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Abstract 

Background Identification of cortical loci for lower limb movements for stroke rehabilitation is crucial for better 
rehabilitation outcomes via noninvasive brain stimulation by targeting the fine‑grained cortical loci of the move‑
ments. However, identification of the cortical loci for lower limb movements using functional MRI (fMRI) is challenging 
due to head motion and difficulty in isolating different types of movement. Therefore, we developed a custom‑made 
MR‑compatible footplate and leg cushion to identify the cortical loci for lower limb movements and conducted mul‑
tivariate analysis on the fMRI data. We evaluated the validity of the identified loci using both fMRI and behavioral data, 
obtained from healthy participants as well as individuals after stroke.

Methods We recruited 33 healthy participants who performed four different lower limb movements (ankle dorsiflex‑
ion, ankle rotation, knee extension, and toe flexion) using our custom‑built equipment while fMRI data were acquired. 
A subgroup of these participants (Dataset 1; n = 21) was used to identify the cortical loci associated with each lower 
limb movement in the paracentral lobule (PCL) using multivoxel pattern analysis and representational similarity 
analysis. The identified cortical loci were then evaluated using the remaining healthy participants (Dataset 2; n = 11), 
for whom the laterality index (LI) was calculated for each lower limb movement using the cortical loci identified 
for the left and right lower limbs. In addition, we acquired a dataset from 15 individuals with chronic stroke for regres‑
sion analysis using the LI and the Fugl–Meyer Assessment (FMA) scale.

Results The cortical loci associated with the lower limb movements were hierarchically organized in the medial wall 
of the PCL following the cortical homunculus. The LI was clearer using the identified cortical loci than using the PCL. 
The healthy participants (mean ± standard deviation: 0.12 ± 0.30; range: – 0.63 to 0.91) exhibited a higher contralateral 
LI than the individuals after stroke (0.07 ± 0.47; – 0.83 to 0.97). The corresponding LI scores for individuals after stroke 
showed a significant positive correlation with the FMA scale for paretic side movement in ankle dorsiflexion  (R2 = 0.33, 
p = 0.025) and toe flexion  (R2 = 0.37, p = 0.016).

Conclusions The cortical loci associated with lower limb movements in the PCL identified in healthy partici‑
pants were validated using independent groups of healthy participants and individuals after stroke. Our findings 

*Correspondence:
Song Joo Lee
songjoolee@kist.re.kr
Jong‑Hwan Lee
jonghwan_lee@korea.ac.kr
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12984-024-01319-8&domain=pdf


Page 2 of 17Choi et al. Journal of NeuroEngineering and Rehabilitation           (2024) 21:58 

suggest that these cortical loci may be beneficial for the neurorehabilitation of lower limb movement in individuals 
after stroke, such as in developing effective rehabilitation interventions guided by the LI scores obtained for neuronal 
activations calculated from the identified cortical loci across the paretic and non‑paretic sides of the brain.

Keywords Functional MRI, Lower limb, Multivoxel pattern analysis, Paracentral lobule, Representational similarity 
analysis

Background
Functional magnetic resonance imaging (fMRI) has been 
widely used to investigate the motor functions of the 
human brain, particularly upper limb movements such as 
finger tapping and hand grasping/clenching. Distinct cor-
tical loci have been identified for different types of upper 
limb movement [1–3], and these cortical loci have been 
successfully employed for the neurorehabilitation/neuro-
plasticity of individuals in the chronic stage after stroke 
[4–6]. The importance of identifying the cortical loci for 
lower limb movement in stroke rehabilitation has been 
discussed in previous studies [7, 8]. For example, nonin-
vasive brain stimulations such as repetitive transcranial 
magnetic stimulation (rTMS) and transcranial direct cur-
rent stimulation (tDCS) have been demonstrated to be 
effective in improving the gait and balance performance 
of individuals with subacute and chronic stroke by target-
ing the cortical loci, including the primary motor cortex 
(M1) [7]. We believe rehabilitation outcomes would be 
further enhanced by targeting the stimulation of fine-
grained cortical loci for lower limb movement.

In this context, previous studies have investigated neu-
ronal patterns observed from fMRI during lower limb 
movements [9–12]. For example, Luft and colleagues 
(2002) compared brain activations between upper and 
lower limb movements by incorporating finger, elbow, 
and knee movements in their lateralization index (LI) 
across various regions-of-interest (ROIs), including the 
M1, primary somatosensory cortex (S1), primary motor 
area (SMA), and cerebellum [10]. Kapreli et al. extended 
these findings by including the ankle and toes to differ-
entiate the LI of brain activations for finger movement 
from that for the movement of lower limb joints [11, 12] 
and by combining movements across the ankle, knee, and 
hip [9]. These previous studies have generally reported 
different activation loci for lower limb movements com-
pared with upper limb movements and overlapping spa-
tial layouts for neuronal activations across lower limb 
movements. Another line of research has compared the 
neuronal activations of imagined lower limb movements 
with executed and/or observed movements for the right 
ankle [13], foot-kicking [14], and stepping [15].

However, few studies have investigated the distinct cor-
tical loci considering hierarchical representations in the 

cortical homunculus for the movement of the ankle, toe, 
or knee, which are feasible movements of the lower limb 
extremities for fMRI acquisition because head motion is 
potentially more controllable compared with hip joint 
movement [11]. The identification of cortical loci spe-
cific to these lower limb movements in the median wall 
of the sensorimotor area mainly in the paracentral lob-
ule (PCL) region is more challenging than for upper limb 
movements because the motor cortex associated with the 
lower limbs is smaller in volume than that for the upper 
limbs based on the cortical homunculus [16]. In addition, 
isolation of individual lower limb movements is more 
demanding due to the potentially greater head motion 
[10, 17–19].

