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Abstract 

Background Children and adolescents with neuromotor disorders need regular physical activity to maintain optimal 
health and functional independence throughout their development. To this end, reliable measures of physical activity 
are integral to both assessing habitual physical activity and testing the efficacy of the many interventions designed 
to increase physical activity in these children. Wearable accelerometers have been used for children with neuromo‑
tor disorders for decades; however, studies most often use disorder‑specific cut points to categorize physical activ‑
ity intensity, which lack generalizability to a free‑living environment. No reviews of accelerometer data processing 
methods have discussed the novel use of machine learning techniques for monitoring physical activity in children 
with neuromotor disorders.

Methods In this narrative review, we discuss traditional measures of physical activity (including questionnaires 
and objective accelerometry measures), the limitations of standard analysis for accelerometry in this unique popu‑
lation, and the potential benefits of applying machine learning approaches. We also provide recommendations 
for using machine learning approaches to monitor physical activity.

Conclusions While wearable accelerometers provided a much‑needed method to quantify physical activity, standard 
cut point analyses have limitations in children with neuromotor disorders. Machine learning models are a more robust 
method of analyzing accelerometer data in pediatric neuromotor disorders and using these methods over disorder‑
specific cut points is likely to improve accuracy of classifying both type and intensity of physical activity. Notably, 
there remains a critical need for further development of classifiers for children with more severe motor impairments, 
preschool aged children, and children in hospital settings.
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Background
Children and adolescents need regular physical activity 
to maintain optimal health and functional independence 
throughout development. This is especially important 
for children and adolescents with neuromotor disorders, 
most commonly cerebral palsy (CP) and acquired brain 
injury (ABI). As these children stand to benefit substan-
tially from being more physically active, clinical research 
studies have prioritized the design of interventions that 
increase physical activity [1–5]. To determine the efficacy 
of these interventions, clinicians and clinical researchers 
first need reliable metrics to quantify physical activity in 
these children.

Though we have used accelerometers for decades to 
monitor habitual physical activity, previous reviews of 
these devices in children with neuromotor disorders have 
exclusively covered the traditional cut-point analysis [6–
12], which is not a one-size-fits-all approach. No reviews 
to date have discussed the applicability and potential util-
ity of machine learning techniques for monitoring physi-
cal activity in children with neuromotor disorders. These 
techniques have been the subject of systematic reviews 
in adults [13–18], but they have not yet been reviewed in 
unique pediatric populations, despite the clear potential 
for these children to benefit from more complex, mul-
tivariate, and machine learning methods [19]. In this 
review, we discuss traditional measures of physical activ-
ity (both subjective questionnaires and objective accel-
erometry measures), the limitations of standard analysis 
in this unique population, and the benefits of machine 
learning approaches. Furthermore, we provide recom-
mendations for employing these novel approaches using 
machine learning with wearable accelerometers to moni-
tor physical activity in a child’s real-world environment.

Neuromotor disorders in children
Children with neuromotor disorders can experience a 
wide variety of functional impairments corresponding 
to their neurological injury. Though insults to the nerv-
ous system can occur anywhere from the brain to the 
periphery, this review will focus on children with central 
neurological disturbances to the brain, namely ABI and 
CP. ABI includes any acquired injury to the brain, most 
commonly stroke and traumatic brain injury (TBI). CP 
is a non-progressive disorder due to brain injury in fetal 
development or infancy. While CP affects an estimated 2 
in 1000 infants, ABI is the leading cause of disability and 
mortality in children after infancy [20–22]. Combined, 
CP and ABI are the most common pediatric neuromotor 
disorders and the most common causes of physical dis-
ability in children. While the bulk of this review focuses 
on physical activity measures in school aged children, 

special considerations for preschool aged children are 
also briefly discussed.

In both CP and ABI, neurological injury can result in 
motor impairments, such as changes in muscle tone (e.g. 
spasticity, dystonia or hypotonia) and muscle weakness 
(e.g. hemiparesis), that can result in activity limitations 
(e.g. difficulty with walking or balance) [23, 24]. Hall-
mark non-motor symptoms, such as neuropsychological 
and sleep disorders, are also present in both populations 
[25]. Further, motor impairments and ability to ambu-
late in both groups have been measured using the Gross 
Motor Function Classification Scale (GMFCS). Some 
children may have only mild motor impairments, such 
as difficulties with running or jumping, while others may 
need assistance to complete all activities of daily living. 
Regardless of the severity of impairment, children with 
neuromotor impairments across the spectrum engage in 
less physical activity than their typically developing peers 
[10–12].

