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Abstract 

The number of people who need to use wheelchair for proper mobility is increasing. The integration of technology 
into these devices enables the simultaneous and objective assessment of posture, while also facilitating the concur-
rent monitoring of the functional status of wheelchair users. In this way, both the health personnel and the user can 
be provided with relevant information for the recovery process. This information can be used to carry out an early 
adaptation of the rehabilitation of patients, thus allowing to prevent further musculoskeletal problems, as well as risk 
situations such as ulcers or falls. Thus, a higher quality of life is promoted in affected individuals. As a result, this paper 
presents an orderly and organized analysis of the existing postural diagnosis systems for detecting sitting anoma-
lies in the literature. This analysis can be divided into two parts that compose such postural diagnosis: on the one 
hand, the monitoring devices necessary for the collection of postural data and, on the other hand, the techniques 
used for anomaly detection. These anomaly detection techniques will be explained under two different approaches: 
the traditional generalized approach followed to date by most works, where anomalies are treated as incorrect pos-
tures, and a new individualized approach treating anomalies as changes with respect to the normal sitting pattern. In 
this way, the advantages, limitations and opportunities of the different techniques are analyzed. The main contribu-
tion of this overview paper is to synthesize and organize information, identify trends, and provide a comprehensive 
understanding of sitting posture diagnosis systems, offering researchers an accessible resource for navigating the cur-
rent state of knowledge of this particular field.

Keywords Anomaly detection, Assistive technology, Machine learning, Monitoring and diagnosis, Sitting posture, 
Wheelchair, Overview

Introduction
Every day, the sedentary lifestyle is on the rise among 
individuals. It is estimated that on average, these peo-
ple spend more than half of their daily hours in a seated 
position, reaching up to 85% of their hours in the case of 

people with low mobility [1]. The cause of this sedentary 
lifestyle is strongly linked to bone and muscle weakening 
caused either by aging or a neurodegenerative disease [2].

This muscle weakening causes people with low mobility 
to make use of an assistive device such as a wheelchair 
that allows them to move around normally [3]. While 
using a wheelchair contributes to an improvement in the 
mobility of its users, thus allowing an increase in their 
independence, its use is associated with an increase in 
the sitting posture, bringing about the psychological and 
physical problems that this involves.

The physical problems of wheelchair users generate 
an intrinsic inability to carry out an adequate postural 
behavior [4]. The adoption of a good posture is essential, 
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since the effects of sitting posture anomalies include the 
appearance of back, shoulder and neck pain, muscle ten-
sion and nerve problems, among others [5]. On the other 
hand, the postural state of a user, understood as the posi-
tion adopted by the human body at a given moment, can 
be indicative of its functional state. Thus, the appearance 
of anomalous postures may be indicative of a change in 
this functional state. This change may be due to a char-
acteristic worsening of neurodegenerative diseases, such 
as outbreaks in multiple sclerosis, or an effective recov-
ery from rehabilitation, being a patient recovering from a 
stroke a clear example [6].

Given the information provided by knowing the pos-
tural status of wheelchair users, it is of vital importance 
to carry out a postural diagnosis. To date, postural diag-
nosis has been performed exclusively by medical spe-
cialists, using both medical observation (visual) and 
questionnaires to be completed by the patient [7, 8]. 
However, these methods have a number of limitations. 
First, the fact that to date it is mainly carried out in clini-
cal settings given the impossibility of continuous follow-
up by the health specialist at home, and, in addition, the 
subjective component characteristic of the patients in the 
questionnaires to be filled in.

Thus, it is hypothesized that the use of an intelligent 
postural diagnosis system can be beneficial for the early 
prevention of changes in the functional status of users, 
thus being able to adapt rehabilitation to each user and 
pathology [9]. This adapted rehabilitation can help pre-
vent possible musculoskeletal problems caused by the 
adoption of undesired postures, which together with 
the consequences of each pathology worsen the qual-
ity of life of the user. In the same way, it can be used to 
prevent risk situations such as the appearance of ulcers 
in patients who spend time in the same posture without 
moving [10]. It is also possible to analyze possible situa-
tions of falls due to lack of control and strength over the 
trunk [11], due to the consequences of the disease itself, 
such as paralysis of part of the body in the case of stroke 
patients. In short, by adjusting rehabilitation to the newly 
identified casuistry, the recovery process is optimized, 
the risks of complications derived from inadequate pos-
tures are reduced and a better quality of life is promoted 
for affected individuals [12].

These postural diagnosis systems can be divided into 
two stages (Fig. 1): A first stage in which a postural moni-
toring is carried out, capturing postural data of interest, 
and a second stage in which statistical [13–23] or intel-
ligent techniques [5, 15, 17, 19, 24–32], among others, are 
used to identify the user’s postural state.

Different postural diagnostic systems based on 
these two stages have been proposed in the literature. 

However, most of these devices are oriented to a pop-
ulation far from that of wheelchair users, being these 
works largely focused on office workers [13, 17, 33, 34] 
or students [35, 36]. Wheelchair users have a number 
of characteristics that are common to them and dif-
ferent from the rest, and therefore require a particular 
approach.

As postural diagnosis is based in two steps, monitor-
ing and anomaly detection, it is of interest to make an 
analysis of the existing devices based on the postural 
data collection system and another analysis dedicated 
to sitting posture anomaly detection techniques. While 
in [37] an analysis of monitoring devices and in [38] a 
compilation of postural classification techniques is car-
ried out, no work presents a complete analysis of both 
devices and techniques that explore in depth into the 
problem of detecting sitting posture anomalies, that 
is, the whole diagnosis systems are not reviewed. Fur-
thermore, the focus of both articles is distant from 
wheelchair users, who, as will be discussed later, exhibit 
distinctive characteristics that must be taken into 
account when developing such systems.

Therefore, this paper presents a complete analysis 
of sitting posture monitoring and intelligent anom-
aly detection systems for wheelchair users. For this 
purpose, the advantages, limitations, opportunities 
and challenges of both the devices used for postural 
data collection and posture anomaly detection tech-
niques subsequently applied to extract knowledge will 
be presented. In this way, this article works under the 
assumption that an early sitting posture anomaly detec-
tion allows to detect a wheelchair user functional sta-
tus change. The main objectives of the work are the 
following:

• Organize information, identify trends and provide 
a comprehensive understanding of technical moni-
toring and assistance devices for sitting postural 
diagnosis.

• Offer reasearchers an accesible tool to navigate the 
current state of knowledge in sitting posture anom-
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Fig. 1 Intelligent sitting posture diagnosis scheme based in two 
steps: monitoring system and intelligent anomaly detection
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aly detection field, using both statistical and intel-
ligent techniques.

For this purpose, this survey is divided into five well dif-
ferentiated parts. Firstly, the methodology followed for 
the bibliographic search is defined in section  Materials 
and methods. The different devices developed to capture 
postural data in seated position are presented in sec-
tion  Sitting posture monitoring systems. Subsequently, 
the data processing techniques for the detection of sit-
ting posture anomalies are analyzed in the section Sitting 
posture anomaly detection techniques. Specifically, this 
section is divided into two subsections, one dedicated to 
the analysis of the techniques used to date (section Tra-
ditional approach through generalized techniques), 
and a second one in which the techniques are analyzed 
based on a new approach (section  New and individual-
ized anomaly detection approach). Next, a discussion of 
the advantages and limitations offered by the different 
monitoring and analyzed techniques for their application 
in the postural field in wheelchair users in section  Dis-
cussion. Finally, the main conclusions of the article and 
future lines of work are given in section Conclusions.

Materials and methods
The first step of this analysis involves explaining the 
search methodology conducted during the literature 
review process. For this reason, the search process car-
ried out (section  Search process), as well as the criteria 
for inclusion and exclusion of the papers (section Eligibil-
ity criteria), are defined below.

Search process
During the literature search process, a parallel and inde-
pendent search process has been followed by various 
researchers. It is important to keep in mind that given 
the two distinct parts that make up postural diagnosis, 
this literature search was divided into two, one relating to 
postural monitoring devices on the one hand, and anom-
aly detection techniques on the other. This bibliographic 
search consisted of the following steps: 

1. Identification of all works that meet the chosen 
search criteria. This process is performed within 
the most common engineering databases such as 
Web of Science, Scopus and IEEE Xplore. Duplicate 
works that are repeated across different databases 
are removed afterwards. For the search, a combi-
nation of words belonging to two groups was used. 
First, the target population was defined. Within this 
group, words such as: student, worker, wheelchair 
user, elderly or driver were used. In the next group, 
the function to be studied was defined with words 

such as: monitoring, anomaly detection or postural 
identification. Finally, optional search refinement 
words are used such as: sitting posture, classification, 
machine learning, statistics, rules, supervised, semi-
supervised, unsupervised, among others. Thus, use 
is made of the combination of one word from each 
group with the optional use of one or more words 
from the refinement group.

2. The second step consisted of screening these papers, 
filtering out those that are written only in English, 
as well as those that belong to journal or conference 
articles. No restriction has been included as to the 
date of publication of the articles, with the search 
range being between 2000 and 2023.

3. Of these articles, a first reading is performed, thus 
making it possible to examine whether the articles 
that have passed the previous phase meet the eligi-
bility criteria defined below. In the case these criteria 
are not met, the articles are discarded.

4. Finally, the articles that meet the criteria are read in 
depth and discussed at this paper. It is in this step 
where an exhaustive analysis of the works is carried 
out and the relevant information is extracted from 
each one of them. It is in this step where the articles 
selected by each of the researchers in their search 
process are shared. Those articles selected by both 
are directly included. The articles selected by a single 
researcher are discussed, analyzing their inclusion or 
not by consensus.

Eligibility criteria
The following is a list of the inclusion and exclusion 
points that have been taken into account when defining 
the works to be included in the overview process.

Inclusion criteria:

• Devices of any type that allow the collection of sitting 
postural data.

• Techniques may include machine learning algo-
rithms, artificial intelligence, statistical methods, or a 
combination of these to perform anomaly detection.

• Participants with or without musculoskeletal disor-
ders.

• Studies reporting quantitative outcomes related to 
the accuracy, sensitivity, specificity, or reliability of 
the sitting posture diagnosis systems.

• Studies conducted in various settings, including 
office environments, home settings, and clinical or 
rehabilitation settings.

Exclusion criteria:
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• Studies focusing exclusively on participants with 
medical conditions unrelated to posture.

• Exclude studies conducted on animals.
• Exclude studies relying solely on self-reporting with-

out objective monitoring.
• Exclude studies without relevant posture-related out-

come measures.

