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Abstract 

Background Conventional diagnostic methods for dysphagia have limitations such as long wait times, radiation risks, 
and restricted evaluation. Therefore, voice‑based diagnostic and monitoring technologies are required to overcome 
these limitations. Based on our hypothesis regarding the impact of weakened muscle strength and the presence 
of aspiration on vocal characteristics, this single‑center, prospective study aimed to develop a machine‑learning algo‑
rithm for predicting dysphagia status (normal, and aspiration) by analyzing postprandial voice limiting intake to 3 cc.

Methods Conducted from September 2021 to February 2023 at Seoul National University Bundang Hospital, this 
single center, prospective cohort study included 198 participants aged 40 or older, with 128 without suspected dys‑
phagia and 70 with dysphagia‑aspiration. Voice data from participants were collected and used to develop dysphagia 
prediction models using the Multi‑Layer Perceptron (MLP) with MobileNet V3. Male‑only, female‑only, and combined 
models were constructed using 10‑fold cross‑validation. Through the inference process, we established a model capa‑
ble of probabilistically categorizing a new patient’s voice as either normal or indicating the possibility of aspiration.

Results The pre‑trained models (mn40_as and mn30_as) exhibited superior performance compared to the non‑
pre‑trained models (mn4.0 and mn3.0). Overall, the best‑performing model, mn30_as, which is a pre‑trained model, 
demonstrated an average AUC across 10 folds as follows: combined model 0.8361 (95% CI 0.7667–0.9056; max 
0.9541), male model 0.8010 (95% CI 0.6589–0.9432; max 1.000), and female model 0.7572 (95% CI 0.6578–0.8567; max 
0.9779). However, for the female model, a slightly higher result was observed with the mn4.0, which scored 0.7679 
(95% CI 0.6426–0.8931; max 0.9722). Additionally, the other models (pre‑trained; mn40_as, non‑pre‑trained; mn4.0 
and mn3.0) also achieved performance above 0.7 in most cases, and the highest fold‑level performance for most 
models was approximately around 0.9. The ‘mn’ in model names refers to MobileNet and the following number indi‑
cates the ‘width_mult’ parameter.

Conclusions In this study, we used mel‑spectrogram analysis and a MobileNetV3 model for predicting dysphagia 
aspiration. Our research highlights voice analysis potential in dysphagia screening, diagnosis, and monitoring, aiming 
for non‑invasive safer, and more effective interventions.

Trial registration: This study was approved by the IRB (No. B‑2109‑707‑303) and registered on clinicaltrials.gov (ID: 
NCT05149976).
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Introduction
Dysphagia is a difficulty in swallowing food normally due 
to impaired movement in swallowing-related organs, 
which increases the risk of food passing into the air-
way [1]. The most common diagnostic method, the 
Videofluoroscopic Swallowing Study (VFSS), requires 
specialized equipment typically found only in hospitals, 
resulting in long wait times and radiation risks [2–4]. In 
addition to the VFSS, various other diagnostic methods 
for dysphagia, such as Fiberoptic Endoscopic Evaluation 
of Swallowing (FEES), manomety, and laryngeal electro-
myography. However, each of these methods has its own 
limitations. [5–9] For example, FEES can only evaluate 
the pharyngeal stage and carries the risk of complications 
such as anterior or posterior epistaxis, and laryngospasm. 
[6] Meanwhile, manometry requires invasive procedures, 
and both manometry and laryngeal electromyography 
remain challenging to analyze [7–9]. Thus, the current 
dysphagia diagnostic methods in clinical settings are lim-
ited in their ability to continuously monitor changes in a 
patient’s condition over time [10].

