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Abstract 

Exoskeleton-aided active rehabilitation is a process that requires sensing and acting upon the motion intentions 
of the user. Typically, force sensors are used for this. However, they increase the weight and cost of these wear-
able devices. This paper presents the methodology for detecting users’ intentions only with encoders integrated 
with the drives. It is unique compared to other algorithms, as enables active kinesiotherapy while adding no sen-
sory systems. The method is based on comparing the measured motion with the one computed with the idealised 
model of the multibody system. The investigation assesses the method’s performance and its robustness to model 
and measurement inaccuracies, as well as patients’ unintended motions. Moreover, the PID parameters are selected 
to provide the optimal regulation based on the dynamics requirements. The research proves the presented concept 
of the control approach. For all the tests with the final settings, the system reacts to a change in the user’s intention 
below one second and minimises the changes in proportion between the system’s acceleration and the generated 
user’s joint torque. The results are comparable to those obtained by EMG-based systems and significantly better 
than low-cost force sensors.

Keywords Exoskeleton, Kinesiotherapy, Fuzzy controller, Rehabilitation robotics, Sensorless control, Movement 
support
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Introduction
Physiotherapy is the process of recovering the maximum 
available physical performance of a patient with a certain 
level of impairment [1, 2]. It can be realised as active or 
passive treatment [3]. While patients with lighter motion 
disorders can even recall their motion capabilities and 

connect them with genuine neurological patterns, those 
with severe disabilities require mobilising their joints to 
prevent them from stiffness [1].

The treatment can be partially automatised and sup-
ported with robotics technology. Today, there are many 
commercially available physiotherapeutic devices [3]. 
However, new technologies of rehabilitation are being 
developed and introduced into clinical practice [4].

In general, rehabilitation robots are used in physio-
therapy to reduce therapists’ physical effort during com-
plex exercises [5], increase the frequency and length of 
the sessions [6] and improve the accuracy of repeatable 
exercises [7]. Moreover, they enable precise performance 
measurements and, hence, constant feedback during 
therapy [8].
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Rehabilitation robots are typically either end-effector 
open-chain structures or exoskeletons. In upper-extrem-
ity rehabilitation, the former are usually used to lead the 
patient’s hand [9], while the latter act in parallel to the 
extremity [10]. The first ones do not allow for the direct 
mobilisation of single joints [9]. Therefore, the therapy 
with them does not control whether the performed 
motion follows the corresponding anatomical pattern. 
On the contrary, exoskeletons are vulnerable to dimen-
sional differences and misalignments relative to the user’s 
extremities. These caused when designing or installing 
the device can cause injuries or inaccurate exercising 
[10].

Robot-aided kinesiotherapy involves support or resist-
ance of the rehabilitation device [2]. However, for this, 
the motion intention of a patient must be detected. The 
detection can be realised with either mechanical signals, 
including direct force measurements, or other techniques 
correlating biosignals; electromyography (EMG), among 
others [11, 12].

The EMG-based methods can either be correlated with 
the muscular groups responsible for the intended move-
ments [13, 14] or with other groups [15]. Among others, 
the latter gives the opportunity to control the devices 
supporting impaired extremities by the other hand’s 
gestures [15]. On the contrary, some of the described 
methods aim at recalculating registered EMG into joint 
torques [16].

The mechanical signals-based approach can use tactile 
or force sensing performed with different components 
and different analysis algorithms [17]. Nevertheless, it is 
typically used with the external force sensors; as for the 
hand guidance of cobots [18, 19]. Typically, implement-
ing commercial force sensors into the design increases 
the cost and weight of the devices equipped with these 
[20]. On the other hand, EMG tracking is severely vul-
nerable to individual anatomic differences and electric 
noises [19].

The study aims to develop and validate the methodol-
ogy of detecting and reacting to users’ intentions without 
force sensors nor biosignals tracking devices [21–23]. 
Within the presented investigation, only the 14-bit 
encoders integrated with the servodrives are used [24]. 
Therefore, thanks to such an approach, a lightweight 
and low-cost exoskeleton can be used for active physi-
otherapy involving a user in the feedback loop [3]. This 
is targeted at increasing the availability of exoskeleton-
based systems and their safety. Hence, to achieve the 
minimally-supervised therapy [25, 26]. Moreover, it can 
be used for lightweight assistive human exoskeletons [27, 
28].