Sitting posture monitoring systems
Once the bibliographic criteria have been explained, the 
discussion proceeds to the results obtained concerning 
intelligent sitting posture diagnosis systems. To create 
an intelligent system capable of detecting anomalies in 
sitting posture, the first step involves designing a moni-
toring device capable of capturing kinematic and/or 
dynamic variables, offering insights into the user’s pos-
tural status. Among the advantages of carrying out an 
intelligent postural monitoring is the fact that it allows 
to know remotely and in real time the postural status of 
the patient. In addition, the possibility of remote moni-
toring avoids the continuous presence of specialized 
health personnel, also allowing monitoring to be carried 
out outside the clinical environment and thus providing 
information on the patient’s daily activities. In this way, 
and following the example of the stroke patient, which 
will be analyzed throughout this paper, the advantages 
of carrying out correct postural monitoring is that pos-
sible future complications such as relapses in the disease 
or new strokes can be detected remotely, facilitating early 
medical attention.

The study of technology in this field allows highlight-
ing different technological solutions for the measurement 
and monitoring of postural physical variables, being able 
to place these measuring devices both in the environ-
ment and in the user’s own body. In order to analyze the 
advantages and disadvantages of these devices, it is nec-
essary to pay attention to fundamental aspects for their 
application in wheelchair users. Among these aspects 
are the cost and energy autonomy of the device, porta-
bility, degree of intrusiveness or adaptability to different 
wheelchair models. This work proposes a classification 
based on three large groups, depending on the location 
in which they are located (Fig. 2): systems located in the 
environment (section  Systems located in the environ-
ment), systems located on the user (section  Systems 
located on the user), and systems located on the assis-
tance or support device (section Systems located on the 
assistance or support device).

Systems located in the environment
The first set of sensors used for postural monitoring 
are the so-called ambient sensing systems or systems 
located in the environment. These systems are based 

on using one or several sensors located along a limited 
and delimited surface, thus allowing the measurement 
of different variables of postural interest. Within this 
group, the use of devices based on vision or cameras 
stands out.

Vision systems consist of a set of cameras located in 
the environment that allow locating reference points 
on the human body. Among these points, the location 
of the head, shoulders, arms and hips stand out [33]. 
Knowing the relative position between these parts of 
the body, a general idea of the posture adopted by the 
user can be estimated.

Among the main advantages of using vision cameras 
for postural monitoring, in addition to the speed of infor-
mation processing, is the fact that it is a non-intrusive 
data collection tool [35]. Furthermore, the use of cam-
eras makes it possible to monitor more than one person 
simultaneously, as long as they are within the cameras’ 
range of vision. This is of particular relevance in subjects 
with low mobility such as stroke patients, since the incor-
poration of technological devices may add an additional 
degree of restriction in movement, due to, among other 
things, discomfort from the sensors.

The main limitations of these systems include limited 
privacy and limited range of action. The monitoring of 
the user’s posture is limited to the range of vision of 
the camera. In this way, the moment the user leaves the 
camera’s field of view, monitoring is interrupted. Thus, 
applications are limited to stationary environments 
unless the user is tracked. For this reason, the use of 
this type of sensors is not widespread for the detection 
of postural anomalies in motion, as may be the case of 
wheelchair users. However, the vast majority of works 
that make use of vision systems for postural monitor-
ing focus on environments where the user is stationary, 
the most common being office work [13, 17, 33, 34] and 
student environments [35, 36].

Since the monitoring is performed from a fixed plane, 
the arrangement of the cameras becomes especially 

SYSTEMS LOCATED IN 
THE ENVIRONMENT

SYSTEMS LOCATED 
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THE ASSISTANCE 

DEVICE
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Fig. 2 Postural monitoring systems classification based on sensor 
location
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relevant, and more than one camera placed in differ-
ent perspectives may be needed to achieve a complete 
monitoring. It is also important to take into account 
that the location of the sensor will determine the inter-
ferences in the form of occlusions between the sub-
ject and the camera. Thus, the predominant approach 
for determining postural anomalies in a seated posi-
tion involves utilizing a lateral perspective [22, 33, 39]. 
This perspective allows monitoring the entire human 
body, as long as the subject does not sit on a seat that 
obstructs body visibility. However, there are works 
in which it is proposed to perform the monitoring by 
placing the camera in a frontal view, monitoring only 
the upper trunk [17, 34, 36, 40]. Nevertheless, the main 
objective of these studies is not usually the detection of 
seated anomalies, but monitoring is used as a means to 
achieve the ultimate goal of detecting the user’s degree 
of attention to attend class or work.

However, the main problem of using traditional vision 
cameras is that the correct processing of the data is 
conditioned to the acquisition of a clear image by the 
camera. This image may suffer variations with the envi-
ronmental conditions, such as luminosity, so it is not 
considered a suitable measurement system for this type 
of application. One of the alternatives used by other 
authors consists in using other types of sensors to moni-
tor people, such as the use of thermal sensors [34] or 
infrared cameras [33, 40]. While this type of technologies 
allows to achieve independence between the result of the 
captured images and the light conditions, it introduces 
a new limitation, the dependence towards the measured 
temperature and surfaces. This type of imaging is affected 
by the temperature at which the sensor is located, giving 
different measurements indoors or outdoors, and pre-
senting measurement difficulties on reflective surfaces 
such as water or glass. In addition, infrared technology 

has limited measurement ranges. Thus, in addition to the 
existing restriction on the range of action, a new one is 
added in terms of depth, beyond which measurements 
are no longer accurate.

In order to reach a compromise between traditional 
vision cameras and those based on infrared technology, 
depth cameras have been developed. Depth sensors are 
the technology by which nowadays the postural study 
is being approached through the use of cameras. Depth 
sensors allow accurate three-dimensional modeling of 
the human body by estimating the distance of the points 
of the body with respect to the camera as shown in Fig. 3. 
Among the various commercial image capturing devices, 
Microsoft’s Kinect camera has prevailed over the others. 
The use of this camera has become widespread in the 
medical field, being of great use both for postural recog-
nition of users, whether they are sitting users [13, 36] or 
standing users [22, 41, 42].

In conclusion, this type of technology can have great 
advantages such as the ability to detect objects and the 
rapid processing of information. However, it is necessary 
that they are located in controlled environments, where 
light conditions remain constant and occlusions between 
the camera and the subject to be studied are also avoided. 
That is why they are frequently used to study the correct 
sitting postures during study hours or work in the office, 
being not so suitable for people with low mobility, who 
move for their daily activity in different environments 
using a wheelchair.

Systems located on the user
In order to extend the scope of postural monitoring, a 
second group of sensors located on the user’s own body 
is proposed. These sensors, commonly referred to as 
wearable sensors, are a set of sensors incorporated on 

Fig. 3 Example of human body modeling using Kinect camera, presented at [13]. On the left, neutral sitting posture. On the right, frontal tilt 
of the thorax
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the clothing or on the body itself and which allow to 
collect information continuously throughout the day.

These sensors are generally small in size and simple 
to implement, which is one of their main advantages. 
Their small size allows the incorporation of the sen-
sors attached to clothing, allowing great portability. 
This portability is linked to an increase in the degree of 
invasiveness of the users. Despite their small size, these 
devices have to be attached to the human body in order 
to capture data correctly, which makes them uncom-
fortable. This means that many people prefer not to use 
them. This discomfort is increased in people with low 
mobility, with several studies suggesting that this group 
rejects the use of wearable sensors [24].

The information obtained from wearable sensors is 
highly dependent on their location along the human 
body. Different approaches have been made as to what 
is the ideal location so that, with the smallest number 
of sensors a correct monitoring of the spine can be per-
formed. In [43] it is concluded that for a correct esti-
mation of the sitting posture it is sufficient to know 
the state of the spine between the C7 vertebra and the 
L4 vertebra, so the sensors should be located along 
the spine (see Fig. 4). Other frequent locations are the 
waist, chest and arms. The mode of implementation 
varies, making use of bands on the waist or torso [14, 
44–46], or the design of specific T-shirts for easy incor-
poration of the sensors [16, 27, 47, 48].

The fact that the location of the sensors is so impor-
tant for the correct collection of data means that in many 
cases qualified professionals are needed to adjust the sen-
sors to the patient’s body [48]. In general, wearable sen-
sors often tend to suffer from interference due to contact 
between the sensor and the clothing or the sensor and 
the human body, being an additional cause of discom-
fort and lack of accuracy. Moreover, these types of sen-
sors are more focused on motion capture so they tend to 
be more used for monitoring dynamic postures such as 
arm movement when a person is walking or fall detection 
[50, 51], being not as effective for static posture detection 
[52], in which a wheelchair user may remain immobile 
for a prolonged period of time.

Among the different existing wearable sensors, inertial 
sensors or IMUs are the most widespread for postural 
monitoring [16, 45, 47, 49]. It is a sensor composed of an 
accelerometer, a gyroscope and a magnetometer, allow-
ing to know the angular velocities and linear accelera-
tions of those points of the body where it is located, being 
able to perform a study of the movement. The main use 
of these sensors is the early detection of falls. The aim 
is to prevent possible falls both from a recumbent posi-
tion (mainly in a clinical environment) [51] and from an 
upright posture [53], being less frequent the detection 
of falls from a seated posture. Although the main appli-
cation of these sensors is based on the classification of 
activities or falls, some studies have made use of them to 
diagnose the postural state of people in order to be able 

Fig. 4 The image on the left shows the location of the inertial sensors between the C7 and L4 vertebrae provided by [49]. On the right 
is an example of implementation of the sensors on the spine of a test subject of the [45] work
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to apply a treatment or postural correction tool at a later 
stage [48, 54].

In addition to inertial sensors, the use of other types 
of sensors that, by themselves or in combination with 
inertial sensors, allow monitoring of the postural state 
of users has been studied. Thus, the use of inclinome-
ters has been tested to monitor the spine. These sensors 
measure the inclination of the plane on which they are 
placed with respect to the horizontal. In this sense, they 
have been used to measure the deviation of the spine 
both in the sagittal plane and in the coronal plane [55]. 
However, the information provided is insufficient for 
complete postural monitoring, so it is necessary to use 
them in combination with other sensors. On the other 
hand, the possibility of using barometric altimeters has 
also been studied, which, as the body reclines, estimates 
the variation in body height by means of the difference 
in pressures [50]. Nevertheless, the information provided 
is insufficient for complete postural monitoring. Finally, 
the use of pressure sensors is contemplated, either in the 
form of strain gauges [56] or implemented in clothing 
[27], to monitor the deformations produced in the spine. 
Despite the potential of this technology, it is still a recent 
field of study and is therefore not sufficiently developed.

To summarize, wearable sensors allow information to 
be collected continuously in a simple and low-cost way, 
but they can be a nuisance for users. In addition, this type 
of sensor is highly dependent on the location in which 
it is placed, and is prone to disturbances due to rubbing 
against clothing or the body. Finally, although they can be 
of great use in conjunction with other types of sensors, 
they present difficulties in carrying out correct monitor-
ing on their own.