Previous studies have investigated the neuronal acti-
vation patterns of lower limb movements based on the 
guidance of MR-compatible equipment. These studies 
include the identification of neuronal activation pat-
terns for active and passive stepping movements [15, 20, 
21] and pedaling [18] and the real-time monitoring of 
ankle, knee, and hip torques with their associated neu-
ronal activations [22]. In the present study, we devel-
oped a custom-made MR-compatible footplate and leg 
cushion to isolate individual lower limb movements 
and minimize potential head motion during fMRI data 
acquisition. We then identified the cortical loci for 
lower limb movements using fMRI data acquired from 
healthy participants and subsequent multivariate analy-
sis. Conventionally, it is not easy to delineate these loci 
due to the constrained cortical regions, particularly in 
the PCL, which is the medial continuation of the pre-
central and postcentral gyri [23], and overlapping 
functional territories across the lower limbs. We also 
investigated the efficacy of the cortical loci identified 
from healthy participants for individuals with chronic 
stroke. We hypothesized that our custom-built equip-
ment and multivariate analytical methods would be 
useful for identifying hierarchically organized cortical 
loci for lower limb movements (i.e., an inferior location 
for the toe to a superior location for the knee). We also 
hypothesized that the identified cortical loci would be 
useful in evaluating the neural features of individuals 
with chronic stroke.
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Methods
Overview
Using the fMRI data acquired from healthy participants 
by utilizing a custom-built MR-compatible footplate and 
leg cushion, we identified the cortical loci for lower limb 
movements using multivariate analyses of multivoxel pat-
tern analysis (MVPA) [24] and representational similarity 
analysis (RSA) [25]. The laterality index (LI) was then cal-
culated for each individual lower limb movement based 
on the identified cortical loci using the neuronal activa-
tions in the left and right hemispheres. Finally, we inves-
tigated the potential use of the LI to explain behavioral 
data for the lower limb movements of individuals with 
chronic stroke.

Participants
The Institutional Review Board (IRB) of Korea Univer-
sity and the Korea Institute of Science and Technology 
(KIST) approved this study. Participants provided written 
informed consent and were compensated in accordance 
with the IRB document. Thirty-three healthy participants 
and 15 individuals with chronic stroke volunteered to 
participate. The data from 21 of the 34 healthy partici-
pants (healthy dataset 1) were used to identify the cor-
tical loci for lower limb movements. The data from the 
11 healthy participants (healthy dataset 2) and 15 indi-
viduals with chronic stroke whose lower limb move-
ment was compromised by stroke (stroke dataset) were 
used to evaluate the validity of the identified functional 
loci. Additionally, 11 healthy participants (equipment 
evaluation dataset) were recruited to evaluate the valid-
ity of our MR-compatible footplate and knee cushion to 
reduce head motion. Participants were recruited from 

both Korea University and KIST and all the MRI data 
were acquired at Korea University Brain Imaging Center. 
The number of participants was aimed to have at least 12 
participants for the healthy group and 15 participants for 
the stroke group, which is in line with the recent report 
on a median sample size of 12 for highly cited experimen-
tal fMRI studies with a single group and 14.5 for highly 
cited clinical fMRI studies with a patient group [26]. We 
also conducted a power analysis based on a t-test with 
a Type I error of 0.8, a power level (1—Type II error) of 
0.8, and an alpha of 0.05 which was obtained as 11 using 
the G*power toolbox [27, 28]. The data collection peri-
ods were Sep 09, 2020–Apr 28, 2021, for healthy dataset 
1; Sep 24, 2020–Jun 03, 2021, for healthy dataset 2; Jun 
01, 2021–Sep 13, 2022, for the stroke dataset; and May 
13, 2021–May 27, 2021, for the equipment evaluation 
dataset.

We pre-screened volunteers via a telephone interview 
to ensure that they met the inclusion criteria of no his-
tory of neuropsychiatric medication or physical/mental 
disorders. Additionally, volunteers with claustrophobia 
and those who had undergone a surgical procedure for 
implant devices were excluded. We did not consider a 
specific age range or gender distribution in the inclu-
sion criteria to facilitate participant recruitment. Those 
who passed this pre-screening underwent a face-to-face 
interview, during which we assessed their mental state 
and cognitive abilities using the Korean version of the 
Mini-Mental State Examination (MMSE-K), the Beck 
Depression Inventory (BDI), the Beck Anxiety Inven-
tory (BAI), the Big Five Inventory-10 (BFI-10), and the 
Patient Health Questionnaire (PHQ) [29–33]. Hand-
edness and footedness scores were obtained on the 

Table 1 Demographic, behavioral, and psychological information for the participants

Healthy 1, Healthy dataset 1; Healthy 2, Healthy dataset 2; Stroke, Stroke dataset; Equipment, Equipment evaluation dataset; WFQ-R, Waterloo Footedness 
Questionnaire-Revised; BFI-10, Big Five Inventory-10; EHI, Edinburg Handedness Inventory; PSS, Perceived Stress Scale; BDI, Beck Depression Inventory; BAI, Beck 
Anxiety Inventory

Healthy 1
(n = 21, 16 males)

Healthy 2
(n = 11, 6 males)

Stroke
(n = 15, 12 males)

Equipment
(n = 11, 5 males)

