) to determine 
how to best program them to optimize outcomes.

Modeling rehabilitation data “in the wild” will introduce 
new sources of variability but is essential for clinical 
translation
One of the main DARE conference themes was dedicated 
to efforts of “modeling in the wild”. Topics ranged from 
in-clinic, video-based analysis of gait to large-scale data 
collection using wearable sensors. As clinicians working 
in neurorehabilitation, we agree with the value of gather-
ing data from real world settings, including medical clin-
ics, therapy sites, and from home and in the community. 
These efforts will really be “in the wild” because, as those 
engaged in such efforts will quickly realize, experiments 
based in clinical settings are always less controlled with 
more unforeseen challenges and sources of variability. 
We hope that researchers will come to embrace these 

challenges as opportunities because even though they 
may seem logistically overwhelming (i.e., a rehabilitation 
clinic without an IRB committee to approve research), 
these issues are at the very core of clinical translation 
of neurorehabilitation research; addressing them will 
move the field forward. While there is a plethora of out-
come measures designed to measure different constructs 
within the ICF, it is ultimately real-world data that will 
either endorse their construct validity. We may find some 
laboratory measures have limited real world meaning. 
In addition to data collection in clinical settings, we also 
think there is high value to testing devices in the clinic, 
even in their prototype stage, as it can frequently reveal 
practical issues that become the most important chal-
lenges or help identify the most impactful questions 
[49]. Finding the time and venue to do this type of test-
ing and iteration of devices is of high importance and 
great translational value. Establishing rigorous data col-
lection around the process of clinical device testing in 
a pragmatic way can also accelerate the growth of the 
evidence-base. Collecting data in naturalistic settings will 
inevitably pose new challenges to computational mod-
els, mainly in accounting for the (innumerable) sources 
of real-world variability. For example, one might imagine 
that device-testing with D.S. (with a more pure motor 
and language stroke presentation) would be very different 
that for E.R. (in whom social determinants of health and 
cognitive factors would be significant considerations). In 
our view, this represents an opportunity because, once 
the framework for data collection and modeling has been 
established and sources of variability have been defined, 
data collection via sensors and other ecological monitor-
ing devices can generate rich datasets and provide new 
insights [50]. 

Increasing clinical touchpoints (data collection, device 
testing, brainstorming and discussion) is a good research 
investment
For computational modeling to have an impact on clini-
cal neurorehabilitation, there should be more regular 
interaction between researchers engaged in computa-
tional modelling research and practicing neurorehabilita-
tion clinicians. Optimal translation of new knowledge to 
the clinic applies best practices for knowledge-to-action 
translation, which can only be achieved with active 
involvement of clinical perspectives from start to finish of 
research projects [51–53]. Interactions start in research 
and clinical training programs. Clinical versus research 
training are often presented as mutually exclusive path-
ways and careers. Clinician-scientist training pathways 
are prolonged and have difficulty retaining people after 
training [54]. In addition, clinician-scientists most often 
end up dedicating most of their time to research (i.e., 
80%) as this is what is required to be competitive for 
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research grant funding [55]. Clinical training (i.e., MD, 
PT, OT, SLP) could incorporate more curricula dedi-
cated to research data collection, analysis, and modeling. 
Research training in neurorehabilitation (i.e., Masters, 
PhD, or Post-Doc) could involve more clinical touch-
points, which might take the form of dedicated time 
spent in clinical settings (i.e., observing clinic sessions or 
inpatient rounds).