Currently, no low-cost and lightweight technolo-
gies with a short time of detecting users’ intentions are 

developed. This means that the presented approach is 
unique in using only the sensors already integrated with 
the drives and hard-coded algorithms. The investigation 
results will be implemented practically in the ExoReha 
exoskeleton developed by ŁUKASIEWICZ Research Net-
work - Industrial Research Institute for Automation and 
Measurements PIAP [29–31].

Methodology
The developed method is based on comparing the simu-
lated motion of the controlled exoskeleton with the real-
life values measured with encoders. For this reason, the 
dynamics computation for a multi-body system must be 
performed. The differences between the expected motion 
and the actual ones will be interpreted as a volunteer 
activity of the user. While detecting such, the drives cor-
responding to the motion have to react and act based on 
the identified motion intention. However, the described 
differences can also result from the unintended activity of 
an impaired user with coordination problems [32], model 
inaccuracies or other noises in the control system. The 
investigation aims to analyse the impact of the method’s 
parameters and assess its vulnerability to the presented 
disruptions. Therefore, a set of simulations were run to 
select the best-performing, robust settings. The simula-
tion approach was selected as safe to use for develop-
ing innovative exoskeletons’ control methods based on 
multibody extremity models [33].

All the works were conducted as a simulation in Mat-
lab R2021a / Simulink software. These included compu-
tations of the modelled multibody idealised system but 
also a simulation of the real-life system. The latter is used 
instead of measuring the real-life system with physical 
sensors, i.e. encoders in the joints. The second model is 
designed similarly to the idealised one but also includes 
external non-measured forces and non-measurable inac-
curacies between the model and the real-life system. The 
motors were designed as Simulink blocks with an input 
for the set torques and an output for the rotor’s angular 
velocity. The real-life model also had an input for external 
torque exaggerated by a patient.

The investigation presented in this paper was per-
formed for a single-joint control for the ExoReha exo-
skeleton’s elbow flexion/extension. The device itself has 
three active degrees of freedom and two passive. There-
fore, a simple multibody model was constructed [30]. 
It consisted of a motor, two rigid exoskeleton parts and 
attached to a forearm with a hand, without a possibility 
of wrist motion.

Two models of motors were built - one reflecting the 
real-life operation and one idealised. These both were 
based on the same principle, that the engine torque 
Mmotor balances the torques acting against it [34]. These 
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are the Ma torque associated with the angular accelera-
tion of the engine, MB torque associated with damping 
and the load torque Ml . The Eq. 1 represents the above 
assumption, while the Eq.  2 extends it with a physical 
interpretation, where:

• Kt – mechanical constant of a motor;
• iw – current in the motor’s winding [A],
• J – reduced moment of inertia of the driven multi-

body system [kg·m2],
• ωs – rotor angular velocity [rad/s],
• B – damping factor [Nm·s/rad],
• Ml – engine load torque [Nm]; i.e. reaction of the 

exoskeleton’s user. While both the loading moment 
and the rotor’s generated torque are positive or nega-
tive, the device is supporting the patient’s intended 
motion.

(1)Mmotor =Ma +MB +Ml ,

(2)Ktiw =J
dωs

dt
+ Bωs +Ml ,

Transformation of Eq.  2 results in formula 3, which 
describes the angular acceleration of the rotor.

It is assumed that the initial velocity of the exoskeleton 
joints controlled by the algorithm is equal to zero. There-
fore, Eq. 3, after Laplace transform, is in the form of the 
formula 4. This can be further simplified to formula 5, 
which describes the angular velocity of the rotor. Such a 
form of equation was used in further simulations of the 
drive’s dynamics and implemented to Simulink models.

Implementations of these two models in Simulink are 
presented in Figs. 1 and 2.

For the experimental validation of the system’s perfor-
mance, data from the T-MOTOR AK80-9 documentation, 

(3)
dωs

dt
=

Ktiw

J
−

Bωs

J
−

Ml

J
.

(4)sωs(s)− ωs(0)

0

=
Ktiw(s)

J
−

Bωs(s)

J
−

Ml(s)

J
,

(5)ωs(s) =
Ktiw(s)−Ml(s)

Js + B
.