Age 26.0 ± 2.9 54.1 ± 24.4 58.1 ± 10.6 22.7 ± 3.5

WFQ‑R 6.2 ± 8.7 11.0 ± 7.4 ‑1.3 ± 15.9 5.7 ± 10.7

EHI 57.3 ± 50.0 90.0 ± 14.6 8.2 ± 93.8 39.0 ± 61.3

BFI‑10

 Extraversion 5.0 ± 1.3 6.9 ± 1.6 5.6 ± 1.5 5.9 ± 1.9

 Agreeableness 6.7 ± 1.7 7.5 ± 2.1 8.0 ± 1.7 7.4 ± 1.1

 Conscientiousness 5.6 ± 1.5 7.5 ± 2.0 8.0 ± 2.6 6.0 ± 1.8

 Neuroticism 5.6 ± 1.4 5.0 ± 2.1 4.7 ± 2.6 6.1 ± 2.2

 Openness to experience 6.8 ± 1.4 6.9 ± 1.4 7.3 ± 2.1 7.6 ± 1.2

PSS 15.5 ± 5.2 10.9 ± 4.6 12.7 ± 6.2 12.9 ± 7.4

BDI 6.1 ± 5.9 2.0 ± 1.5 10.0 ± 11.8 6.2 ± 7.6

BAI 4.4 ± 5.9 1.3 ± 1.5 5.5 ± 6.5 3.6 ± 4.2
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day of the MRI session using the Edinburgh Handed-
ness Inventory and the Waterloo Footedness Question-
naire-Revised (WFQ-R) [34, 35]. Detailed information 
for each group is presented in Table  1. We also uti-
lized the Fugl–Meyer Assessment (FMA) scores [36], a 
widely accepted evaluation tool for assessing upper and 
lower limb motor function during stroke rehabilita-
tion. Occupational therapists widely recognize and use 
these scores for their intertester/interrater reliability 
and validity [37–39] and we therefore employed them 
in our study. A licensed physical therapist administered 

the assessment to individuals with chronic stroke. 
These individuals were recruited solely from KIST and 
their corresponding FMA scores were obtained.

Experiment paradigm
Figure  1 illustrates the experiment setup and task para-
digm. Participants lay on the scanner bore in a supine 
position, and their head was secured with a custom 
memory foam cushion to reduce head motion during 
lower limb movements. Participants were instructed to 
perform four lower limb movements on each side (knee 

Fig. 1 Overview of the experiment and analysis setup. a Our custom‑made MR‑compatible footplate and leg cushion (top) and experiment setup 
for the lower limb movement tasks. Illustrations guiding each of the four movements and an example task paradigm for the ankle dorsiflexion task 
(bottom). b Analysis framework for multivoxel pattern analysis (left) and representational similarity analysis (right)
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extension, ankle dorsiflexion, ankle rotation, and toe flex-
ion) during fMRI acquisition using our MR-compatible 
custom-made footplate, which was developed to isolate 
and guide the movements. All of the participants were 
trained on how to use the footplate and performed each 
lower limb movement five times before the MRI session. 
During the MRI session, participants performed each 
lower limb movement in one fMRI run, with eight fMRI 
runs acquired across the four lower limb movements for 
the left and right legs. Each fMRI run consisted of three 
task blocks (20  s/block) interleaved by resting/fixation 
blocks (20  s/block). The order of the eight lower limb 
movements was counterbalanced for each subject by uti-
lizing Python’s random shuffling function (i.e., ’numpy.
random.shuffle’) first to select either the right or left leg 
and then select the movement order for the four lower 
limbs. All of the individuals after stroke completed two 
out of the four lower limb movements (ankle dorsiflex-
ion and toe flexion) and six individuals after stroke com-
pleted all four lower limb movements on both sides.

fMRI data acquisition and preprocessing
fMRI data were acquired using a 3-T Tim-Trio scanner 
with a 12-channel head coil (Siemens, Erlangen, Germany). 
A standard gradient-echo echo-planar imaging (EPI) pulse 
sequence (repetition time/echo time = 1,440/30  ms; flip 
angle = 71°; field-of-view = 192  mm × 192  mm; 50 axial 
slices without a gap; voxel size = 3  mm × 3  mm × 3  mm; 
multiband factor of two and GeneRalized Autocali-
brating Partially Parallel Acquisition [GRAPPA]) was 
used to measure the blood-oxygenation-level-depend-
ent (BOLD) contrast arising from the neural activa-
tions. The EPI parameters were modified during fMRI 
acquisition for the individuals after stroke to enhance 
the signal-to-noise ratio of the BOLD contrast (rep-
etition time/echo time = 2000/30  ms; flip angle = 84°; 
field-of-view = 240  mm × 240  mm; 35 axial slices with-
out a gap; voxel size = 3  mm × 3  mm × 3  mm; multiband 
factor of one and GRAPPA). The T1-weighted struc-
tural MRI volume was acquired using a magnetiza-
tion-prepared rapid gradient-echo (MPRAGE) pulse 
sequence (repetition time/echo time = 1900/2.28  ms; 
flip angle = 8°; field-of-view = 256  mm × 256  mm; voxel 
size = 1 mm × 1 mm × 1 mm).

The fMRI data were preprocessed using AFNI software 
(afni.niml.nih.gov) in the following order: slice-timing 
correction, realignment of fMRI volumes in each run to 
the first volume, and spatial normalization to the Mon-
treal Neurological Institute (MNI) space using a non-
linear registration function with 3  mm × 3  mm × 3  mm 
voxel-size resampling. In the slice-timing correction pro-
cess, the acquisition timing for all of the slices within a 
volume was aligned to the acquisition time for the first 