Systems located on the assistance or support device
The last group of monitoring systems are based on the 
placement of the sensors on the support surface where 
the user sits. In this way, it seeks to combine the benefits 
of the two previous systems, i.e., it seeks to combine the 
lack of intrusiveness of the systems located in the envi-
ronment with the portability of wearable sensors. Within 
this group, the so-called ’smart chairs’ have been devel-
oped, consisting of the placement of pressure sensors 
along the surface of the seat and/or backrest in order to 
be able to monitor the distribution of forces adopted by 
the user.

The most commonly used sensors for postural moni-
toring are resistive transduction sensors [57], with piezo-
electric sensors [58] or capacitive sensors [59] being less 
frequently used. Among the main advantages of these 
types of sensors are, on the one hand, their low cost, as 
well as the possibility of adapting to different sensitivities 
and pressure ranges depending on the material used. On 

the other hand, their main limitations are non-linearity 
problems due to the hysteresis effect and variations due 
to temperature changes, so they require calibration prior 
to use.

In the literature, there are two trends in the implemen-
tation of pressure sensors: the arrangement of the sen-
sors in the form of a mesh, and the arrangement of the 
sensors in a discrete unitary form.

Pressure mats
The pressure mats are composed of a large number of 
sensors arranged in a matrix, ranging from 256 sen-
sors for the smallest mats to over 2000 sensors [60–63]. 
This high number of sensors allows for high resolution 
pressure mapping. Furthermore, these mats are usually 
composed of flexible materials and can be adapted to dif-
ferent surfaces. The main disadvantage of these mats is 
that, being composed of a fixed structure, they have less 
margin to adapt to the dimensional requirements of the 
different wheelchair models. In addition, since they are 
composed of a large number of sensors, the price of these 
mats is high.

With the increase in the number of sensors used to 
monitor the pressures exerted by the user, data acquisi-
tion and processing becomes more complex, so it is com-
mon for the manufacturer to provide software for the 
proper handling of the information. The features offered 
by this software usually include sensor calibration, data 
acquisition and visualization, and tools for further anal-
ysis (such as the location of the center of pressures, for 
example). These tools, however, come with a high pur-
chase price, limited autonomy and the difficulty of stor-
ing and accessing raw data by the manufacturer.

Force sensors discretely distributed
In an attempt to reduce the cost of monitoring devices 
and make them more accessible to the general public, 
while at the same time facilitating access to raw data, the 
use of unobtrusively located force sensors has increased 
in recent years. Among these sensors, Force Sensing 
Resistor (FSR) sensors stand out, which return a voltage 
difference as a function of the applied force [15, 18, 20, 
64–67]. Since it is a sensor that acts as a variable resistor, 
it does not need a large electronics that accompanies it 
for its good implementation, being the voltage divider the 
commonly used circuit. Moreover, as they are discretly 
distributed, their location can be chosen, thus, allowing 
to be adapted to any wheelchair dimension.

The location of the sensors is vital for a good capture of 
the most relevant parts for postural monitoring, in addi-
tion to reducing costs and improving the performance 
and accuracy of the intelligent systems subsequently 
applied. As these sensors measure pressure in specific 
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areas, and therefore have a limited measurement sur-
face, good positioning of the sensor becomes even more 
important. Although several studies have been done 
using this type of sensors, the proper location of the sen-
sors has not yet been defined, with each researcher plac-
ing the sensors in a different position. The most common 
is to locate the sensors both in the seat and in the back-
rest, thus monitoring a greater number of postures [25, 
68, 69]. Similarly, and depending on the chair used, espe-
cially in the case of office chairs, it is common to locate 
the sensors only on the seat [59, 70], at the cost of reduc-
ing the number of postures to be monitored. Finally, 
although being rarer, the possibility of making use of sen-
sors located only on the backrest has been studied [71].

It is important to emphasize that the implementation 
of the sensors must be done on rigid surfaces to allow 
a correct reading of the sensors. The seating cushions 
used by wheelchair users can be of different types (gel, 
air, etc.), each with different stiffness. Given the variety 
of cushions, the work carried out does not only lack an 
exhaustive analysis of the ideal location, but also does not 
take into account the individual and specific cushion of 
each user.

Finally, it should be noted that although pressure or 
force sensors are the most widely used, the possibility 
of using other types of sensors located on the support 
surfaces has been studied. Thus, the use of infrared sen-
sors has been studied which, placed in the backrest, 
allow the distance at which the back is positioned to be 

measured, without the need for the back to be in con-
tact with the back [72]. Similarly, the possibility of per-
forming a combined analysis of the postural situation of 
users and their vital signs has also been analyzed [62] 
(see Fig. 5). However, all these methods are conditional 
on the user remaining immobile for prolonged periods, 
so the transition between postures, and possible anom-
alies could be missed.

Table 1 shows the classification of the works, with the 
advantages and limitations of the monitoring devices 
analyzed.

To summarize, among all the monitoring alterna-
tives used to date, pressure or force sensors discretely 
located on the assistance device offer the best charac-
teristics and are best suited to people with low mobility. 
It is a non-intrusive solution, which is adapted to the 
comfort conditions required by this group. In addition, 
the pressure sensors do not interfere with the postural 
development of the people they monitor, so meas-
urements are not affected by unusual behavior. This, 
together with the portability they offer if incorporated 
into a cushion, makes this type of sensor suitable for 
postural characterization. However, in order for these 
sensors to collect information of interest for postural 
diagnosis, it is necessary that these sensors are placed 
in a suitable position. Currently, this position has not 
been defined, and each researcher places the sensors 
based on different criteria, so the need for further 
research along these line has been identified.

Fig. 5 Example of implementation of FSR sensors on an intelligent wheelchair. On the left, example of sensor implementation under the seat 
cushion [62]. Right, example of implementation of FSR sensors inside the seat cushion [68]
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Sitting posture anomaly detection techniques
By means of the information extracted from the different 
postural monitoring methods, it is necessary to quantify 
and estimate the patient’s postural health status. For this 
purpose, after a first step of monitoring, it is necessary 
to carry out a second step of applying anomaly detection 
techniques to detect abnormal postural states. Different 
techniques have been proposed in the literature to meet 
this second step (Fig. 6).

The detection of sitting posture anomalies can be 
approached from two distinct perspectives (Fig. 6). Tradi-
tionally, the normal posture of a user has been considered 
to be that which involves an upright spine, distributing 
the weight of the body evenly over the seat and backrest. 
In other words, the terms correct posture and normal 
posture have often been used indiscriminately, using a 
general approach without taking into account the physi-
cal conditions of each user. This is due to a large extent 
to the fact that much of the work is oriented towards 
maintaining correct postural health in office workers, 
and not to wheelchair users. Following this definition of 

normality, abnormal posture is considered to be any pos-
ture that is not the correct posture, i.e., upright spine.

However, this traditional approach has a number of 
limitations. Following the traditional approach, there is 
a single normality, defined by the correct posture. How-
ever, this approach does not take into account the intrin-
sic particularities of each patient’s pathology, which may 
result in each user having their own postural pattern. On 
the other hand, the concept of anomaly has been con-
sidered taking the correct posture as a reference, when 
it is possible that a user, due to muscular weakness, will 
never be able to perform it. Thus, for example, Thus, for 
example,people who suffer a stroke usually have paraly-
sis on one side of their body. Because of this, he will tend 
to lean to one side, and will hardly be able to keep the 
spine straight. Therefore, under this traditional approach, 
this person will be under an abnormal postural state 
constantly.

Therefore, this work considers it interesting to define 
anomalies based on a new approach. In this approach, 
the individualized sitting postural pattern is character-
ized for each user. Subsequently, changes or alterations 
in these postural patterns that may be indicative that the 
user’s functional status has changed are sought. These 
changes in the postural pattern will be considered as pos-
tural anomalies. Thus, following the previous example, 
this person with stroke will characterize his normality by 
this chest tilt. Under this new approach, any posture that 
deviates from this lateral tilt will be considered abnormal. 
Thus, it is possible to detect either a recovery, when he/
she manages to keep the back upright, or a worsening, 
when this tilt becomes more pronounced.

Throughout this section the techniques for the detec-
tion of anomalies used to date in the field of postural 
diagnosis following a classical or generalist approach will 

Table 1 Sitting posture monitoring systems summary table

System Sensors Advantages Limitations Refs.

Environment RGB Fast processing speed
Not intrusive
 Simultaneous monitoring

Limited privacy
Limited range of action
Limited portability

[13, 17, 22, 33–36, 39–42]

Thermal

Infrarred

Depth

User IMU Small size
Easy implementation
High portability

 Intrusive
 Location-dependent
Interference due to contact

[14, 16, 27, 43–55]

Inclinometer

Barometer

Pressure

Assistive
device

Pressure
Mats

High resolution
Portability
Not intrusive

High purchase price
 Limited autonomy
Raw data accessing difficulty

 [60–63]

FSR Low cost
Portability
Not intrusive

Non-linearity
Need for calibration
Location-dependent

[20, 25, 59, 64–67, 69, 70, 72, 73]

2 INTELLIGENT ANOMALY DETECTION SYSTEM

TRADITIONAL GENERALIZED 
APPROACH

NEW INDIVIDUALIZED 
APPROACH

RULE-BASED 
TECHNIQUES

STATISTICAL 
TECHNIQUES

INTELLIGENT 
TECHNIQUES

SUPERVISED 
TECHNIQUES

SEMI-SUPERVISED 
TECHNIQUES

UNSUPERVISED 
TECHNIQUES

Fig. 6 Intelligent techniques for the detection of sitting postural 
anomalies from a generalist approach
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be shown (section Traditional approach through general-
ized techniques), as well as the need to treat the problem 
from a new individual approach, showing the most com-
mon techniques used in other fields (section  New and 
individualized anomaly detection approach). For these 
techniques, quantitative aspects such as the percentage 
of success, false positive and false negative rate or com-
putational cost have been analyzed. In addition, other 
aspects have been taken into account, such as the prior 
knowledge about anomalies necessary for model training, 
as well as the effort for data labeling.

Traditional approach through generalized techniques
As mentioned above, the sitting posture anomaly detec-
tion has usually been carried out in a generalist way by 
detecting all those postures that are not considered to 
be correct. For this purpose, most techniques have been 
based on the generation of classification models that 
allow the classification of different common postures. For 
this purpose, the techniques used are usually supervised, 
with the availability of samples labeled as normal and 
anomalous.

To monitor these anomalies, three types of techniques 
can be distinguished (Fig. 7): rule-based techniques, sta-
tistical techniques and intelligent techniques.