Physical activity in children with neuromotor 
disorders
Physical activity is a necessary part of any child’s devel-
opment, providing known neurological, cardiovascular, 
and musculoskeletal benefits. These benefits are par-
ticularly important for children with neuromotor disor-
ders [26]. Increasing physical activity levels can improve 
efficiency of movement, functional independence, and 
has even been shown to promote neurobehavioral func-
tion [27–29]. In children with CP, greater amounts of 
physical activity correlated with both greater happiness 
and quality of life [27]. Additionally, a recent systematic 
review of children with physical and intellectual dis-
abilities (including children with CP) reports a consistent 
positive association between physical activity and men-
tal health, including improved psychological well-being 
and reduced anxiety and fatigue [30]. With an increasing 
number of studies evaluating interventions to promote 
physical activity in children with neuromotor disorders 
[2, 31–33], reliable and valid measures of physical activity 
are crucial to assess baseline physical activity and to track 
physical activity over time [34].

Subjective measures of physical activity
The National Institute of Neurological Disorders 
(NINDS) and the CP Common Data Elements (CDE) 
Working Groups recommend self-reports of participa-
tion in children with CP, which is a broader, multifac-
eted measure of engagement in “life situations” that 
encompasses physical activity [35]. Of the recommended 
questionnaires, only the Activities Scale for Kids- Perfor-
mance version (ASKp) includes questions about physical 
activity. Though there are a vast array of available physical 
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activity questionnaires, many of them have proven unre-
liable for assessing habitual physical activity in children 
and adults with neuromotor disorders [36, 37]. One 
review found that only the ASKp (ages 5–15) and the 
Children’s Assessment of Participation and Enjoyment/
Preferences for Activities of Children (CAPE/PAC, ages 
6–21) were valid for use in children with neuromotor 
impairments [38]. Notably, however, these are participa-
tion measures not designed to quantify the actual amount 
of physical activity the child performs [39]. While these 
instruments have clinical utility, they are not considered 
valid metrics of physical activity specifically.

Furthermore, self- or parent-reported questionnaires 
are rarely used to assess physical activity in non-ambula-
tory children [38] or in children under the age of 6 [40]. 
In fact, parent-reported measures are not recommended 
for preschool children with CP, as the characteristic 
intermittent and fluctuating nature of physical activity at 
this age is often recorded inaccurately [41].

For older children, the International Physical Activity 
Questionnaire (IPAQ, an adult questionnaire designed 
to specifically quantify physical activity) has been used 
in adolescents and adults with CP, but not in children 
under 10 years [27, 42]. However, Kwon et al. found that 
participants with CP often exaggerated physical activity 
on the IPAQ [27] and Lavelle et  al. found IPAQ scores 
had poor agreement with more quantitative measures 
of physical activity, using research-grade wearable sen-
sors [42]. While the objective accelerometers in these 
studies measure physical activity more accurately, these 
devices can still be prone to error. Thus, previous stud-
ies have suggested using a combination of participation 
questionnaires, that provide clinically useful information 
about physical activity, and objective measures of physi-
cal activity using wearable devices (Fig. 1).

Objective measures of physical activity
Objective measures of physical activity are possible in 
both research and clinical settings with advancements in 
wearable technology. The most common activity moni-
tors are accelerometers and inertial measurement units 
(IMUs), which combine accelerometers with gyroscopes 
and magnetometers to provide more accurate joint 
movement data. In day-to-day life, commercially avail-
able, closed-source devices instead output simple step 
counts, heart rate, and distance walked (with the Fitbit, 
Apple Watch, and StepWatch) or time spent in an upright 
position (with the UpTimer) [38, 43–45]. Notably, these 
simplified outputs from commercial devices are based 
on algorithms developed on able-bodied adults, not chil-
dren with disabilities, and thus do not generalize well to 
specific pediatric populations. Some more advanced ver-
sions of these devices (e.g. Apple Watch 6, Fitbit Sense) 

provide estimates of energy expenditure, however, have 
low accuracy in even young, able-bodied adults when 
compared to validated accelerometers [46].