slice using Fourier order/function-based temporal inter-
polation. In the realignment of the fMRI volumes, the 
first EPI volume was used as a target volume, and the 
remaining volumes in a run were aligned to the target 
volume to correct for potential head motion during the 
run. For the three blocks in each fMRI run, a task block 
was excluded if greater than 10% of the total number of 
volumes in the block exhibited severe head motion (i.e., 
a Euclidean distance greater than 0.5  mm) in accord-
ance with the guidelines provided by previous work 
[40]. When the three blocks for each of all eight tasks/
runs passed this head motion criterion, the dataset of 
the corresponding subject was included in the analysis. 
Subsequently, 13 out of the totally recruited 34 subjects 
in the Healthy 1 group were excluded. When we noticed 
the relatively high dropout rate from the Healthy 1 group, 
we informed the participants in the Healthy 2 and Stroke 
groups about the importance of reducing head motion 
during fMRI data acquisition. We also monitored their 
head motion after each fMRI run was acquired and asked 
the participants to perform the run again if the head 
motion threshold was exceeded. One individual after a 
stroke could not finish the experiment due to claustro-
phobia. Spatial normalization was conducted using 21 
parameter linear affine transformation (with the “3dAl-
lineate” command) followed by nonlinear warping (the 
“3dQwarp” command). The linear trend due to scan-
ner instability, including eddy current distortions, was 
removed using polynomial function detrending (with the 
“3dDeconvolve” command).

Evaluation of MR‑compatible devices
We built a custom-made footplate and leg cushion to 
reduce potential head motion during lower limb move-
ment tasks and to isolate and guide each of the ankle and 
toe movements. The success of the devices in reducing 
head motion was evaluated using fMRI data in the equip-
ment evaluation dataset. Specifically, we asked the corre-
sponding subjects to perform ankle dorsiflexion and knee 
extension twice with and without our custom-made foot-
plate and leg cushion because we observed that the head 
motion was largest for these two movements. We then 
applied Welch’s t-tests to the six head motion parameters 
estimated from the realignment step in the preprocess-
ing of the fMRI data. The corresponding statistical sig-
nificance was investigated based on multiple comparison 
correction using Tukey–Kramer tests for unequal sample 
sizes.

General linear model to estimate neuronal activations
General linear model (GLM) analysis was carried out 
using the fMRI data from each subject to estimate the 
neuronal activations induced by the individual lower 
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limb movements. Specifically, a reference BOLD signal 
was obtained by convolving a canonical hemodynamic 
response function with a boxcar model for each task 
block and used as a task-related regressor for the block 
[41]. Thus, each fMRI run had three task-related regres-
sors. Six head motion parameters were included as nui-
sance regressors to remove confounding artifacts in the 
BOLD signal due to head movement [42, 43]. A restricted 
maximum likelihood-based estimation was used to 
obtain a beta-valued map associated with each task block 
as neuronal activations [44]. The resulting beta-valued 
maps from the subjects in the Healthy 1 group were sub-
ject to repeated measures analysis-of-variance (ANOVA) 
across the four tasks for each side of the lower limbs 
within the univariate analysis framework. As a result, the 
main effect of the four movements was obtained (uncor-
rected p-value < 0.05).

Multivoxel pattern analysis (MVPA) of four lower limb 
movements
We identified brain regions in the PCL with distinct acti-
vation patterns for each of the four lower limb move-
ments in each leg using the healthy dataset 1. To this end, 
the PCL area was defined using an automated anatomical 
labeling atlas [45], and multivoxel patterns with beta val-
ues in the PCL were classified into one of the four lower 
limb movements. We used a support vector machine 
(SVM) with either a linear or non-linear (i.e., radial 
basis function [RBF]) kernel as a classifier to determine 
the task information. A nested five-fold cross-validation 
scheme was adopted in which the beta maps from the 
21 subjects were stratified into training, validation, and 
test data using the subjects’ indices (Fig.  2). The valida-
tion data were used to optimize the hyperparameters for 
the SVM models, including the regularization parameter 

Fig. 2 Overview of multi‑voxel pattern analysis with five‑fold cross‑validation
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C for linear/non-linear SVMs and variance γ of the RBF 
kernel for the non-linear SVM. The candidate values for 
both C and γ had a range of  10–4 to  103 with power of 
10 intervals (i.e.,  10–4,  10–3, …,  102,  103). The optimal 
hyperparameters were then selected from a grid search 
by considering all of the combinatorial values of C and γ 
for the non-linear SVM. The classification performance 
was evaluated across three MVPA scenarios to determine 
the optimal performance and their conditions: (1) three 
beta-valued maps corresponding to the three blocks 
in each run vs. one average beta-valued map across the 
three blocks in each run to evaluate the block- or run-
wise performance; (2) without or with spatial smooth-
ing using a 4-mm full-width at half-maximum Gaussian 
kernel to evaluate the performance with additional spa-
tial smoothing preprocessing; and (3) a sphere radius of 
1, 2, or 3 voxels to define the multivoxel patterns for the 
searchlight to evaluate the performance depending on 
the multivoxel pattern dimensions.

Representational similarity analysis (RSA) to identify 
functional loci
We conducted an RSA to pinpoint the cortical loci of each 
lower limb movement. To this end, we calculated (a) a 
neural representational dissimilarity matrix (RDM) using 
neuronal activation patterns across the eight tasks and 
(b) a non-neural binary categorical RDM using code pat-
terns to define each movement of interest among the four 
lower limb movements (Fig. 3). RSA was then conducted 
to identify the neural representation of each lower limb 
movement based on the similarity of holistic geometric 
representations reflected in the two RDMs. In detail, the 
neural RDM for each voxel in the PCL was defined from 
the neighboring multivoxel patterns in the sphere with a 
three-voxel radius (i.e., 123 voxels). The dissimilarity value 
was defined as “1 – the Pearson’s correlation coefficient” 
of the pairwise multivoxel patterns with beta-valued maps 
from the GLM in the sphere across the fMRI runs (i.e., 
tasks) without any thresholding/normalization. Thus, the 
resulting dissimilarity value had a minimum of 0 (exactly 
the same pattern) and a maximum of 2 (exactly the oppo-
site pattern). The non-neural code RDM (with 1 being the 
most dissimilar [i.e., different tasks] and 0 being the most 
similar [i.e., the same task]) was also constructed to encode 
the information across the eight tasks. The similarity 
between the neural RDM and non-neural code RDM was 
calculated using Spearman’s rank correlation (ρ).