Rule‑based techniques
The first group of techniques, i.e., rule-based techniques, 
are based on the assumption that prior knowledge of the 
postural behavior of users is available. In this way, logi-
cal reasoning can be applied to impose the use of rules 
or syllogisms that allow the postural state of a given user 
[49, 63, 74].

The main advantage offered by this type of tech-
niques is their simplicity of application. In general, they 

are based on a low number of rules, being therefore 
the speed of inference high, allowing them to be imple-
mented in systems with limited computational and time 
requirements. On the other hand, the classification pro-
cess is totally transparent and explainable, being formed 
by logical and understandable rules, thus allowing the 
user to understand at all times the decision-making pro-
cess of the model.

Furthermore, this type of rules have a number of short-
comings that may make them unsuitable for detect-
ing sitting posture anomalies. Moreover, as they are 
designed, expert knowledge is necessary for the defini-
tion of the different logical relationships that characterize 
the postural behavior of the users. In the absence of this 
expert knowledge, the model no longer has the desired 
performance. In addition, these techniques have a limita-
tion in terms of complexity. In general, they are not able 
to capture complex relationships, so the models devel-
oped are limited, capturing a limited number of postures, 
and leaving out the monitoring of postures characteris-
tic of people with low mobility such as thoracic rotation. 
Finally, these rules can be developed for a specific case, 
but the developed model does not necessarily have to be 
generalizable to the rest of the users.

Among the different techniques, using discriminant 
thresholds is the most common due to its ease of under-
standing and implementation [63]. This is a widely used 
algorithm based on establishing a predefined threshold 
above which two activities or postures can be separated. 
The characteristics that can be taken into account to per-
form this discrimination are diverse.

In case of using wearable sensors, the usual approach 
when using thresholding is to define as a threshold the 
degree of inclination with respect to the vertical axis [49]. 
If a certain threshold is exceeded, the posture adopted is 

CLASSIFICATION

STATISTICALRULE-BASED

• Threshold
• Rules

• Naive-Bayes
• KNN
• Logis�c Regression
• PCA – Dim. Reduc�on

• Decision Tree
• Random Forest
• SVM
• MLP
• CNN
• Fuzzy logic - Transi�ons

INTELLIGENT

Fig. 7 Diagram of the anomaly detection techniques used in the traditional approach
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considered inappropriate, whereas, if it does not reach 
that figure, the posture is considered correct. In case the 
monitoring system is through the use of pressure sensors, 
the preset threshold is useful to prevent ulcers, locating 
those points where the specified pressure (the established 
threshold) is exceeded [63].

In addition to making use of thresholds, these can also 
be combined with the application of different rules or 
decisions, thus adding an additional condition to define 
the postures. Thus, as an example, in [74] it is established 
that a person is in an upright posture, when the x-axis 
data taken from an accelerometer is zero, and the accel-
eration on the z-axis is coincident with gravity. In seden-
tary sitting, a stepwise binary discrimination process is 
followed. At each stage, one passes to a subsequent stage 
or not on the basis of prior verification of the fulfillment 
of a certain rule. In this way, up to 6 different postures are 
differentiated [65].

In general, rule-based techniques are computationally 
inexpensive but lack sufficient discrimination to distin-
guish postures with a high degree of complexity. These 
complex postures precisely define the postural behav-
ior of individuals with low mobility. Thus, this type of 
techniques are restricted for use in binary classification 
applications, where the result is an all or nothing, i.e., the 
correct posture or not. For this reason, different sets of 
techniques that allow a more complex study of postural 
anomalies are addressed in the literature.

Statistical techniques
The second group of techniques is composed of the so-
called statistical techniques [13–23]. This set of tech-
niques is characterized by the use of statistical and 
probability methods to study whether a new sample 
belongs to a certain class or another, based on the rela-
tionships and patterns found in the training data.

Among the main advantages of this set of techniques is, 
as in the previous case, the interpretability of the results. 
As with rule-based techniques, a process of understand-
ing the decision-making process of the model can be 
carried out, thus being able to understand the logical 
reasoning followed by the model. Not only that, statis-
tical models usually provide probability estimates for 
each classification class, so it is also possible to know the 
degree of confidence of the prediction. The possibility of 
using them in multiclass problems, added to a reasonable 
training time of the models, makes that this type of tech-
niques has been frequently studied in the literature.

The main limitations of this type of techniques are that 
they work under different assumptions. Among them, 
that the training (and new) data follow a statistical dis-
tribution, which is the one that allows the estimation to 
be performed later. Knowing the distribution that the 

data follow (if they do) again requires knowledge of the 
database by an expert. Another assumption that is often 
made is the independence of the input variables. This 
independence does not need to be true, especially in the 
face of an increase in the dimensionality of the problem. 
These techniques are not able to capture the relative 
importance of the input features and may be sensitive to 
irrelevant ones. This results in limited performance if the 
data are complex.

Among the classifiers based on statistical techniques, 
the Naive-Bayes classifier or Naive Bayesian classifier 
is in first place [13, 14]. This classifier is characterized 
by using Bayes Theorem to calculate probabilities. This 
theorem assumes that the features of a class or object are 
independent of each other, and therefore, each of them 
contributes independently to the probability of one class 
or another. Among the advantages of this type of meth-
ods is their simplicity and the small number of parame-
ters required for their implementation. On the contrary, 
it assumes an independence of variables that in practice 
is not necessarily true, which can lead to a decrease in 
the precision obtained. This model has proved to be suc-
cessful when the number of monitored postures is small 
[14], however, the results are affected when the number 
of postures increases significantly [28].

The use of K-nearest neighbor (KNN)-based classifi-
cation systems have also been proposed in the literature 
[15–19]. This classifier is based on the construction of a 
multidimensional feature space where it is assumed that 
those data belonging to the same class have similar char-
acteristics, and are therefore grouped into nearby clus-
ters. Thus, once the classifier is trained and the feature 
space is created, to determine the class of a new data, the 
classes of the K-nearest neighbors are checked. The class 
to which a larger number of neighbors belong will be the 
one that is finally assigned. It is a simple algorithm, but it 
returns high effectiveness ranges. Thus, it has been used 
in [20] to classify postures that involve a back movement 
such as tilt or rotation, considered as anomalous. Like-
wise, in [21] KNN is used for the classification of differ-
ent postures that involve a change in both the back and 
legs, mainly oriented to the detection of the postural 
state in office workers. Nevertheless, since it relies on 
classifying a posture based on proximity to others in the 
database, it is necessary to have a diverse and balanced 
database for all classes. Otherwise, the algorithm will 
tend to be biased towards those postures that are more 
frequent in the database. However, a priori, the postures 
that are not correct and therefore, anomalous based on 
this approach, will be the most frequent, since they will 
be all those that are not considered correct. This is why 
it is not always possible to meet this objective of having 
a balanced database. Moreover, it is highly dependent 
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on the size of the database, since it has to measure the 
distance between the new point and all the existing data. 
Therefore, although it is a technique that does not return 
bad results, it can be inefficient for high dimensional 
databases.

Another algorithm used for the determination of sitting 
posture anomalies based on statistical methods is logistic 
regression [15, 18]. Logistic regression is based on pre-
dicting the probability that a point belongs to one of two 
mutually exclusive categories. In the postural domain, it 
is calculated whether a point belongs to a particular pos-
ture or not. For this, a logistic function whose coefficients 
are adjusted during the training phase of the system 
is used. To carry out a multiclass regression, a logistic 
probability is calculated independently for each postural 
class independently and the new data is assigned to the 
one that returns a higher probability, i.e. to the posture 
that it is more likely to be. One of the main advantages 
of this method is that, unlike other statistical methods, it 
makes no prior assumptions about the distribution of the 
data, and is capable of handling unbalanced training data 
sets. Nonetheless, this method does assume that there is 
a linearity relationship between the different variables, so 
nonlinear problems are not suitable for this technique. 
Likewise, it has problems extracting patterns from com-
plex, high-dimensional data, giving lower hit results.

Finally, although it is not a classification technique 
itself, the use of the principal component analysis (PCA) 
technique as a preliminary step to the use of other algo-
rithms should also be highlighted [22, 23]. In general, 
when collecting measurement data, more information is 
get than is necessary for subsequent posture classifica-
tion. In addition, many of the features or variables are 
correlated with each other, resulting in redundancy in 
the data. As has been shown, one of the main limitations 
of statistical models is that they have difficulty in dealing 
with the redundancy of the data and the high dimension-
ality of the data. Principal component analysis is an unsu-
pervised dimensionality reduction technique that seeks 
to simplify the input data to a classification model used 
later. This algorithm does not serve by itself to make pos-
tural diagnoses, but as a preliminary step and in order to 
facilitate the use of a subsequent classifier.

Intelligent techniques
The last of the groups of anomaly detection techniques 
used to date are intelligent techniques or those based on 
using artificial intelligence. Specifically, Machine Learn-
ing techniques are used, a subfield of artificial intelligence 
that gives devices the ability to ‘learn’ without being 
explicitly programmed for this purpose.

Among the main advantages of this type of tech-
niques is the fact that they are able to capture complex 

relationships in the input data, thus allowing more accu-
rate anomaly detection. In addition, these techniques can 
generalize patterns from training data and apply these 
patterns to unseen data. On the other hand, they are 
more adaptable to changes in the input data, being able 
to retrain the model without the need for large adjust-
ments. Finally, they can detect correlations in the input 
data, often not evident to humans, and can automatically 
learn the relative importance of the input features, elimi-
nating or ignoring those that are redundant [75].

Among the main disadvantages of this set of techniques 
is the need for large amounts of data compared to previ-
ous techniques in order to characterize the existing pat-
terns in the data. This increase in the number of training 
data is directly related to an increase in training time, as 
well as in the computational resources required to carry it 
out [76]. The difficulty of choosing the hyperparameters 
of the models requires a more complex adjustment and 
configuration than the previous techniques, requiring 
expert knowledge to do so. Finally, unlike the previous 
models, this set of techniques usually presents problems 
when interpreting the results, commonly referred to as 
black box models, in which the decision-making process 
is unknown to the user [77, 78].