Though closed-source devices (e.g. StepWatch, 
UpTimer) have limited information about activity inten-
sity, open-source accelerometers (e.g. Actigraph, Axiv-
ity) can provide a more comprehensive assessment of 
activity [8]. For most open-source devices, raw accel-
erometry data is available in all three planes of motion 
(mediolateral, anteroposterior and longitudinal). Soft-
ware packages are used to filter and integrate acceler-
ometer data over a user-selected time period to obtain 
“activity counts.” These proprietary algorithms are nec-
essary to convert raw acceleration to a usable measure 
for both clinicians and researchers. Activity counts per 
minute are then used to estimate energy expenditure to 
determine time spent in activities of different intensities 
(sedentary, mild, moderate, vigorous intensity). Most 
often, these accelerometers are validated against energy 
expenditure using indirect calorimetry, a measure of oxy-
gen consumption during activity [47]. Most commonly, a 
regression analysis is performed to determine an equa-
tion that converts activity counts to oxygen consumption. 
Cut points are then established to group activity into 

Fig. 1 Objective measures of physical activity. Objective 
measures can use closed‑source devices (Apple Watch, Fitbit, etc.) 
or open‑source accelerometers (Actigraph, Axivity, etc.). Raw data 
is combined into a vector sum and then activity is categorized 
by intensity, using cut points for activity counts (a clinical measure 
of the sum of activity per period of time) or by machine learning 
to categorize activity type or intensity using select features 
of the accelerometer data
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activity intensities. Alternatively, some groups have used 
a series of receiver operating characteristic (ROC) curves 
to identify cut points based on sensitivity and specific-
ity of classifying physical activity intensity. Sedentary 
behavior is of increasing interest, with increasing time in 
sedentary behavior being a risk factor for cardiovascular 
disease regardless of activity time [8]. However, the pri-
mary interest is often time spent in moderate-to-vigor-
ous activity (MVPA). While using cut points remains the 
most common approach for accelerometry analysis, this 
methodology has its limitations.

Challenges with standard accelerometry analysis
Children with motor impairments rarely fit well into the 
physical activity intensity categories used for typically 
developing children. To account for this variability, accel-
erometers have been validated in a multitude of different 
populations in pediatrics, varying by age and condition. 
For ambulatory children with ABI (ages 8–16), specific 
intensity cut points have been validated in controlled 
laboratory settings [48] and demonstrated good reliabil-
ity with measures of heart rate when a set of standardized 
tasks were performed in community settings, as well. 
However, the authors noted this required 1–2 extra days 
of recording to reach the same reliability seen with typi-
cally developing children [49]. Cut points have also been 
developed for ambulatory children with CP (ages 8–16), 
validated against oxygen consumption while performing 
specific laboratory activities [50]. Further, there are addi-
tional cut points for determining sedentary vs non-sed-
entary behavior in toddlers [51] and 4–5 year old children 
with CP [52]. Notably, these validity studies most often 
have children perform a set of specific activities (e.g. slow 
walking, brisk walking, and rapid stepping). How these 
cut points perform with free-living, or unstructured, 
activity is less clear. Even in typically developing children, 
cut points developed using structured activities in the lab 
have failed to generalize to free-living conditions [53, 54].

To add to the variability across studies, some studies 
use cut points validated for the specific population [55], 
while others use the age-adjusted cut points for typically 
developing children [56]. There are an increasing number 
of “choices” a researcher can make for cut points, leading 
to the “cut point conundrum” [47]. Since that time, the 
number of validation studies has increased, still using a 
variety of different calibration equations and cut points, 
exacerbating this conundrum. A review assessing sed-
entary behavior in children with disabilities, including 
neuromotor disorders, found that 26 of the 35 research 
articles included were published after 2013, suggesting 
a recent expansion of research in this area [57]. Further-
more, with constantly evolving and improving models of 
activity monitors, a more recent study argued for new 

population-specific cut points and equations for the most 
up-to-date accelerometers [58]. Because many of the 
calibration equations are proprietary, comparing studies 
using different brands of accelerometers has also proven 
challenging and requires extensive reverse engineering of 
the equations. In 2019, GGIR, an open-source package, 
was released that can harmonize data collection from 
raw accelerations across the three main accelerometer 
brands (ActiGraph by Actigraph LLC, GENEActiv by 
ActivInsights Ltd, and Axivity by Axivity Ltd) [59]. While 
the availability of this package may begin to alleviate 
challenges with comparing data across brands, the analy-
ses in this package are based on cut points developed for 
typically developing children. Even within accelerometry 
brands, however, differences in other data processing 
steps like filtering can further affect the movement sig-
nal for walking and running, especially in children [60]. 
Thus, recent reviews considering the wide-spread use of 
accelerometry in typically developing children suggest 
using raw accelerometry data in lieu of activity counts [9, 
61]. Novel methods of analysis can also be used with raw 
acceleration data, including machine learning for classi-
fying activity type.