We evaluated the test–retest reliability of the RSA 
results. To this end, we divided the 21 subjects randomly 
into 10 and 11 subjects, and two sets of RSA were con-
ducted on the data from these test and retest subjects. To 
define the significant voxel clusters in each of two RSA 

results, the statistical significance of the similarity value 
was corrected based on a null distribution of the simi-
larity values drawn from the 10,000 randomly shuffled 
movement indices across the fMRI runs/tasks (i.e., cor-
rected p < 0.01 from 10,000 random permutations) [46]. 
We identified the significant voxel clusters that repre-
sented the overlap between the two RSA results. This 
test–retest-based RSA was conducted 10 times using the 
10 sets of randomly selected sub-groups with 10 or 11 
subjects. Finally, the overlapping significant voxel clusters 
that occurred more than seven times out of the 10 repeti-
tions were identified (minimum of five-voxel clusters).

Evaluation of cortical loci using the laterality index (LI)
We employed the AveLI method, a robust unbiased 
threshold-free LI for the fMRI data [47], to evaluate the 
validity of the identified cortical loci compared with the 
anatomically defined PCL area. The AveLI is computed as 
the average of all of the LIs using the adaptive threshold 
to define the voxels with neuronal activations [47]:

where VN is the total number of voxels with positive 
t-scores. subLIi is the LI defined using the ith voxel with a 
positive t-score as the threshold:

where Rti and Lti are the sum of the t-scores in the con-
tralateral hemisphere for right-side movement and for 
left-side movement, respectively. The AveLI values were 
obtained for healthy dataset 1, healthy dataset 2, and 
the stroke dataset. The lower limbs of the individuals 
after stroke were affected either on their left or right side 
(i.e., the paretic side). Thus, the calculation of subLIi was 
modified as follows:

where NPti and Pti are the sum of t-scores in the con-
tralateral hemisphere for non-paretic side movement and 
for paretic side movement, respectively.

Consequently, we conducted linear regression analy-
sis to investigate the association between the AveLI and 
behavioral FMA data for the individuals after stroke. We 
applied a permutation test (n = 10,000) to correct the sig-
nificance of the regression analysis (p < 0.05) based on 
the estimated null distribution and bootstrap resampling 
(n = 10,000) to estimate the confidence interval for the 
regression line [43].

AveLI =
(subLIi)

VN
,

subLIi =
Rti − Lti

Rti + Lti
,

subLI
Stroke

i =
NPti − Pti

NPti + Pti
,
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Results
Evaluation outcomes for MR‑compatible devices
Figure  4 presents the mean and standard deviation 
for the head motion parameters estimated from the 

measured fMRI data with and without equipment 
using the equipment evaluation dataset (n = 11; evalu-
ated using paired t-tests with a p-value < 0.05 corrected 
using Tukey–Kramer tests for unequal sample sizes). 

Fig. 3 Overview of representational similarity analysis with test–retest‑based cross‑validation
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Overall, when participants performed lower limb 
movements with the MR-compatible custom-made 
footplate and leg cushion, head motion was substan-
tially reduced during the knee extension movement, 
particularly in terms of roll, displacement in the pos-
terior (dP) direction, and displacement in the superior 
(dS) direction.

Univariate analysis results for neuronal activations 
across the four lower limb movements
Figure 5 shows the neuronal activations obtained from 
the one-way ANOVA for each side of the leg using 
healthy dataset 1 (uncorrected p-value < 0.05). Overall, 

the identified clusters across the lower limb move-
ments did not follow the cortical homunculus. Fur-
thermore, all clusters disappeared when we corrected 
the p-value using least stringent random-permutation-
based multiple comparison correction.

MVPA classification of the four lower limb movements
Figure 6 presents the accuracy of the MVPA classification 
for the four lower limb movements across various param-
eters using healthy dataset 1 (n = 21). Overall, when (i) 
block-based input beta-maps were used without spatial 
smoothing; and (ii) a searchlight radius size of 3 for the 
non-linear RBF-kernel SVM was used for the MVPA (red 

Fig. 4 Mean and standard deviation of head motion by participants estimated using the motion correction step in fMRI preprocessing. The red 
line and blue shading indicate cases where the custom‑made MR‑compatible footplate device and custom‑made leg cushion were not used 
during the ankle dorsiflexion and knee extension movements. The time point when the head motion without the footplate device and leg cushion 
was higher compared to the head motion with the footplate device and leg cushion is marked (*p < 0.05 corrected using Tukey–Kramer tests)

Fig. 5 Statistical maps from repeated measures ANOVA across the four lower limb movements of each leg using the corresponding beta‑valued 
maps from the general linear model with healthy dataset 1 (uncorrected p‑value < 0.05)
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box), the corresponding performance was superior to the 
SVM models with alternative parameters (e.g., average-
based input beta-valued map with a searchlight radius 
size of 1 or 2, linear kernel SVM). Figure  7a illustrates 
the voxel clusters whose classification accuracy was well 
above (> 65%) the level of chance (25%).

Cortical loci of the four movements from RSA
Figure 7b illustrates the cortical loci across the four lower 
limb movements, with the corresponding MNI coordi-
nates presented in Table 2. Specifically, the locus for toe 
flexion (cyan) was located at the most inferior location 
compared to that of knee extension (green). The cortical 
loci for the ankle movements (red and blue) were located 
between the toe and knee movements, particularly for the 
left lower limb. The cortical loci were primarily located in 
the hemispheres contralateral to the movement.