One of the techniques used in the field of bioengineer-
ing for the determination of anomalies are hierarchical 
methods. These algorithms are based on decision-mak-
ing, where the responses lead to different nodes where 
a new decision-making process occurs. This continuous 
decision making procedure is continued until a point is 
reached where the answer to the decision turns out to be 
one of the searched classes. The decision trees [5, 15, 17, 
24] is an algorithm that allows to automate this succes-
sive decision making process. In this way, the algorithm 
decides, by means of a previous training in which an 
analysis of the input data and classification classes is per-
formed, which is the tree configuration that maximizes 
the probabilities of performing a successful classification. 
Among the major advantages of using this technique is 
the fact that it is computationally efficient and does not 
require prior scaling of the data, saving additional data 
preprocessing time. In addition, this set of techniques 
allows the identification of those features that are most 
relevant for decision making, gaining in interpretability 
of the results. However, they may have limitations in case 
the relationships between the different postural variables 
are on a global scale, since the decision making is based 
on local divisions of the features. Moreover, to achieve 
high accuracies, the number of postures to be classified 
is highly limited. This is reflected in [5], where decision 
trees are used to differentiate whether a person is sit-
ting, lying or walking. Although high accuracies (98.6%) 
are achieved, they are limited to monitoring only three 
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actions. Similarly, in [24] decision trees are used for fall 
detection.

Another hierarchical method used is the Random For-
est technique [25–28]. This is a variant of decision trees. 
While in decision trees, the entire feature set is used dur-
ing training to build the model, in Random Forest, a part 
of the global feature set is used to build a decision tree 
and obtain a classification result. This process is repeated, 
creating different trees, each consisting of a different data 
set, and obtaining a classified class from each of them. 
The class that is most repeated among the responses 
of the different trees is the result returned by the Ran-
dom Forest algorithm. This procedure allows to achieve 
greater precision, as well as a greater capacity for gen-
eralization. As in the previous cases, despite achieving 
high percentages of precision in the model (over 90%), 
the number of positions is still limited (maximum of 7). 
All this, at the cost of losing interpretability in the results, 
which can be vital in order to be able to provide relevant 
postural information to health specialists. In addition, it 
requires a higher computational and memory cost, so it 
may not be suitable for systems with limited resources.

Another technique to highlight is the Support Vector 
Machines (SVM) [15, 19, 29–32]. The SVM algorithm 
is a supervised method capable of classifying samples 
through the use of a separator. While this technique falls 
under the category of linear separators, it’s important to 
note that the separation between classes doesn’t neces-
sarily have to be linear. The algorithm of this classifier 
is based on the search for a separation hyperplane that 
is equidistant from the closest points of each class. It is 
also sought that there is the maximum possible margin 
between classes. Once the model has been trained and 
the optimal hyperplane has been found, the position of 
the new data with respect to it is evaluated to decide to 
which class it belongs. In general, this technique is widely 
used in biomedical applications, since it is effective for 
small data sets. In addition, it has a high generalization 
capability. However, it can give problems in high dimen-
sionality data, especially in those problems with many 
classes. This is especially detrimental in the case where 
the number of postures to be studied is high. Thus, in 
[30], despite the fact that a high number of postures can 
be classified, studying a total of 12, the accuracy of the 
classifier is reduced (hit results below 80%). Similarly, 
in [29], four load cells are used for the classification of 6 
common postures. However, both works are oriented to 
office workers. This population presents a different pos-
tural problem from that of people with low mobility, with 
postures different from those of wheelchair users, such as 
displacements on the seat or leg movements.

Finally, techniques based on neural networks are 
used, which have proven to be one of the classification 

techniques with the greatest potential in the field of bio-
engineering applications [79], having grown consider-
ably in recent years. The network is composed of layers 
formed by interconnected layers, where each neuron 
transmits the input information modified by a function of 
its own and multiplied by the specific weight to the suc-
cessive layers. In this way, a structure with the capacity 
to process large amounts of information and to identify 
trends and classify postures based on them is achieved. 
This system is based on automatic learning by means of a 
previous training, where the different specific weights of 
each of the neurons are weighted.

There are several typologies of neural networks, which 
are classified according to the structure of the layers or 
the interneuronal connections, among other aspects. 
One of the most widely used neural network models are 
the Multilayer FeedFordward or Multilayer Perceptron 
(MLP) networks [66, 68, 80–82]. This type of networks 
are characterized by having an input layer and an output 
layer, together with an undetermined number of hidden 
layers. Each of the neurons in one layer is interconnected 
with all the neurons in the next layer. This means that the 
number of parameters in this type of network can reach 
very high levels. This is a supervised learning method 
that uses the Back-Propagation algorithm for training. 
This algorithm, based on the gradient descent method, 
seeks to modify the weights of each neuron to reduce 
the global error, starting from the last layer and continu-
ing with the preceding layers. Thus, in [75, 80, 81], use 
this type of networks are used to perform recognition of 
activities, such as climbing stairs, or running, as well as 
various postures. However, these works focus more on 
activity recognition and do not put their focus on pos-
tural diagnosis in seated position of wheelchair users.

Another type of networks used for postural classifica-
tion are convolutional neural networks (CNN) [76–78, 
83]. This type of networks, first perform a process of 
extraction and reduction of the dimensionality of the fea-
tures and then go on to perform the classification based 
on these features. These networks are focused on the 
field of artificial vision and image processing. Thus, they 
are used with data extracted using depth cameras for 
anthropometric scanning of the human body [76], as well 
as with data extracted using pressure mats for postural 
diagnosis [77, 78]. After all, as explained in [83], pressure 
distribution signals extracted from pressure mats can be 
treated as images. Nevertheless, there are small varia-
tions that differentiate it from images extracted through 
cameras. Among these differences is the fact that the sen-
sors are not isolated and therefore the pixels depend on 
the force exerted on the surroundings. However, these 
studies, despite achieving superior performance with 
respect to previous methods, also in part because the 
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input data set is larger, the computational requirements 
grow in the same way. In addition, they require a large 
number of input data for the model to be effective, and 
they have difficulty in detecting small details within the 
overall image. Therefore, they can present problems in 
detecting certain anomalies, especially if they are similar 
to another set of studied postures.

Most classifiers used in the literature focus on the clas-
sification of static postures and activities, which require 
a period of time for the data to stabilize. However, tran-
sitional states between different postures can be a chal-
lenge when detecting anomalous postures, since they 
can be mixed. That is why, some authors [84, 85] decide 
to make use of fuzzy logic techniques for the optimiza-
tion of transient or switching postures. Fuzzy logic arises 
from the idea of emulating human thinking, where some-
times not everything is true or false, and there are mid-
dle terms whose degree of definition is often imprecise. 
In this way, and derived to data processing, fuzzy logic 
aims to emulate a decision-making tool where the input 
information is imprecise or ambiguous. The features are 
described by means of membership functions, which are 
subjected to rules to infer an output class. Thus, although 
fuzzy logic is not used as the sole method of diagnosis, 
the use of these techniques allows the increase of the per-
centage of success in combination with other techniques, 
by eliminating the existing inaccuracies in the diagnosis 
between positions, or transition positions.

In conclusion, postural classifiers has been widely used 
in the literature for the detection of postural anomalies 
following a traditional generalist approach. Techniques 
for the development of these classifiers can be classified 
into rule-based, statistical and intelligent techniques. 
While intelligent techniques have high performance and 
the ability to classify a larger number of postures, they 
have the counterpart of increased computational require-
ments and lack of interpretability of decision making. 
This is why other authors prefer to make use of statistical 

or rule-based techniques, based on expert knowledge of 
the database. The complete set of advantages and disad-
vantages, as well as the above cited references are sum-
marized in Table 2.

Thus, it can be seen how the works that make use of 
techniques based on machine learning stand out above 
the rest due to the advantages they offer. However, there 
are still shortcomings in these works to be taken into 
account as future lines of research. Firstly, it should be 
noted that the classification techniques used to date are 
mainly oriented to a population different from people 
with low mobility. For this reason, there is a lack of works 
developed in clinical settings as well as an approach from 
health perspective to detect wheelchair common sitting 
postures.

Moreover, this approach is based on the generalizabil-
ity of classification models. Considering that the wheel-
chair population is very varied in physical complexions, 
it is necessary that the analysis around these models fur-
ther deepen this aspect. The works achieved so far gener-
ally yield good results, but they are not typically analyzed 
in individuals with diverse physical builds. Therefore, it is 
necessary to study more extensively how the results may 
be affected for the diverse population.

New and individualized anomaly detection approach
The vast majority of studies address postural anomaly 
detection as a common problem for all users, with-
out taking into account the pathology of each patient. 
However, each user exhibits a unique and characteristic 
postural pattern. Within the same pathology, different 
individuals may display varying behaviors based on their 
physical characteristics [86]. Similarly, the normality for 
each individual may not be the same, and therefore, a 
general solution cannot be applied.

Therefore, as mentioned earlier, in a new approach, 
the goal is to characterize the individualized sitting pos-
tural pattern for each user. Subsequently, changes or 

Table 2 Summary table of anomaly detection techniques with the traditional approach

Techniques Advantages Limitations Refs.

Rule-based Application simplicity
High inference speed
Low computational cost
Transparent and explainable process

Expert knowledge required
Difficulty in capturing complex relationships
Limited to a low number of postures and differentiated 
from each other

[49, 63, 65, 74]

Statistical Interpretability of results
They provide probability estimations for each class
Reasonable training time

Assumption that the data follow a probability distribution
Expert knowledge required
Sensitive to irrelevant features
Limited performance with complex data

[13–23, 28]

Intelligent Ability to capture complex relationships
Greater accuracy
Adaptable to input changes
Ability to ignore redundant features

Need for large data sets
Increased training time and computational resources
Difficulty in selecting hyperparameters
Lack of interpretability of the decision making process

[5, 15, 17, 19, 
24–32, 66, 68, 72, 
75–85]
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alterations in these postural patterns are sought, which 
may be indicative that the user’s functional state has 
changed and may require a new healthcare intervention.

However, there are few studies that consider this 
approach in the field of postural diagnosis. Thus, there 
are works that consider all situations outside the users’ 
usual behavior as anomalous, such as anomalous activi-
ties of daily living, as seen in [87–89], or falls [90, 91]. In 
the the postural field, as mentioned earlier, postures that 
do not correspond to the correct postural state are con-
sidered anomalous. However, to date, there are few stud-
ies that address the detection of postural anomalies in a 
seated position, defined as deviations from a normal pat-
tern [92].

That is why, to detect changes in the normal sitting pat-
tern, understood as the set of postural states that occur in 
a subject over time, it is necessary to study the techniques 
used to solve problems with similar characteristics in 
other fields. Changes in this pattern can occur in two dis-
tinct ways. On the one hand, the appearance of a postural 
state different from those that constitutes the sitting pos-
tural pattern can be considered anomalous, treating it as 
an isolated and specific case. On the other hand, a change 
in the sequence in which the postural states of the user’s 
postural pattern occur can be considered anomalous, 
treating it as sequential or contextual anomaly. Regard-
less of the type of anomaly, techniques for detection can 
be classified into three main groups based on the learning 
method employed. Thus, these techniques can be clas-
sified as supervised, semi-supervised, and unsupervised 
techniques.