Machine learning analysis
Machine learning methods are increasingly used in 
clinical research and may be particularly effective for 
data analysis with wearable sensors. Studies comparing 
machine learning to the standard cut point analysis have 
reported improvements in classifying intensity levels. 
Specifically, decision trees have been used to categorize 
activity intensity based on GMFCS level and accelerom-
eter data in children with CP [62]. For ambulatory chil-
dren, GMFCS I indicates no limitations, level II indicates 
some walking limitations, and level III indicates ambu-
lation with assistive devices in indoor settings. For non-
ambulatory children, GMFCS IV indicates the need for 
power mobility and level V indicates the need for assis-
tance with mobility in all settings.

Decision trees identify levels of accelerometer counts 
that best split the data into intensity subgroups. Trost 
et  al. found that these machine learning methods out-
performed cut points used in previous studies to clas-
sify activity intensity, with machine learning classifiers 
exceeding 80% classification accuracy [62]. This improve-
ment was more pronounced with lower-level ambulators 
(GMFCS level III), for which cut points miscategorized 
intensity 30% of the time for moderate-to-vigorous inten-
sity activities and 40% of the time for light intensity [62]. 
The variation in accuracy based on GMFCS level indi-
cates the need for analysis that varies by ambulation level 
to improve activity classification with accelerometers in 
children with neuromotor disorders.
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In addition to activity intensity, supervised machine 
learning methods are more often used to categorize types 
of activity using raw accelerometry data based on activ-
ity trials in a lab [13, 14]. Supervised methods are used to 
label input data based on known outputs, in this case cat-
egorize accelerometry features to known activity types. 
These techniques have also been applied for children with 
neuromotor disorders. For example, in ambulatory chil-
dren with CP (GMFCS I-III), models were developed to 
recognize activity class for seven different activity trials in 
lab-based scenarios [63]. Activities were categorized into 
classes: sedentary behaviors, standing utilitarian move-
ments, comfortable walking, and brisk walking. In chil-
dren with more severe neuromotor impairments who do 
not ambulate (GMFCS III–IV), machine learning models 
that used two or more accelerometers had the best clas-
sification of activity types (supine rest, upper-limb tasks, 
walking, wheelchair propulsion, and cycling) [64]. The 
random forest model (wrist and hip sensor placement) 
and support vector machine models (wrist, hip, and 
thigh sensor placement) classified activity with 92% and 
90% accuracy, respectively [64]. Though machine learn-
ing is most frequently used for classification of activities, 
machine learning regression models can also be used to 
estimate energy expenditure [68, 69] among other varia-
bles. However, these models have not yet been applied for 
physical activity in children with neuromotor disorders.

These supervised techniques perform well when clas-
sifying accelerometry data in a laboratory setting, but 
often fail to generalize when transferred to a free-living 
environment, frequently misclassifying typical day-to-
day activities. In free-living activity, children, especially 
pre-school aged [65], often play and are active in ways 
that fail to fit into laboratory categories. At this point, 
there are limited studies using machine learning in free-
living environments for children with neuromotor disor-
ders. A recent study by Ahmadi et al. evaluated the use 
of personalized machine learning models for classifying 
activity type in children with CP (GMFCS I-III) and the 
accuracy of these models when classifying activity in sim-
ulated free-living conditions [66]. Specifically, they evalu-
ated group models (trained on data from all subgroups of 
CP), GMFCS-level models (trained on data from children 
in the same GMFCS level), and fully-personalized models 
(trained on that individual’s data only). While assessing 
free-living activity attenuated all models’ accuracy, they 
found that the fully personalized random forest models 
showed improved classification accuracy over both the 
group and GMFCS-level models for GMFCS I–II [66]. 
For the children with more severe impairments (GMFCS 
III), the GMFCS-level model had the best perfor-
mance accuracy in the free-living environment [66]. Cut 
point based analyses also have reduced performance in 

classifying activity intensity in free-living environments, 
even when cut points were selected from free-living cali-
bration trials [67]. Thus, future studies should aim to vali-
date method performance during free-living activities.