Efficacy of identified cortical loci and laterality index (LI)
Figure  8 illustrates the AveLI values obtained from the 
healthy participants using the PCL area and using the 
identified cortical loci for the four lower limb move-
ments. For both groups (i.e., healthy dataset 1 with n = 21 
and dataset 2 with n = 11), the laterality indices were 
clearer when the identified cortical loci were used to cal-
culate the LI in comparison to when the PCL area was 
used. A similar trend was also observed for the individu-
als after stroke (n = 15), in which the identified cortical 
loci had clearer LIs than the PCL (Fig.  9, top; * denotes 
p-value < 0.05 from a paired t-test). In addition, for the 
ankle dorsiflexion and toe flexion movements, there was 
a significant positive association between the LI and 
the FMA scale only on the paretic side (Fig.  9, bottom; 
p-value < 0.05 from 10,000 random permutations and the 
shaded region from 10,000 bootstrap resampling).

Fig. 6 MVPA classification results. The accuracy is summarized as box‑whisker plots based on the SVM kernel type (linear or nonlinear), searchlight 
size (1‑, 2‑, or 3‑voxel radius), and spatial smoothing kernel size (i.e., 0 or 4 mm). On the x‑axis, “A” denotes the averaged beta map for three blocks 
as input, “B” denotes block‑wise beta maps as input, “L” represents the linear kernel SVM, and “N” is the non‑linear RBF kernel SVM. SM, smoothing 
kernel size; RADIUS, radius of the searchlight sphere

Fig. 7 Subregions in the PCL for lower limb movement identified from the MVPA and RSA. a The results from the MVPA classification 
in the paracentral lobule (yellow). The red and blue regions are voxel clusters that had a classification accuracy of at least 65% (red denotes 
the movement of the left lower limb, while blue represents the right). b The results from the RSA in the PCL (yellow). The cortical loci for each lower 
limb movement is color‑coded (cyan for toe flexion, red for ankle dorsiflexion, blue for ankle rotation, and green for knee extension)
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Discussion
Summary of the study
The main findings of the present study were as follows: (i) 
the cortical loci for ankle dorsiflexion, ankle rotation, knee 
movement, and toe flexion were hierarchically organized 
in the medial wall of the PCL based on data obtained from 

our custom-built MR-compatible equipment and multi-
variate analysis; (ii) healthy individuals exhibited a higher 
contralateral LI score for the lower limb movements than 
individuals after stroke; and (iii) the LI scores of individu-
als after stroke had a significant association with the FMA 
scale for ankle dorsiflexion and toe flexion. Our custom-
made footplate and leg cushion successfully reduced head 
motion during the lower limb movements while fMRI 
data were acquired. The measured fMRI data were fur-
ther analyzed using multivariate analysis techniques (i.e., 
MVPA and RSA). Consequently, the cortical loci for lower 
limb movement were identified in the medial wall of the 
PCL hierarchically distributed according to the cortical 
homunculus [48]. The topographic organization of the 
motor/somatotopy in the sensorimotor area as described 
by the cortical homunculus represents an important justi-
fication for our identified cortical foci. More specifically, 
the cortical loci for knee extension were located at the 
most superior-posterior position, while that for toe flex-
ion was located at the most inferior position. The corti-
cal loci for ankle movement were positioned between the 
cortical loci for knee extension and toe flexion. The clas-
sification accuracy for the four lower limb movements on 
each side, which was based on rigorous nested five-fold 
cross-validation with stratification based on healthy par-
ticipants’ indices, was significantly higher (62.1 ± 4.6% for 
the left leg; 59.4 ± 5.7% for the right leg) than the level of 
chance (25%). The identified cortical loci were also gain-
fully applied to individuals after stroke, with the LI scores 
calculated using the cortical loci for left- and right-sided 
ankle dorsiflexion and toe flexion significantly correlated 
with the FMA scale from the paretic side of the individu-
als after stroke (i.e.,  R2 = 0.33, p = 0.026 for the paretic side 
in ankle dorsiflexion;  R2 = 0.39, p = 0.013 for the paretic 
side in toe flexion).

Table 2 Functional loci identified for the four lower limb 
movements on each side based on RSA (the x, y, and z 
coordinates are in the MNI space)

RSA, representational similarity analysis; MNI, Montreal Neurological Institute

Task Coordinate Size

x y z

Left lower limb

 Ankle dorsiflexion  + 4.5  + 25.5  + 67.5 11

 + 4.5  + 25.5  + 55.5 9

 + 4.5  + 34.5  + 61.5 8

–7.5  + 28.4  + 76.5 5

 Ankle rotation  + 1.5  + 28.5  + 55.5 61

–4.5  + 22.5  + 73.5 5

 Knee extension  + 1.5  + 25.5  + 55.5 61

–4.5  + 22.5  + 73.5 8

 Toe flexion  + 1.5  + 28.5  + 55.5 78

Right lower limb

 Ankle dorsiflexion –1.5  + 25.5  + 52.5 52

–4.5  + 22.5  + 73.5 8

 Ankle rotation –1.5  + 28.5  + 55.5 55

–4.5  + 22.5  + 73.5 8

 + 4.5  + 28.5  + 73.5 5

 Knee extension –1.5  + 28.5  + 55.5 62

–4.5  + 22.5  + 73.5 8

 Toe flexion –1.5  + 28.5  + 55.5 60

–4.5  + 22.5  + 73.5 8

Fig. 8 Laterality index comparison between the paracentral lobule and identified cortical loci across the four lower limb movements for the two 
healthy control groups
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Cortical loci obtained from multivariate analysis
Both the MVPA and RSA are multivariate analysis tech-
niques that consider multivoxel patterns for each center 
voxel, which is more advantageous than a univariate 
approach that considers only a single voxel due to the 
higher dimensionality of neuronal activations. Despite 
their similarity, the MVPA is more advantageous for 
the classification/prediction of multivoxel patterns [49], 
whereas the RSA is inherently more advantageous for the 
functional mapping of associated tasks/conditions based 
on multivoxel patterns [25]. Therefore, classification 
tests using MVPA have been instrumental in identifying 
brain regions associated with distinct task information 
in fMRI data [24, 50, 51], including the identification of 
the functional organization of body part movement in 
the motor and sensory cortices [52]. Our MVPA revealed 
the important sub-regions in the PCL that are highly 