Fig. 1 Ideal motor model implementation in Simulink 

Fig. 2 Real motor model implementation in Simulink 
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mobilising elbow joint in ExoReha, were used. These 
are Kt = 0.095 Nm

A  and B = 0.6 Nm
rad

 . However, Kt is not 
directly involved in torque control over the device. The 
moment of inertia acting upon the motor axis was esti-
mated with Stainer’s theorem based on the data from 
CAD models and anthropometric data for the  95th per-
centile of male adult population [30, 35] confirmed 
by literature examples [36]. Its value was taken as 
J = 0.35 kg ·m2.

During the investigation, the performance of the con-
trol systems was compared for three different input types 
(sinus, non-periodical randomised smooth and non-
periodical randomised square), representing the patient’s 
torque in an elbow joint (see Fig.  3). The randomised 
functions were generated with spline and rand Matlab 
functions correspondingly. Their amplitude maxima 
were assumed as 4 Nm while the differences between the 
intended torque and the one obtained by a patient were 
taken as 0.01 Nm for a standard level and 0.1 Nm for a 
high level. This parameter can also be used to include 
potential differences between intended and achieved 
torques resulting from other factors such as friction or 
additional low external forces. The input signals were 
generated with the frequency of 100 Hz . Moreover, the 
test cases included inaccuracies in the modelled J, B, and 
Kt parameters, as well as differences between the motion 
intention of a user and the exaggerated torque and the 
encoder’s inaccuracies. All the test cases are presented in 
Table 1.

The aim of the designed control system is to detect the 
motion intention of a user and support it with the motors 
proportionally to the torque generated in the extrem-
ity’s joints. However, no direct torque sensation is used. 
It is assumed that at the beginning of the experiment, no 

motion is realised, and a patient can exaggerate no mus-
cular force. Therefore, the test sequence with the motor 
torque of 2 Nm is generated for the first 0.25 s . Then, the 
idealised model is computed as there is no patient’s exter-
nal force, and the real-life model is simulated. The dif-
ferences between the computed angular velocities of the 
rotors are sent to the PID and following fuzzy controllers. 
The computed control signal is limited if it exceeds the 
ranges available for the motors and is set as the intended 
torque at the next timestamp. Schematic implementa-
tion of these in Simulink is presented in Fig. 4. The accu-
racies of measuring positions of the rotors are taken as 
±0.001 rad/s for a standard level and ±0.01 rad/s for a 
high level. Non-periodical external torques of patients 
and all non-stationary inaccuracies in the models are 
generated randomly to simulate the real-life operation of 
the system.

The PID controller was set at the same parameters for 
every experimental case ( P = 2 , I = 0.4 , D = 1 ). Thanks 
to this, it is possible to analyse which of the cases intro-
duces unacceptable behaviour of the system. The follow-
ing fuzzy controller prevents the device from exceeding 
the patient’s range of motion. The algorithm analyses 
whether the position of the rotor enters the danger-
ous range, and if so, it corrects the control signal to act 
opposite to the end of the safe range. Its implementa-
tion in Simulink is presented in Fig. 5. Additionally, the 
maximum set torque of the motor was limited to 7 Nm 
[37] while the maximum angular velocity of the rotor was 
assumed as 2.6 rad

s  [29].
Performance on the system is analysed by comparing 

time shapes of the signals of intended torques gener-
ated by the patient in the joint and the acceleration of the 
drive’s rotor. It is intended for the latter to be as propor-
tional as possible to the former. Therefore, two following 
parameters describing the quality of the control method 
were defined:

Fig. 3 Input signals representing intended torques of the user 
in their elbow joint

Table 1 Test cases for simulations ( Jm - value of the modelled J 
parameter, Jr - value of the real-life J parameter, Bm - value of the 
modelled B parameter, Br - value of the real-life B parameter)

Test
case

J model
inaccurcy

B model
inaccuracy

Ml noise [Nm] Encoder
inaccuracy 
[rad/s]

1 Jm = Jr Bm = Br 0.01 0.001

2 Jm = 3Jr Bm = Br 0 0

3 Jm = 0.5Jr Bm = Br 0 0

4 Jm = Jr Bm = Br + 0.3 0 0

5 Jm = Jr Bm = Br − 0.1 0 0

6 Jm = Jr Bm = Br 0.1 0.001

7 Jm = Jr Bm = Br 0.01 0.01
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• Q [ 
(
m · kg

)−1 ] - the ratio of the drive’s rotor and the 
intended torques generated by the patient;

• tri [s] - regulation times during which the value of Q 
parameter exceeds the range of 

〈
Q − ǫ/2;Q + ǫ/2

〉
 , 

where Q is the mean of the Q parameter for the 
session, and ǫ is the width of the acceptable ratio 
range, in this case, taken as ǫ = 4|Q|.