Notably, there are potential limitations to using 
machine learning for accelerometry. For models that are 
trained on group-level data, large and diverse datasets 
are needed for improved generalizability to independent 
populations. To avoid overfitting and biased representa-
tions of model accuracy, datasets are split into a train-
ing/testing set and an unseen validation set. The model 
is then developed using the training set and tested using 
cross-validation methods (e.g. leave-one-out cross-val-
idation) and model performance is assessed using the 
unseen dataset (~ 30% of data) [13, 68]. If models are 
developed with the entire dataset, models are likely to 
overfit data and produce biased accuracy results. Addi-
tionally, the technical processing required with machine 
learning and expertise will require interdisciplinary col-
laboration of clinicians with engineers, computer sci-
entists, or other related researchers. Clinicians benefit 
from the use of machine learning, and the performance 
of machine learning models improves with the addi-
tion of expert knowledge from clinicians [69, 70]. While 
machine learning can improve physical activity moni-
toring in research settings and the market for more 
affordable open-source accelerometers is increasing, 
these technical and cost constraints may limit the use of 
machine learning and accelerometry in clinical practice.

Optimal sensor placements vary with analysis 
methodology
There is still debate about the optimal number and most 
appropriate placement of accelerometers to best catego-
rize activity intensity or activity type. Most studies on 
pediatric groups using standard cut point analysis use 
a single sensor on the hip [7, 8]. Alternatively, moni-
tors on the thigh have been used to classify time spent 
in different postures with excellent accuracy, including 
the UpTimer [38] and activPAL [67, 71], and some have 
found that thigh or back placement works best for pre-
school age typically developing children [72].

When using machine learning, however, most studies 
have found that a combination of at least 2 sensors is best 
for optimal classification accuracy. A study using machine 
learning models for physical activity in ambulant chil-
dren with CP found that the combination of sensors on 
the non-dominant wrist and the hip had improved clas-
sification accuracy over a single accelerometer at either 
position (86.2–89.0% combined vs. 82.7–85.5% hip only 
or 76.1–82.6% for wrist only) [63]. Furthermore, Ahmadi 
et al.’s study on personalized models for children with CP 
also evaluated three sensor placements: wrist, hip, ankle. 
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They found that the addition of the ankle sensor was use-
ful for evaluating differences in walking behavior [66]. 
On the other hand, Goodlich et al. found a combination 
of wrist and hip had over 10% improvement in classifi-
cation accuracy over using the wrist sensor alone, with 
no additional improvement with adding a third sensor 
[64]. Notably, data processing with multiple accelerom-
eters is more complex. Implementing weighted fusion 
approaches can optimize activity classification with data 
from multiple sensors [73].

Considerations for specific subgroups
Though most studies are limited to children who are 
ambulatory (GMFCS I–III), there is a growing body of 
work to capture habitual physical activity in non-ambu-
latory children [74–78]. A study of 12 children with 
neuromotor disorders who used wheelchairs, including 
children with CP and spina bifida, evaluated the ‘duration 
of active behavior,’ a measure of wheeled activities and leg 
activity. Most activities were classified with 6–10% error, 
with less accurate classifications in children with more 
severe impairments [75].

In addition to focusing on ambulatory children, most 
studies also focus on primary school aged children. 
Until recently, the studies using accelerometers in chil-
dren under 6 years old with neuromotor disorders were 
sparse [41, 77]. Though some studies have evaluated cut 
points in young children with CP [51, 52], those stud-
ies also warned against using group-level cut points for 
individual children. More recently, studies have started 
evaluating machine learning models in typically develop-
ing young children [53, 65, 79, 80], however future stud-
ies are needed to evaluate similar models with pre-school 
aged children with neuromotor disorders.