representative of the four lower limb movements on each 
side. Despite the ability to identify the ROIs for the four 
lower limb movements in the PCL, the MVPA approach 
cannot easily pinpoint ROIs that are specific to individual 
lower limb movements. We thus deployed RSA, which 
enabled us to identify the lower limb-specific ROIs in 
the sub-regions of the PCL. However, no significant nor 
hierarchical cortical loci were found when we employed 
univariate analysis to distinguish neuronal activations 
across the four lower limb movements. The validity of the 
identified cortical loci for each lower limb was evaluated 
by comparing the corresponding LI scores between the 
cortical loci and the anatomical ROI (i.e., PCL). RSA has 
previously been successfully used to identify ROIs that 
are strongly associated with cognition and motor-related 
functions in the human brain using fMRI data [53, 54].

Fig. 9 Laterality index comparison between the paracentral lobule and identified cortical loci across the four lower limb movements in individuals 
after stroke (*, p‑value < 0.05 from paired t‑tests). The scatter plots present the linear regression results for the AveLI scores and the FMA scale, 
with the significant results indicated by a red box (p < 0.05)
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Efficacy of identified cortical loci for lower limb movements 
for individuals after stroke
The cortical loci identified for the four lower limb move-
ments in the present study represented the LI scores (i.e., 
the AveLI method described in “Evaluation of cortical 
loci using the laterality index (LI)” section) of the paretic 
and non-paretic lower limb movements better than did 
the PCL. Previous studies have reported overall elevated 
neuronal activations for paretic-side hand movements 
compared to non-paretic-side hand movements among 
individuals after stroke when compared with healthy 
controls [55, 56]. In addition, neuronal activations tend 
to exhibit ipsilaterally in the primary motor areas with 
paretic lower limb movements [57]. We observed that 
paretic-side lower limb movements produced a broader 
range of LI scores (from positive to negative) com-
pared with non-paretic-side movements. In particular, 
for paretic-side movements, there was a strong positive 
association between the LI scores and FMA scale (i.e., 
an assessment tool for the upper and lower limb motor 
function of the affected side compared to the unaffected 
side during stroke rehabilitation) among individuals after 
stroke, meaning that those individuals after stroke with 
a higher score on the FMA scale (i.e., with greater physi-
cal ability) tended to exhibit ipsilateral neuronal activa-
tions, which has also been reported in previous studies 
[57]. On the other hand, individuals after stroke whose 
ability to move their lower limbs on the paretic side was 
weaker tended to exhibit contralateral neuronal activa-
tions. Our findings suggest that lower limb movement 
performance is strongly associated with neuronal activa-
tions. However, the reason why ipsilateral neuronal acti-
vations for lower limb movement on the paretic side tend 
to enhance physical performance needs to be addressed 
in future studies. One potential hypothesis is that neu-
ral plasticity occurs during the acute or sub-acute phase 
of stroke onset [58, 59], allowing the intact hemisphere 
of the motor area (i.e., the ipsilateral hemisphere for 
paretic-side movement) to quickly adopt the lower limb 
movement function for the paretic side because the brain 
tissue in the hemisphere contralateral to the paretic 
side has been compromised [60], which has also been 
reported for the upper limb movements for the individu-
als after stroke [61]. On the other hand, there was no sig-
nificant association between the LI scores for non-paretic 
side movements and the FMA scale for individuals after 
stroke. This indicates that the FMA scale, which evaluates 
the movement function of the paretic side in comparison 
to the non-paretic side [62] did not show a significant 
relationship with the neuronal activations (i.e., LI scores) 
for non-paretic side movements.

In other application scenarios, neurostimulation such 
as tDCS has been shown to enhance interhemispheric 

functional connectivity (FC) in individuals with chronic 
stroke, with the FC strongly associated with upper 
extremity Fugl–Meyer assessment scores [8]. Our study 
provides valuable information regarding the cortical 
hotspot for the lower extremities that can be targeted to 
enhance their function using noninvasive neuromodula-
tion techniques [7, 8, 63]. In addition, locomotor train-
ing such as the use of a treadmill has proven useful for 
improving gait function [64, 65]. However, determin-
ing the optimal onset time for these training sessions to 
ensure long-lasting, meaningful improvement may not be 
straightforward [64, 65]. Our findings can provide valu-
able information regarding when locomotion training 
needs to begin to maximize rehabilitation outcomes by 
monitoring the LI of each lower limb movement identi-
fied in this study. Future research can also monitor the 
cortical loci of each lower limb to determine whether 
there is any change in brain function using noninvasive 
brain stimulation techniques and/or locomotion training 
in the chronic stage of stroke [66].