An example of the time series for computed parameters 
is presented in Fig. 6. Intentionally, parameter Q should 
have the smallest deviation from Q in the accepta-
ble ratio range, while the sum of the regulation times 
∑

tri
n
i=1 and their maximum value max (tr) should be 

minimised.

Results and discussion
Twenty-one simulation trials were conducted - for the 
combinations of seven test cases and three types of gen-
erated forms of patient torques. For all the simulation 
trials, torque set to the drive, rotor angular accelera-
tion, and rotor angular velocities were computed. The 
first two were compared with the torque load generated 
by the user, while the last one was compared to the ref-
erence value of the idealised motor model. Exemplary 
plots of these are presented in Figs. 7, 8 and  9. Moreo-
ver, the quality metrics for all the trial was presented in 
Table 2. The average regulation times were not analysed 
as their values are always close to the average regula-
tion times. This confirms that the regulation time after 

Fig. 4 Control algorithm schematic implementation in Simulink 

Fig. 5 Fuzzy PID implementation in Simulink 
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changing the direction of the torque exerted by the user 
is almost constant for every case.

During the tests, the angular velocity of rotors very 
occasionally exceeded its intended limits. However, it 
was accepted for a short-time period, as too large accel-
eration was never generated (assumed up to 19 rad

s2
).

The system’s behaviour tends to be similar for sinus 
and non-periodical randomised smooth waveforms of 
the user’s torque. For the square waveform, maximum 
regulation times remain close to 0.3  s, except for test 
case 7. The increased value of this indicator is the result 
of higher encoder inaccuracies.

Due to the modelling inertia moment of the reference 
system with the excessive value, the results of test case 
3 were not acceptable. The set motor control torque 
was being limited to ±7 Nm almost within the whole 
timespan. However, bang-bang control is not applicable 
for exoskeletons, where immediate changes in dynam-
ics can harm the disabled user.

Regardless of the case and the input patient’s torque 
waveform, the strong correlation between the shapes of 
the latter and both the set motor torque and the rotor 
angular acceleration was visible (see Figs.  7, 8 and 9). 

Fig. 6 Quality parameters presented for one of the cases

Table 2 Quality metrics for all the test cases ( max(tr) [s] - maximum value of the regulation times, σ ∗(Q) [(m · kg)−1
] - average deviation 

from the Q in the acceptable range, not applicable placed if the Q parameter is out of the acceptable range for over 90% of the time)

Patients  Torque Sinus Non-periodical
randomised smooth

Non-periodical
randomised square

Test
case

Max (tr)   σ ∗(Q)   Max (tr)   σ ∗(Q) Max (tr)   σ ∗(Q)

1 0.24 3.215 0.45 3.357 0.30 2.320

2 0.06 0.190 0.10 0.295 0.29 0.248

3 0.53 8.210 0.87 25.254 0.31 not applicable

4 0.92 1.637 0.52 3.218 0.31 2.781

5 0.08 2.289 0.15 2.800 0.31 1.925

6 0.28 3.216 0.59 3.858 0.33 2.189

7 0.28 3.218 0.81 3.761 0.37 2.264
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The regulation phases result in displacements of the 
corresponding graphs along the horizontal axis.

The main insights from the simulations are as follows:

• The differences between the intended torque and 
the one generated by the patient do not signifi-
cantly affect the method’s performance. However, 
the noises of the encoder’s readings can strongly 
increase the regulation time.

• Precise modelling of the motor is not required. 
However, the differences between the real-life and 
the idealised model can increase deviations of Q 
parameters from its mean and the regulation times 
(compare cases 2-5 with 1, 6 and 7).

• The best results were obtained for undershoot iner-
tia moments of the system and overshoot of its 
damping. Such cases had the shortest regulation 
times (even up to 0.06 s ). Moreover, case 2 had the 
smallest deviation of Q parameters from its mean.