A potential benefit to using accelerometry in chil-
dren with neuromotor disorders, in particular children 
with ABI, is the ability to record progress and response 
to treatments in the days, weeks, and months following 
injury [81]. Thus, accelerometer use both at home and in 
acute and inpatient rehabilitation settings may facilitate a 
view of the full scope of recovery following brain injury. 
A recent study was conducted to evaluate rest: recovery 
ratios of children with ABI in inpatient rehabilitation 
[82]. They found that children with brain injuries had 
lower rest: recovery ratios, indicating poor sleep-to-wake 
regulation, and even lower ratios if they had poor func-
tional motor and cognitive scores at admission. Another 
study of children in the pediatric intensive care unit used 
accelerometry to assess sleep/wake cycles [83]. However, 
the focus of that study was to detect sleep regulation, 
not activity intensity [82, 83]. Studies on adults with ABI 
have been conducted to assess physical activity intensity 
and even evaluate specific features of raw accelerometry 

data in patients with severe brain injury [84–86]. Though 
promising, this research has not yet expanded to pediat-
ric populations.

Alternative objective measures
Though accelerometry is becoming more accessible, 
heart rate monitoring has long been discussed as an 
appealing alternative measure of physical activity [87]. 
Though these monitors have been used over hours or 
days in studies with adults with ABI [88] and children 
with a variety of neuromotor disorders [38, 49, 89–93], 
heart rate as an estimate of physical activity has its limi-
tations. In typically developing children, heart rate stays 
elevated following the cessation of exercise, leading to 
inflated amounts of activity time [94]. Furthermore, 
the linear relationship of heart rate and activity can be 
altered based on age, stress, and cardiovascular fitness 
[94]. These limitations are compounded in children with 
neuromotor disorders, as CP and ABI often have accom-
panying impaired autonomic responses. Children with 
ABI have altered cardiac autonomic responses and heart 
rate variability [95–98] and children with CP have higher 
resting heart rates, reduced heart rate variability, and dif-
ferent responses to movement than typically developing 
children [99]. These impairments affect the linear rela-
tionship of heart rate to energy expenditure during activ-
ity [98, 99] and the extent of these changes depend on the 
severity of the disorder, with non-ambulatory children 
experiencing more severe impairments in autonomic 
responses than ambulatory children [88, 100, 101]. Thus, 
while the use of heart rate monitors can provide valuable 
information about heart rate variability, which has been 
used in prognosis of functional improvements follow-
ing pediatric brain injury [97, 102], activity monitors are 
preferable for quantifying physical activity.

Conclusion
Physical activity is a necessary part of any child’s devel-
opment, and particularly critical for children with neu-
romotor disorders. Despite the heightened need for 
activity in children with ABI and CP, they often have 
markedly lower physical activity rates than their peers. 
A reliable measure of habitual physical activity is cru-
cial for both assessing physical activity and evaluat-
ing interventions to increase physical activity in these 
populations. Though questionnaires of participation in 
activities provide clinically useful information, these 
measures lack validity when measuring physical activity 
in children with CP and ABI. Wearable accelerometers 
are an objective measure of physical activity; however, 
these devices are still subject to errors and the standard 
methods of classifying time spent in different activity 
intensities have several limitations. We recommend a 
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combination of subjective participation questionnaires 
and objective accelerometry data to obtain the most 
complete picture of activity. The combination of sub-
jective and objective measures is crucial for designing 
interventions to promote physical activity, where the 
addition of subjective participation questionnaires can 
identify potential motivators or barriers for children 
with neuromotor disorders. Additionally, it may be cost 
prohibitive to purchase accelerometers for clinical use 
and thus subjective questionnaires are still able to pro-
vide some information about physical activity in clini-
cal contexts. However, as machine learning becomes 
more ubiquitous in this field, these algorithms may 
be either built into the devices themselves or become 
readily packaged in software programs, thus alleviating 
some of these barriers.

Prioritizing novel machine learning models over cut 
point analyses may improve accuracy of classifying 
activity type and intensity, however further research 
is necessary in free-living conditions in children with 
neuromotor disorders to ensure carry-over outside 
of the lab. Though adding a second sensor marginally 
improves classification accuracy, a single accelerometer 
may be preferable for children with neuromotor disor-
ders, given the additional data processing and partici-
pant burden of wearing a second sensor. Additionally, 
consider using GMFCS-level or personalized models, 
in lieu of group-level models, especially when assessing 
physical activity in children with more severe impair-
ments. With young children and children who do not 
ambulate, machine learning to classify activity type is 
preferred to using cut points. Finally, further develop-
ment of classifiers for children with more severe motor 
impairments, preschool aged children, and children in 
different hospital settings is necessary. Machine learn-
ing provides a more robust method of accelerometer 
data collection, allowing for improvements in classifi-
cation accuracy and a wider variety of use cases over 
standard cut point analyses.
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