We propose establishing dedicated time in proposal 
requests and budgets for clinicians to be engaged and 
provide perspectives on research projects (e.g., 20% as a 
clinical consultant). In addition, dedicated (and funded) 
time for researchers to engage clinically— discussing 
outcomes measures, testing devices, discussing clinical 
goals— would be a worthwhile investment. Time spent 
by researchers observing and engaging with patients 
(e.g., researchers directly observing D.S. and E.R. while 
engaged in rehabilitation therapy) would be meaning-
ful and helpful for continued clinical grounding. We also 
propose more funding opportunities specifically promot-
ing these connections, collaborations, and early transla-
tional interactions; these could take the form of program 
projects that require effort from both computational 
modelers and clinicians. In addition to including these 
opportunities in requests for applications, these opportu-
nities could be integrated into individual (NIH K award, 
VA Career Development Award, etc.) and institutional 
(NIH T32 and NSF Research Traineeship) research train-
ing programs. Furthermore, more (and regular) confer-
ences like the NSF DARE conference, engaging both 
computational modeling researchers and clinicians, are 
highly valuable. These venues will further the prolonged 
interdisciplinary interactions between researchers and 
clinicians that are critical to promoting shared language 
and goals. Such alignment will translate to computational 
modeling resulting in better diagnosis and treatment and 
ultimately, better patient outcomes.

Conclusions and future directions
Computational modeling holds great promise for the 
field of neurorehabilitation. Clinical experience supports 
that there is a large degree of heterogeneity in patient 
presentation and recovery, that there are distinct time 
windows of recovery upon which a complex rehabilita-
tion care continuum is placed, that deficits recover in a 
modality-specific manner, and that current outcome 
measures and approaches to neurorehabilitation ther-
apy are not routinely gathered or standardized. With 
that said, rehabilitation therapy is already, by definition, 
personalized— rehabilitation specialists are trained to 
account for individual factors of their patients when 
planning the rehabilitation program (e.g., planning to 
discharge someone in a power wheelchair to inacces-
sible housing is unlikely to produce a good outcome). 

However, we continue to lack a systematic evidence-base 
to inform what therapies or parameters of therapy might 
be best integrated into personalized rehabilitation efforts. 
In the process of building this evidence base, we may find 
the different comorbidities, stroke etiologies and regions, 
social determinants of health, or other neurophysiologic 
or behavioral biomarkers tell us that our two example 
patient cases (DS and ER) should receive distinctly dif-
ferent rehabilitation plans including pharmacological, 
therapeutic and device prescriptions to maximize their 
individual long-term outcomes.

A computational modeling framework could thus 
help build the evidence base for personalized therapy to 
improve outcomes for patients: how can we collect, ana-
lyze, and model neurorehabilitation data to deliver spe-
cific therapies to specific patients to improve outcomes? 
A computational model is, at its core, a hypothesis, which 
can be used to make experimental predictions, such 
as how a patient might respond to a form of rehabilita-
tion [13]. Creating these models for neurorehabilitation 
is particularly challenging, given the need to model our 
interventions’ influence across time, throughout the 
nervous system, and across levels of the ICF. How does 
a single repetition of a therapy in the subacute period 
promote short term plasticity, where does it occur, how 
does it change impairment now, how does that alter the 
dynamically updated therapy plan, and how does this 
alter upper extremity use in the real world a year from 
now? Computational models that account for these com-
plexities, including dynamics over time [56], are critical 
to progress in rehabilitation. As clinicians, we propose 
that the following perspective points are important con-
siderations for computational modeling research: (i) 
clinical endpoints, (ii) hypothesis- vs. data-driven mod-
els, (iii) biological processes, (iv) contextualization of out-
come measures, (v) clinical collaboration, (vi) modeling 
in the real world, and (vii) clinical touchpoints across all 
stages of research.

Overall, we assert that all stages of computational 
modeling efforts (from data collection to device test-
ing to model refinement) would benefit from clinical 
touchpoints— engagement of clinicians and research-
ers together in the process. Patients and their caregivers 
should also be engaged in the rehabilitation research pro-
cess from early stages; their perspectives will add enor-
mous value [57]. Furthermore, if we are truly to achieve 
better patient outcomes, collaborations should be across 
clinical settings globally and not just in developed or 
high-income countries. The key for the field will be iden-
tifying incentives for all parties to continue to engage, 
especially given the demands of clinical work and aca-
demic research. This will likely involve aligning incentive 
structures at multiple stages from national policy and 
funding decisions, clinical spaces designed to facilitate 
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translational research, administration that understands 
and supports the work, and both local and global com-
munities encouraging prolonged, cross-disciplinary 
interactions.
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