Supervised techniques
Supervised learning techniques are characterized by 
having labeled data representing normal and anomalous 
classes for training. In this way, through training on the 
data, a boundary can be drawn to separate the classes 
defined as normal from those defined as anomalous. It 
is important to note that throughout this section, studies 
conducted in different application domains than that of 
seated posture are presented. Therefore, within this cat-
egory, techniques based on classification are prevalent. 
These are similar to the techniques described in the pre-
vious section and shown in Fig. 8, so a brief overview will 
be provided.

Among supervised machine learning techniques for 
anomaly detection, the use of Support Vector Machines 
(SVM) stands out, achieving classification accuracy 
rates exceeding 90% [93, 94]. Other authors prefer using 
anomaly classification techniques based on decision 
trees. Standard Decision Trees (DT) [95] and Random 
Forest [93, 96] are employed in this context. Addition-
ally, some studies utilize regression techniques, including 

linear regression [97], logistic regression [95], and regres-
sion trees [96].

There are other studies that employ common classifi-
cation techniques, although these are not as prevalent 
in anomaly detection. Specifically, fuzzy logic is utilized 
in some works [34, 98], as well as the k-Nearest Neigh-
bors method [99]. Lastly, attempts have also been made 
to use techniques based on deep learning. In particu-
lar, multilayer perceptron neural networks have been 
employed [100], recurrent neural networks [101] for han-
dling temporal or sequential data, and evolutionary neu-
ral networks [102] that automatically adjust the network 
structure based on evolutionary algorithms.

In general, all these studies achieve high accuracy rates 
in detecting anomalies in domains such as intrusion 
detection or network anomalies, as they are based on the 
assumption that labeled data is available for both normal 
and anomalous classes. However, in reality, this is highly 
complex, as typically, the number of anomalous samples 
is much lower than the number of normal samples. This 
leads to imbalanced databases, favoring the detection of 
normal classes over anomalous classes.

For this reason, supervised learning techniques are 
generally not widely used in anomaly detection in the 
medical field and are relegated to very specific cases. This 
is mainly due to the fact, on the one hand, that the num-
ber of anomalous classes is lower than the normal ones, 
and on the other hand, that the presence of a health spe-
cialist is necessary for the labeling of these samples. To 
address the challenges inherent in supervised techniques, 
many authors have opted for the use of semi-supervised 
techniques.

Semi‑supervised techniques
Anomaly detection techniques based on semi-super-
vised learning operate under the assumption that only 
samples labeled as normal are available. The underly-
ing principle of these supervised techniques involves 
learning to characterize the normal class through a 
training process using normal samples. A new data 
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Fig. 8 Supervised techniques for anomaly detection from a new 
individual approach
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point entering the system is considered anomalous if it 
does not belong to the normal class defined during this 
training.

Within this section, classification techniques adapted 
to the availability of only normal class samples are also 
employed. Two different approaches can be distin-
guished within these techniques, represented in Fig. 9. 
On one hand, there is one-class classification, which 
assumes that all normal samples belong to a single class 
labeled as the normal class, and anything outside of this 
class is classified as anomalous. Notably, within this 
category, techniques based on one-class SVM stand out 
[103–105]. The main issue with this approach arises 
when the normal classes forming the data are very dif-
ferent from each other, resulting in a broad boundary 
characterizing normality. As a result, the occurrence of 
an anomaly is more likely to fall within that boundary, 
leading to a false negative.

Hence, other studies shift towards a multiclass 
approach [106]. This approach is very similar to the pre-
vious one, but instead of having a single normal class, a 
one-class classifier is built for each normal class. When 
a new data point arrives, it is determined with each 
trained classifier whether the sample belongs to any of 
the defined normal classes. If it does not belong to any, 
the sample is considered anomalous. The primary chal-
lenge with multiclass classification methods lies in the 
need for different labels for each of the normal classes. 
This once again necessitates the involvement of health-
care professionals to provide such labeling.

To eliminate the need for labeling different normal 
classes, distance-based techniques are employed. Among 
various methods, a commonly used technique is k-Near-
est Neighbors (KNN). These methods operate on the 
assumption that an anomalous data point will be dis-
tant from the rest of the dataset. For instance, in [107], 
a variant of KNN (TCM-KNN) is presented where the 
distance is weighted for each point, and in [108], a modi-
fied method (CSI-KNN) takes into account the strange-
ness and isolation for each point to weigh the degree of 
anomaly. The issue with these techniques lies in the fact 
that if anomalous data points are close to a set of normal 
data, they may be characterized as normal, leading to 
worse results.

In addition to classification and distance-based tech-
niques, other methods have been employed to deter-
mine if a new sample deviates from the known normality. 
These models are based on the assumption that the data 
follows a probabilistic pattern. Thus, during the training 
phase, this postural pattern is characterized, and a new 
sample is considered anomalous if it deviates signifi-
cantly from the pattern. Probabilistic techniques based 
on Gaussian models have been used for point anomaly 
detection [19, 109], and Hidden Markov Models (HMM) 
have been applied for sequential anomalies [67, 110]. The 
challenge with these models lies in the fact that if the 
data does not conform to a statistical model, the results 
may not be satisfactory.

There are also studies where deep learning tech-
niques are employed for anomaly detection. The use of 

Anomalies

Normality

BEFORE 
TRAINING

Normal class III

Classifier I Classifier II Classifier III

Normal class I

Normal class II

Normal class I

AFTER TRAINING
ONE-CLASS

MULTI-CLASS

Normal class II Normal class III

Fig. 9 Scheme for the use of one-class and multiclass semi-supervised techniques
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multilayer perceptron neural networks is prevalent [111, 
112], or deep belief networks (DBN) [113] in two phases, 
an initial unsupervised phase and a subsequent one for 
fine-tuning the parameters. In the training process of 
these networks, the goal is to enable them to distinguish 
between different existing normal classes, providing a 
confidence level for each inference. However, when faced 
with an anomaly, the network struggles to assign it to any 
of the established classes with the required level of con-
fidence. Similarly, for the detection of sequential anoma-
lies, recurrent neural networks and Long Short-Term 
Memory (LSTM) networks are employed, where disrup-
tions in the temporal or discrete sequences constituting a 
defined pattern are detected [112, 114].

In general, semi-supervised methods (see Fig. 10) have 
been commonly used for anomaly detection in various 
domains, always understanding anomalies as deviations 
from a pattern of normality. Working under the assump-
tion that only normal data is available, the concept of an 
imbalanced dataset during training becomes less critical. 
However, having a known database where no anomalous 
data is present is essential, or the training process could 
be adversely affected. In sitting posture anomaly detec-
tion, since the postural pattern is composed of several 
postural states, the presence of a health specialist is once 
again necessary to allow the labeling of the different nor-
mal classes.

Unsupervised techniques
Finally, in order to try to solve the main limitations of 
semi-supervised techniques in the field of postural 
monitoring, unsupervised techniques could be used. 
These are the most commonly used techniques when 
detecting anomalies in different fields [115]. Unsu-
pervised techniques are characterized by not having 
the label or class of the data in the database, and work 
under the assumption that data belonging to normal 
classes are grouped into clusters, with anomalies being 

far from these clusters. In case this assumption is not 
met, unsupervised techniques suffer from a high num-
ber of false positives [116].

Unsupervised anomaly detection algorithms can 
be classified in different ways, as seen in Fig.  11. One 
of the most commonly used techniques is cluster-
ing. Clustering is the set of techniques that aims to 
group samples with similar characteristics into differ-
ent groups (or clusters), such that each group presents 
a common behavior or pattern. Clustering techniques 
can be divided into three types: hierarchical clustering 
methods, partitional clustering methods and density 
based methods.

Hierarchical clustering methods allow a hierarchi-
cal grouping of clusters. In this way, similar data are 
grouped into clusters. These clusters in turn are grouped 
together to form larger clusters. In this way, a hierarchi-
cal tree structure is created, where at each level the data 
is arranged in a different number of clusters. Thus, for the 
detection of anomalies, Isolation Forests (IF) have been 
used on the one hand [117, 118]. By means of these for-
ests, the initial data set is divided into subclusters accord-
ing to different randomly generated rules. This algorithm 
assumes that the anomalous data will be isolated in indi-
vidual clusters in the upper branches of the tree, since 
they do not comply with the general characteristics of the 
rest of the data, and therefore tend to split earlier as they 
do not comply with the general rules created randomly. 
Another technique used within hierarchical clustering is 
the so-called Growing Hierarchical Self Organizing Map 
(GHSOM) [119]. This technique corresponds to an artifi-
cial neural network with a hierarchical structure in which 
each branch makes use of a self-organizing map (SOM) 
[120].
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Fig. 10 Semi-supervised techniques for anomaly detection 
from a new individual approach
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On the other hand, random forests have also been used 
for clustering [121]. Although this technique is normally 
used as a classifier or selection of relevant features, it can 
also be used for clustering. The algorithm estimates the 
distance between data based on the number of times they 
end up on the same leaf. To obtain the clusters, it is nec-
essary to prune the tree by the number of branches cor-
responding to the number of clusters, so it is necessary a 
priori to know the number of clusters to be defined.

Another aspect of clustering methods is partition-
based clustering. These methods group data into differ-
ent partitions with no hierarchical relationship between 
them. Thus, these techniques are based on the assump-
tion that all data belong to normal classes. As soon as a 
new data appears, it can be considered anomalous if it 
does not belong to any of the previously defined clusters. 
Under this assumption, the most widely used technique 
is K-Means [92, 122–124]. This technique seeks to mini-
mize the sum of distances between the points of a cluster 
and the cluster centroid. These distances, being meas-
ured as average distances between the points to the cen-
troid, are sensitive to the occurrence of anomalies in the 
data, so other works make use of K-Medoids [125]. This 
technique is similar to the previous one, making use of 
the median of the points instead of the mean. The main 
problem with these techniques is that they require the 
number of clusters to be formed to be passed as an ini-
tialization parameter. This, a priori, is difficult to know, 
unless you have extensive knowledge of the database you 
are working with.

On the other hand, the previous techniques present 
problems when dealing with clusters of different size and 
density. For this reason, other techniques take this factor 
into account when detecting anomalies. Thus, one of the 
algorithms used takes into account the density of a point 
with respect to that of its neighbors. If this point has a 
lower density, it is assumed that this is because it cor-
responds to an anomaly. In particular, the Local Outlier 
Factor (LOF) technique makes use of this system [117, 
126]. On the other hand, following the same principle, 
the Density-based spatial clustering of applications with 
noise (DBSCAN) algorithm classifies the data into clus-
ters based on the proper density of the data [127, 128]. 
However, this method is dependent on the specified den-
sity parameter, and therefore does not perform well on 
databases with different densities.