• The regulator’s parameters can directly affect the 
magnitude of the torque set to the motor. There-
fore, they correlate with the level of supporting 
the patient. They should be adjusted to obtain the 
desired effect, e.g. to increase the velocities of the 
movements.

Fig. 7 Results of the simulations for the test case 6, sinus patient’s 
torque waveform

Fig. 8 Results of the simulations for the test case 6, non-periodical 
randomised smooth patient’s torque waveform

Fig. 9 Results of the simulations for the test case 6, non-periodical 
randomised square patient’s torque waveform



Page 8 of 10Falkowski and Jeznach  Journal of NeuroEngineering and Rehabilitation           (2024) 21:22 

Test cases 2 and 5 resulted in the most favourable values 
of both quality indicators. Their combinations were used 
to continue the investigation to adjust the quasi-optimal 
PID parameters. As the input signals, only sinus and 
non-periodical randomised smooth waveforms of the 
user’s torque were used. This is due to the fact that rec-
tangular waveforms were not differing the results signifi-
cantly compared to smooth forms. An impact of P and 
D parameters on quality indicators and generated angu-
lar velocities was investigated. For all the simulations, a 
small difference between the real-life and the modelled 
damping ratio was assumed. The cases, however, differed 
in terms of the modelled moment of inertia. The results 
of trials are presented in Table 3.

Most of the obtained velocities exceed the set limit for 
the elbow joint of 2.6 rad/s [29]. However, the test trials 
were used to assess the impact of the settings on obtained 
results.

Modification of the regulator settings has a direct 
impact on the torque set during the simulation. The 
data presented in Table  3 shows that increasing the P 
parameter increases the generated maximum speed of 
the system at the cost of increasing the average devia-
tion of the Q parameter (observable while compar-
ing the consecutive cases: 1  and  2, 4  and  5, 7  and  8, 
10 and 11, 16 and 17). Raising the D parameter brings 
similar effects but the less visible. Moreover, the maxi-
mum regulation time is decreased for the periodic 

input signal. Thanks to this, the intention of a user 
is detected faster. As validated computationally, the 
parameters P = 2 , I = 0.4 and D = 10 give satisfactory 
results for all the tested cases.

Additionally, reducing the regulation time is possi-
ble by underestimating the system’s moment of inertia. 
Moreover, for such cases, the Q parameter time form is 
closer to constant (see Fig. 10). The settings with small 
P and D parameters were selected as quasi-optimal for 
the application, which does not require high veloci-
ties. On the contrary, if the system needs to move with 

Table 3 Test cases for experimental adjustment for PID settings ( Jm - value of the modelled J parameter, Jr - value of the real-life J 
parameter, Bm - value of the modelled B parameter, Br - value of the real-life B parameter, max(tr) [s] - maximum value of the regulation 
times, σ ∗(Q) [(m · kg)−1

] - average deviation from the Q in the acceptable range, max(ω) - maximum measured angular velocity [rad/s])

No. Input signal P I D Jr Jm Br Bm Max (tr)   σ ∗(Q) Max (ω)  