It is also worth noting that lower limb motor recov-
ery after stroke can be achieved via non-cortical neural 
mechanisms such as indirect motor pathways from the 
brain stem for gait and balance enhancement [67–70]. 
For example, robot-assisted gait training has been use-
ful in improving balance-related motor function for 
patients with infratentorial stroke [67]. Specifically, the 
hyperexcitability of reticulospinal tracts and potentially 
vestibulospinal tracts may be an important mechanism 
underlying stroke-induced spasticity and disordered 
motor control, which can be further understood using 
functional neuroimaging such as fMRI [69]. In particu-
lar, our findings highlight the importance of the ipsilat-
eral motor pathways for paretic lower limb movement 
and recovery [71] and offer potential suggestions for the 
strengthening/stretching of affected muscles in stroke 
rehabilitation to correct asymmetric postural patterns for 
gait control [72], thus providing broad insights into reha-
bilitation guidance.

Limitations of the study
It is important to recognize the potential limitations and 
weaknesses of this study. First, power analysis indicated 
that 12 subjects was sufficient to achieve at least 80% 
power with alpha = 0.05. Nevertheless, considering the 
individual variability of fMRI patterns and current trends 
in fMRI studies, our sample size was relatively small. The 
reliability of our findings would be enhanced by using 
the dataset from a higher number of participants, possi-
bly by taking specific age ranges and gender distributions 
between groups into consideration to minimize potential 
confounding factors that affect BOLD responses [73]. We 
also did not consider the specific assessment of lower 
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limb motor function or strength in healthy subjects. 
However, we confirmed that their lower limb function/
strength was substantially higher than the individuals 
after stroke based on WFQ-R (Table 1). Individual varia-
bility in neuronal activations may have occurred depend-
ing on the lower limb strength of healthy subjects based 
on previous reports on upper limb movement, with 
stronger neuronal activations observed for strong grasp-
ing compared with light grasping [74].

The ability of our approach to reduce potential head 
motion during fMRI acquisition was evaluated using 11 
healthy subjects. Although we believe that a similar effi-
cacy would be observed with a higher number of par-
ticipants when using the equipment, the limited number 
of subjects used in the testing for our study represents a 
potential limitation. In addition, it would have been valu-
able to include individuals after stroke to assess the fea-
sibility and effectiveness of head motion reduction for 
this group. However, we could not recruit individuals 
after stroke for this session. Furthermore, we could not 
collect additional fMRI data with and without the equip-
ment from our recruited subjects with stroke due to the 
prolonged acquisition time and fatigue, which prevented 
them from performing additional task movements with-
out the equipment.

Only some of the individuals after stroke completed all 
four movements for each side of the leg (six out of 15) 
and the remaining nine individuals after stroke com-
pleted only ankle dorsiflexion and toe flexion. Some of 
the individuals could not or struggled to perform ankle 
rotation and knee extensions in the MRI, thus we asked 
them to perform only the two lower limb movements. 
Therefore, there may have been significant variation in 
the lower limb functional status of our recruited individ-
uals after stroke, which would have potentially affected 
the within-group findings. The decision to modify the 
EPI parameters for fMRI data acquisition to improve the 
signal-to-noise ratio of the BOLD contrast for individuals 
after stroke was made when we acquired the fMRI data 
from most of the healthy participants. This modification 
of the EPI parameters may compromise the comparabil-
ity of the findings between and within groups.

Furthermore, our adopted lower extremity movements 
did not include movements initiated from the hip joint, 
which plays a significant role in gait function recovery 
after stroke [75]. This was partly because our MR-com-
patible equipment could not accommodate the hip joint 
movement and reduce corresponding head motion. 
Future studies should highlight the potential relevance 
of different hip joint movements in stroke rehabilitation 
by employing functional neuroimaging modality. We also 
only considered the PCL as an ROI to investigate poten-
tial hierarchical cortical loci associated with lower limb 

movement in the medial wall of the motor area. How-
ever, other potentially relevant brain regions with lower 
limb movements, such as the primary motor cortex, 
supplementary motor area, and cingulate gyrus, could 
be included for analysis [11, 76] along with whole brain 
analysis, including the cerebellum [61].

Conclusion
We reported the cortical loci specific to four lower limb 
movements in the PCL using fMRI data recorded when 
participants engaged in toe flexion, ankle dorsiflexion, 
ankle rotation, and knee extension. We believe that the 
identification of the cortical loci for these four lower 
limb movements was possible due to our custom-made 
MR-compatible footplate (to isolate the individual lower 
limb movements of the ankle and toe and to reduce head 
motion) and leg cushion (to guide leg movement and 
further reduce head motion), and due to the multivari-
ate analyses employed on the acquired fMRI dataset. The 
validity of the identified cortical loci was evaluated via 
cross-validation using an fMRI dataset acquired from 
independent healthy participants and LI scores from the 
identified cortical loci compared to the PCL. The efficacy 
of our fine-grained cortical loci for lower limb move-
ments was also demonstrated for individuals after stroke, 
with the LI scores calculated from the identified cortical 
loci more strongly correlated with the FMA scale than 
the PCL was. We believe that our findings will benefit 
future studies that require the isolation of cortical loci for 
lower limb movements for neurorehabilitation purposes. 
For example, for individuals after stroke in an acute or 
sub-acute stage whose lower limb(s) are compromised 
due to stroke lesions, the efficiency of their rehabilitation 
could be improved with the help of the identified corti-
cal loci by evaluating and monitoring the neuronal acti-
vations in the foci and their LI scores. Another possible 
scenario for individuals after stroke is to use neuroreha-
bilitation to enhance the LI scores calculated based on 
the neuronal activations of the cortical loci on the paretic 
and non-paretic sides of the brain monitored with real-
time fMRI-based data and/or neurofeedback [43, 77–80]. 
Our findings may also have potential practical implica-
tions for non-invasive brain stimulations such as rTMS 
and tDCS when looking to optimize rehabilitation pro-
grams to enhance lower limb functions [7, 8, 63].
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