Beyond the clustering methods, there is a set of tech-
niques that are based on the assumption that the anoma-
lous points are far away from the rest of the normal data. 
The main difference is that while the previous techniques 
seek a clustering of the data seeking to minimize the vari-
ability between them, these new techniques only focus on 
the distance between the data to define whether a new 

sample is anomalous or not. If a data is not close to the 
rest, it is considered anomalous. One of the techniques 
used in this sense consists in using the K nearest neigh-
bor technique [129]. In this way, the sum of the distances 
of the K nearest neighbors is calculated and by means of 
a threshold it is determined whether it falls within nor-
mality or not. Another approach consists of determining 
the number of neighbors within a given distance range 
and, likewise, a threshold is used to determine whether it 
is within normality. The main problem with these meth-
ods is their high computational cost, since the distance 
has to be calculated with respect to the rest of the points 
in the training database. In addition, these methods do 
not allow the determination of the different groupings 
that characterize the database.

However, distance-based techniques can suffer from 
the Hughes effect in high dimensionality databases 
[130]. With increasing dimensionality the average dis-
tance of the data increases and the variability of the data 
decreases exponentially. For this reason, some authors 
prefer to take into account the value of the angles formed 
by the points to determine whether a point is anomalous 
or not. The ABOD method [131, 132] considers a point 
to be anomalous if the variability of the angles of this 
point with the neighbors is low (considering in this way 
that they are far from the normal samples), while it will 
consider it normal, if this point has a high variability of 
angles.

Within the field of unsupervised techniques, solutions 
based on deep learning techniques have also been devel-
oped. Among these techniques, on the one hand Deep 
Belief Networks (DBN) are used [133]. On the other 
hand, Generative Adversarial Networks (GAN) are used 
for anomaly detection in images [134, 135]. Generative 
adversarial networks are composed of two neural net-
works, one discriminative and one generative that com-
pete with each other. The former seeks to detect whether 
an image is real or generated, while the latter seeks to 
generate realistic images. GANs learn to generate images 
within normality. As soon as any modification is intro-
duced as input data, the generative network is not able 
to generate a coherent image, evidencing the anomaly. 
Finally, the use of autoencoders has also been highly 
studied [136–138]. The autoencoders are trained in such 
a way that they have to reconstruct the input data, having 
to perform a previous dimensionality reduction. As with 
GANs, as soon as an anomaly is detected, the trained 
network is not able to reconstruct it.

Based on the same idea as autoencoders, dimension-
ality reduction techniques are used for anomaly detec-
tion. Dimensionality reduction techniques are based on 
the assumption that the data can be reduced to a lower 
dimensional subspace where the difference between 
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normal and anomalous classes is more evident. Thus, 
among these techniques, the use of Principal Compo-
nent Analysis (PCA) [95] stands out. This technique, 
like autoencoders, is based on the idea of reducing the 
dimensionality of the initial database and detecting 
anomalies through subsequent reconstruction. One of 
the major limitations is that only numerical data can be 
used, after normalization. This technique, in addition 
to being used on its own, is widely used in the literature 
as a previous phase of feature extraction [115].

In general, unsupervised techniques are an advantage 
when it comes to anomaly detection, understood as a 
change in a normal pattern. Among the main advan-
tages of these techniques is the fact that no prior labe-
ling of the data is required. In this way, the techniques 
themselves are responsible for characterizing normality 
in order to subsequently detect those data that deviate 
from it.

In conclusion, the use of anomaly detection tech-
niques, which have given such good results in other 
areas and are summarized in Table  3, can be used to 
detect changes in sitting postural patterns with an indi-
vidualized approach. Within this approach, the use of 
unsupervised techniques stands out above the rest, 
among other factors, because it is not necessary to 
carry out a prior labeling of the database. However, this 
is a totally new approach and has not been explored in 
the literature but of great potential. It is therefore nec-
essary to analyze which of the unsupervised techniques 
offers the best results, based on quantitative metrics 
such as percentage of success or computational cost, or 
qualitative metrics such as model learning capacity or 
robustness to different normal sitting patterns. This is 
why it is a new line of research to be considered in the 
near future to perform postural diagnosis in wheelchair 
users.

Discussion
In the previous chapters, monitoring systems (section Sit-
ting posture monitoring systems) and techniques for 
detecting anomalies, both from a traditional generalized 
approach where all postures other than the correct one 
are considered anomalies (section  Traditional approach 
through generalized techniques), as well as from the 
newly individual proposed approach (section  New and 
individualized anomaly detection approach), have been 
presented. During this section their applicability in the 
field of sitting in people with low mobility is discussed 
analyzing strengths and areas for improvement to be 
studied in future research work.

Discussion on sitting posture monitoring systems
To develop an intelligent, non-intrusive and easy-to-use 
device for the wheelchair-using population it is neces-
sary to measure and obtain the appropriate variables that 
will be subsequently be further processed to diagnose the 
patient’s functional status. There are different types of 
monitoring systems depending on the location where the 
sensors are placed, each of them with their advantages 
and limitations.

The main advantage of the systems located in the envi-
ronment is that they are not intrusive, as well as object 
detection capability and fast information processing. This 
is an indispensable requirement in a sensitive population 
such as wheelchair users, which this type of system ful-
fills perfectly. This is achieved by placing sensor elements 
at fixed points in the environment. Likewise, this type of 
system allows the simultaneous monitoring of more than 
one person as long as they are within the range of the 
cameras.

As a counterpart, this type of system presents a limita-
tion in terms of portability. This is a critical point to take 
into account, since the aim is to carry out continuous 

Table 3 Summary table of techniques with the new approach

Techniques Advantages Limitations Refs.

Supervised High success rates
Interpretation of results

Limited number of anomalous samples:
Unbalanced data base
Health specialist presence required for data labeling
Inability to characterize all anomalies

[34, 93–102]

Semi-
Supervised

Normal samples available
Ability to detect unknown anomalies

Since the postural pattern may be composed of dif-
ferent normal states, the normal boundary is wide
Expert knowledge required in case of wanting 
to label different normal states

[19, 67, 103–114]

Unsupervised No data labeling required
Detection of unknown anomalies
Applicable to large data sets

Increased tendency to false positives
Lack of interpretation
Normal data are grouped in clusters assumption

[92, 117–119, 122, 123, 125–127, 129–137]

Unsupervised No data labeling required
Detection of unknown anomalies
Applicable to large data sets

Increased tendency to false positives
Lack of interpretation
Normal data are grouped in clusters assumption

[92, 117–120, 122–127, 129–138]
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monitoring, so the developed system must be able to 
move with the user, not limiting itself to monitoring in 
a limited space. Thus, for example, there is no point in 
monitoring a patient who has suffered a stroke if it is lim-
ited to a closed environment. However, to date, the work 
developed using vision systems has focused on monitor-
ing users in closed environments with controlled lighting 
conditions. In addition, not only the information neces-
sary to carry out the postural study is collected, but also 
perform a continuous monitoring of the life of the people 
being studied. This can generate privacy problems. Thus, 
not only their postural state is monitored, but also addi-
tional information irrelevant to the application for which 
they were designed.

Given these limitations of the systems located in the 
environment, other works are more in favour of using 
wearable sensors placed on the user. These systems can 
cope with the greater limitation of the sensors located 
in the environment, allowing continuous monitoring as 
they are incorporated on the user himself. Wearable sen-
sors allow information to be collected continuously in a 
simple and low-cost way, but they can be a nuisance for 
users. In addition, this type of sensor is highly depend-
ent on the position in which it is placed, so it is necessary 
to have qualified healthcare personnel to place it. On the 
other hand, wearable sensors have a tendency to suffer 
disturbances due to rubbing against the clothing or body 
of the wheelchair users on which they are placed, which 
is an additional cause of discomfort in this population. It 
must be taken into account that some patients, such as 
stroke patients, will have part of their body paralyzed, so 
they will not be aware of this friction between the sensor 
and the body. It is also possible that injuries may occur 
due to friction. Finally, although they can be of great use 
in conjunction with other types of sensors, they present 
difficulties in carrying out correct monitoring on their 
own. For this reason, the search for other types of moni-
toring technologies that eliminate these limitations has 
been intensified.

In this way, finally, the possibility of reaching an inter-
mediate point is sought, using sensors that are suffi-
ciently portable to accompany the user continuously, but 
at the same time are not intrusive. To this end, the possi-
bility of placing the sensor system in the assistive devices 
has been considered. In the case of a person with low 
mobility, in the wheelchair itself. Thus, the use of systems 
based on force sensors or pressure sensors stands out 
above the rest, which can be differentiated in two ways: 
on the one hand, the use of pressure mats composed of a 
large number of sensors, and on the other hand, the use 
of sensors located in discrete positions.

While the main advantage of the use of the pres-
sure mats is that it is easy to implement as it is already 

commercially available, they have certain disadvantages, 
which must be addressed, including their high price and 
limited time of use. In addition, since they are a closed 
solution, there is little room for improvement, both in 
terms of battery life and data storage for subsequent use 
of intelligent diagnostic techniques. In the same way, 
since most of these sensors are not designed for moni-
toring applications for wheelchair users, it is necessary to 
adapt these devices to safe environments for use by this 
group. On the other hand, the use of sensors in an dis-
crete manner can address these limitations, but requires 
precise placement of the sensors so that the user can be 
effectively monitored. In addition, further analysis of 
the implementation of these sensors on different wheel-
chair user cushions needs to be carried out. It is therefore 
necessary to continue working on the line of pressure or 
force sensors, adapting them for use by people with low 
mobility, both in nursing homes and in their own homes.

Discussion of anomaly detection techniques for wheelchair 
users
Having discussed the most necessary points to be 
addressed in terms of postural monitoring devices, it is 
necessary to analyze the techniques used to carry out a 
sitting posture anomaly detection of wheelchair users.

Firstly, it should be noted that the generalized tech-
niques are mainly oriented to a population different 
from people with low mobility. For this reason, there is 
a lack of works developed in clinical settings as well as 
an approach from health perspective to detect posture 
anomalies. Thus, this paper aims to classify and organize 
the existing works, with an approach oriented to wheel-
chair users, thus identifying strengths and limitations of 
these techniques for this group.

As has been shown above, the use of techniques based 
on rules or statistics is based on the fact that knowledge 
of the database is available in order to be able to make 
use of techniques based on assumptions. However, 
although the study of postural identification is extensive 
in office workers, the study in wheelchair users with their 
particular characteristics is scarce. This means that the 
assumptions under which these techniques work are not 
necessarily valid in this population and should be revised. 
Thus, as an example, these works take into account pos-
tures such as leg crossing, which a wheelchair user is 
unlikely to perform. Generally, the postures of this popu-
lation, such as patients who have suffered a stroke, will be 
more related to weakness in the trunk, which will cause 
lateral or frontal movements on the seat. In the same way, 
many of these works are not aimed at postural diagnosis 
in order to carry out an analysis of the functional status 
of the monitored user. In fact, postural status is used as 
a tool to check other aspects such as degree of attention 
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at work or stress level. Thus, among the work aimed at 
wheelchair users, the use of intelligent techniques capa-
ble of detecting the intrinsic characteristics of the pos-
tural state of this population stands out.