1 Sinus 2 0.4 1 0.35 0.7 0.6 0.55 0.04 0.206 4.77

2 Sinus 10 0.4 1 0.35 0.7 0.6 0.55 0.06 0.384 6.84

3 Sinus 2 0.4 10 0.35 0.7 0.6 0.55 0.04 0.246 6.28

4 Non-periodical 2 0.4 1 0.35 0.7 0.6 0.55 0.11 0.431 7.08

5 Non-periodical 10 0.4 1 0.35 0.7 0.6 0.55 0.36 0.890 9.78

6 Non-periodical 2 0.4 10 0.35 0.7 0.6 0.55 0.18 0.690 9.22

7  Sinus 2 0.4 1 0.35 1.05 0.6 0.55 0.03 0.098 2.84

8  Sinus 10 0.4 1 0.35 1.05 0.6 0.55 0.03 0.120 3.50

9  Sinus 2 0.4 10 0.35 1.05 0.6 0.55 0.03 0.090 3.34

10  Non-periodical 2 0.4 1 0.35 1.05 0.6 0.55 0.06 0.171 4.18

11  Non-periodical 10 0.4 1 0.35 1.05 0.6 0.55 0.20 0.301 5.05

12  Non-periodical 2 0.4 10 0.35 1.05 0.6 0.55 0.12 0.258 4.88

13  Sinus 2 0.4 1 0.35 1.4 0.6 0.55 0.03 0.065 2.02

14  Sinus 10 0.4 1 0.35 1.4 0.6 0.55 0.02 0.062 2.36

15  Sinus 2 0.4 10 0.35 1.4 0.6 0.55 0.02 0.051 2.27

16  Non-periodical 2 0.4 1 0.35 1.4 0.6 0.55 0.03 0.089 2.97

17  Non-periodical 10 0.4 1 0.35 1.4 0.6 0.55 0.13 0.150 3.40

18  Non-periodical 2 0.4 10 0.35 1.4 0.6 0.55 0.07 0.137 3.31

Fig. 10 Quality parameters presented for the test case 15
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higher dynamics, the D and, optionally, the P param-
eters should be increased.

Based on the data presented in Table 3, the developed 
method is robust and, hence, applicable to detecting 
patients’ intentions in exoskeleton-aided kinesiotherapy. 
As the method’s performance is presented for a single 
joint, it is applicable for any exoskeleton with the dif-
ferent number of joints. Its maximum regulation times 
remain in the range of 20-200 ms for 17 out of 18 cases 
(it is 360 ms only in case 5). These results are comparable 
to the reaction times obtained for EMG-based systems 
(130-300 ms) [38–41] and significantly better than the 
low-cost force sensor’s performance (410-1280 ms) [42, 
43]. However, the results are worse in most cases than for 
the ultrasensitive pressure sensors (43 ms) [44].

Nevertheless, the proposed method does not increase 
the costs of the exoskeleton by adding EMG measuring 
systems or expensive sensors [38–41, 44]. Neither does 
it increase the mass and bulkiness of the structure as for 
the budget force sensors [42, 43].

According to the results, the method is applicable to 
use by patients with motor disorders. However, these can 
come with comorbidities such as spasticity or cognitive 
disorders.

In the first case, if not modified, the method would 
just enhance the muscle contraction and possibly harm 
the user. However, too big differences detected by the 
system could also be used for the emergency stop of the 
exoskeleton. Unfortunately, for all the testing settings, the 
reaction times tr would be significantly too long for the 
mentioned case.

On the contrary, not always there are contraindica-
tions to using the method for patients with cognitive 
disorders. Cases 1, 6 and 7 included potential differences 
between the intended motion and the motion realised 
with the musculoskeletal system ( Ml noise). However, as 
observed, the stronger differences can cause slower reac-
tions of the system; for Parkinson’s disease, among others 
[45].

Summary
The simulational investigation proved that the presented 
method is capable of detecting the user’s intentions with-
out force sensors for exoskeleton-aided therapy. Two 
stages of the simulation were conducted. The first one 
universally assessed the method, while the second was 
used to analyse the impact of PID regulator parameters 
on the quality of control.

All of the obtained maximum regulation times 
remained below one second. However, the vast majority 
had a satisfactory value of 0.5 s or less, while the smallest 
recorded was 0.02  s. In the final set of simulations, the 
lowest average deviation of the Q parameter was 0.051.

The described method of controlling the drive in order 
to support the user’s movement intention is intended 
for implementation in the control system of the wearable 
device. Thanks to eliminating the force sensor from the 
design, the structure’s weight and manufacturing costs can 
be decreased. Hence, the system becomes easier to use for 
impaired patients and is available for society. The method 
implementation in real life is possible by creating an algo-
rithm for the microcontroller or a microcomputer (in the 
ExoReha system - for the Raspberry Pi 4b). It is worth 
noting, however, that the created procedures must meet 
additional safety standards relating to the users’ dynamics. 
These were neglected during the presented simulations.

Optionally, the method can be enhanced by implement-
ing the following modifications:

• extending the motor model by introducing its non-
linearity and taking into account possible power trans-
mission losses or measurement uncertainties;

• building the correlation model between the generated 
torque and the control current; however, the differ-
ences in the Kt mechanical constant’s theoretical and 
real-life values can introduce errors to intention detec-
tion;

• combining the algorithm with the predictor based on 
the recurrent neural networks.
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