Nevertheless, intelligent techniques have as a point of 
improvement the fact that they are effective on “familiar” 
subjects, i.e., subjects whose characteristics are similar to 
the data used in training. Nevertheless, the effectiveness 
of the developed intelligent classifiers decreases when 
validated with data from subjects with different physi-
cal characteristics than those used to train the model. 
Thus, many of these classification models are trained 
on healthy subjects with healthy physical and muscu-
lar builds, in part because of the difficulty of collecting 
data in a vulnerable population such as wheelchair users. 
However, these works do not validate the results in the 
specific population or an analysis is not carried out to 
ensure that the results obtained are valid for subjects 
with physical complexions different from those used for 
training. Despite attempts to select a group of subjects 
for training that is as heterogeneous as possible, suffi-
cient generalization is not achieved. This is an improve-
ment point to consider, as the wheelchair user population 
is generally diverse in physical characteristics, primarily 
due to the different pathologies they experience. In this 
way, the physical complexion of a person who has suf-
fered a stroke but still retains a certain degree of move-
ment will not be the same as that of a quadriplegic 
person with absolute immobility. Therefore, the proposed 
new individual approach may be beneficial in solving this 
problem.

As seen, approaching the problem with a new perspec-
tive, where anomalies are treated as changes in a sitting 
postural pattern rather than simply as incorrect postures, 
can be beneficial for detecting changes in the functional 
state of patients. However, since there are few existing 
studies in the literature developed under this approach, it 
is necessary to study the applicability of works developed 
in other domains when performing anomaly detection 
in sitting posture. As previously mentioned, within this 
approach there are three types of techniques: supervised, 
semi-supervised and unsupervised.

On one hand, in the case of using supervised tech-
niques, it has been observed that, generally, the number 
of normal samples exceeds the number of anomalous 
samples, resulting in an imbalanced database for train-
ing. While collecting data on their normal postural state 
pattern might be feasible, gathering a large number of 
postural states that would characterize their anoma-
lous states would be unfeasible. This imbalance favors 
the detection of normal classes over anomalous classes. 
Thus, if you have a person whose natural state in seated 
position is the thoracic inclination, a large number of 

samples will be available with respect to this particular 
postural state. Training a model in a supervised manner 
also requires the availability of abnormal states such as 
pelvic tilt, hyperkyphosis or others, which the subject will 
not perform on his own unless forced.

On the other hand, labeling these samples requires the 
presence of an specialist in the field. In the case of pos-
tural anomaly detection, a healthcare specialist would 
be needed to characterize the normal sitting posture 
pattern and all possible postural anomalies that could 
occur. In the long run, this is impractical for two reasons. 
Firstly, because a person with limited mobility cannot be 
required to adopt different postures for the generation 
of a balanced database as their own pathology makes it 
impossible for them to adopt a wide range of movements. 
In this way, and continuing with the example of the stroke 
patient, if he has lateral paralysis that will lead him to 
lean to one side, it will be impossible for him to develop 
postures on the paralyzed side. It would be necessary to 
expose this subject to a large number of forced postural 
changes in order to collect anomalous data. Over time, 
this affects both the user, whose daily life is disturbed, 
and the healthcare specialist, who must supervise the 
collection of this data. Secondly, labeling the different 
postural states, both normal and anomalous, requires the 
presence of a medical specialist, adding additional work-
load to healthcare professionals when the ultimate goal of 
the intelligent system should be to assist them.

The use of semi-supervised techniques can help elimi-
nate the issue of having an imbalanced database, as men-
tioned, since the system is trained only with labeled data 
of normality. However, the normal sitting postural pat-
tern can be composed of different postural states, each 
different from the others. For example, a normal sitting 
pattern may be characterized by a neutral sitting position, 
a thoracic rotation and a thoracic rotation in conjunction 
with a pelvic rotation. Thus, one-class techniques are not 
applicable since the normality characterized may be too 
wide, making the boundary defined as normal too wide. 
So for example, in this case above, a pelvic rotation (with-
out the thoracic) would be considered as an anomaly, 
but given the similarity with the postural states defined 
as normal, it could fall within this boundary of normal-
ity, resulting in an incorrect outcome. In the case of using 
multiclass techniques, a healthcare specialist is needed 
to differentiate between all normal postural states. Like 
in the previous case, this adds additional workload to 
healthcare professionals.

Therefore, in general, unsupervised methods consti-
tute an advantage when selected as an anomaly detection 
technique, as they do not require prior labeling of the 
data. This fact makes the method more robust in the face 
of the emergence of new postural states not considered 
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in the database. Thus, even though a significant portion 
of a person’s postural states may be considered, particu-
lar circumstances of each user can be taken into account 
when characterizing normality. Continuing with the 
same example as above, a person with a stroke will see 
part of his or her body paralyzed. This paralysis will vary 
for each patient, depending on the location and severity 
of the stroke. This fact makes data labeling more difficult 
as each user will have a characteristic sitting pattern, so 
the use of unsupervised techniques could be beneficial in 
this context. On the other hand, in the case of supervised 
or semi-supervised techniques, it is necessary to label the 
data, so that each of the normalities is known to which 
postural state it corresponds (neutral sitting, thoracic 
inclinations, pelvic rotations, etc.). However, when work-
ing with unsupervised techniques, the medical sense 
of the data is lost. Similar data is grouped into clusters, 
but it is unknown to which postural state these clusters 
correspond. However, this could be addressed by show-
ing the healthcare specialist a sample from each cluster. 
Since it can be assumed that all clusters will be formed by 
similar postural states, they only need to label N clusters, 
not the entire dataset, reducing their workload.

Conclusions
Having analyzed the main trends related to intelligent 
postural diagnosis systems, throughout this section the 
main conclusions obtained are drawn.

The number of individuals requiring the use of a mobil-
ity assistance device is on the rise, attributed to the char-
acteristic bone and muscle weakening associated with 
aging, as well as various neurodegenerative diseases. 
Monitoring the posture of these individuals and detecting 
potential anomalous behaviors is essential for conducting 
a proper functional diagnosis. This allows to carry out a 
rehabilitation adapted to the situation of each patient, 
being able to prevent dangerous situations such as ulcers 
or falls as well as to prevent musculoskeletal problems. 
All this has an impact on the patient, increasing their 
quality of life. Throughout this article, an analysis of both 
devices and techniques for detecting postural anoma-
lies has been carried out, identifying the advantages and 
limitations of each method. In this way, an orderly and 
organized understanding of the postural diagnosis topic 
is provided, offering researchers a resource on which to 
base future investigations.

In this work, a classification of postural monitoring 
devices based on their location has been proposed. Thus, 
they are classified into systems located in the environ-
ment, systems located on the user, and systems located on 
the assistive device. The latter, mostly composed of pres-
sure sensors discretely located, stand out above the rest 
as they allow for non-intrusive monitoring, maintaining 

the portability of the monitoring device. However, for 
proper monitoring it is necessary to determine the exact 
position of these sensors, so further research is needed in 
this area.

With these devices, anomaly detection techniques have 
been applied for functional diagnosis. Traditionally, an 
approach has been adopted where any posture other than 
the correct one is considered an anomaly. Thus, the use of 
supervised techniques is prevalent, extensively employ-
ing classifiers based on various methods: rule-based tech-
niques, statistical techniques, and intelligent techniques. 
While the first two are simpler, they yield poorer results 
when monitoring a larger number of postures, exceeding 
8. Intelligent techniques, on the other hand, have proven 
to be more effective, albeit at the cost of losing interpret-
ability in the model’s decision-making process.

However, these classifiers based on supervised tech-
niques do not take into account the characteristic pos-
tural pattern of each individual. Given the importance 
of detecting changes in relation to a normal sitting pat-
tern that can indicate a change in the functional state of 
patients, a new approach is necessary. Classifiers only 
allow for the detection of incorrect postures. Nonethe-
less, in the proposed new approach, the sitting postural 
pattern is characterized individually for each user, and 
changes from this pattern are detected. Anomaly detec-
tion techniques can be categorized as supervised, semi-
supervised, and unsupervised. Unsupervised techniques 
are the most widely used in other domains and hold 
greater potential in the field of anomaly detection in sit-
ting posture, due, among other factors, to their ability 
to detect previously unknown anomalies, as well as not 
requiring a labeled database.

This is a relatively unexplored approach in the field of 
sitting posture, offering significant opportunities to sup-
port healthcare specialists. Therefore, a thorough analysis 
of the application of successfully used anomaly detection 
techniques in other domains is necessary when applied 
to the sitting posture of users with limited mobility. This 
approach can detect not only isolated anomalous behav-
iors but also sequential ones.

Thus, and in view of what has been explained through-
out this article, it is to be expected that future technologi-
cal advances will be in line with the two aspects described 
here: postural monitoring and anomaly detection.

Within the field of monitoring, it is to be expected 
that technological devices will allow adaptation to the 
seating cushion of each user. In this way, a thorough 
analysis must be carried out to determine not only the 
ideal location of the pressure sensors (the most suitable 
as we have seen in section  Sitting posture monitoring 
systems), but also to improve their implementation 
along the wheelchair user’s own sitting cushions. As 
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previously mentioned, pressure or force sensors require 
rigid surfaces for proper operation. However, the pos-
tural cushions of each user are composed of different 
materials (gel or air as an example), making it difficult 
to implement the sensors on them. In this way, the pos-
tural monitoring device will adapt to the user, and not 
the other way around. Currently, works have focused 
on healthy people, but it is to be expected that as future 
lines of research tend to analyze wheelchair users, 
research will not only focus on monitoring and detec-
tion of postural anomalies, but will also allow detec-
tion of anomalies in the course of their daily life, due to 
external agents among others.

On the other hand, within intelligent anomaly detec-
tion systems, future lines of research will tend to further 
explore anomaly detection methods using an individu-
alized approach. Firstly, since this is a completely new 
approach in the field of sitting posture anomaly detec-
tion, the near future will consist in the study of the meth-
odology and techniques that best suit the issues related 
to the detection of postural anomalies. Therefore, it is 
crucial to consider parameters such as the effectiveness 
of the methodology employed, regardless of the postural 
monitoring device, the implementation of technology in 
embedded systems, and the scalability of the systems in 
the face of new postural anomalies. Finally, within the 
medical field, works will focus on the direct implementa-
tion of the devices in patients, both in their own homes 
and in clinics.
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