The state of the art
To overcome the limitations of existing diagnostic test 
methods for dysphagia conducted in hospitals, such as 
VFSS, researches have focused on non-invasive testing 
methods for dysphagia, particularly aspiration, in various 
previous studies. The 3-oz water swallow test showed a 
sensitivity of 59–96.5% and specificity of 15–59% when 
compared with VFSS and FEES [11–13]. The Gugging 
swallowing screen test had a sensitivity of 100% and a 
specificity of 50–69% in acute stroke patients [14]. Sensi-
tivity and specificity for dysphagia based on language and 
speech-related dysfunctions were reported as follows: 
aphasia (36% and 83%, respectively), dysarthria (56% and 
100%, respectively), and a combination of variables (64% 
and 83%, respectively) [15]. Dysphonia, dysarthria, gag 
reflex, cough, and voice changes were used as diagnos-
tic performance measures [16]. Other screening tools, 
such as the Functional Oral Intake Scale (FOIS), modified 
Mann assessment of swallowing ability test, and volume-
viscosity swallow test (V-VST), etc., were also developed 
and subjected to performance validation [13, 17–25].

While predictive performance varies depending on 
the research techniques, all of them require expert 
intervention for accurate diagnosis and monitor-
ing, which limits their applicability for everyday life 

monitoring. Therefore, recent research endeavors to 
develop technologies for diagnosing and monitor-
ing patients with dysphagia using their voices, driving 
researchers to explore novel approaches in clinical set-
tings [26–31]. The efforts to utilize patients’ voices in 
diagnosing dysphagia were influenced by alterations in 
airway vibrations caused by food aspiration, resulting 
in changes in voice quality and parameters [24, 31, 32]. 
Most previous studies on voice analysis in patients with 
dysphagia have focused on analyzing frequency pertur-
bation measures (Relative Average Perturbation (RAP), 
Jitter percent, Pitch Period Quotient (PPQ), etc.), 
amplitude perturbation measures (Shimmer Percent 
(SHIM), Amplitude Perturbation Quotient (APQ), etc.), 
and noise analysis (Noise to Harmonic Ratio (NHR)) to 
differentiate between high- and low-risk groups due to 
aspiration into the airway [26–31]. Additionally, vocal 
intensity (Maximal Voice Intensity (MVI)) and vocal 
duration measures (Maximum Phonation Time (MPT)) 
were used as voice analysis indicators [26]. Moreover, 
some studies have analyzed the correlations between 
these measures and established clinical diagnostic indi-
cators for dysphagia, such as the Penetration-Aspira-
tion Scale (PAS), Videofluoroscopic Dysphagia Scale 
(VDS), and American speech-language-hearing asso-
ciation national outcome measurement system swal-
lowing scale (ASHA-NOMS) [26]. Some studies have 
employed the Praat program to extract these sound 
parameters and analyze each indicator, either using 
voice-only or combining voice with clinical data indica-
tors, trained with algorithms such as Logistic Regres-
sion, Decision Tree, Random Forest, Support Vector 
Machine (SVM), Gaussian Mixture Model (GMM), 
and XGBoost [27]. Another study reported the results 
of dysphagia prediction using specific phonation or 
articulation features trained using SVM, random forest, 
and other methods [28]. However, these studies often 
extracted specific vocal numerical parameters rather 
than analyzing the patient’s voice itself, which may limit 
their universal application in diagnosis and monitoring.

We hypothesized that patients with dysphagia may 
experience changes in their voice due to weakened 
muscles and aspiration below the vocal folds. Addition-
ally, it is assumed that a more precise assessment can be 
achieved through the application of machine learning 
to analyze patients’ voices. Based on this hypothesis, 
the primary objective of this study was to explore the 
efficacy of machine learning into predicting dysphagia 
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by analyzing the post-prandial voices of patients. In 
this study, we developed a dysphagia prediction model 
using the entire voices of patients, represented as mel-
spectrograms. Furthermore, we applied the Efficient 
Pre-trained CNNs for Audio Pattern Recognition (Effi-
cientAT model, MIT license) algorithm, developed 
for audio classification problems, to our dysphagia 
data [33, 34]. The significance of this study is high-
lighted by our analysis of the entire voice of patients 
using mel-spectrograms and applying the EfficientAT 
model for the first time in a clinical setting for patients 
with dysphagia. The ultimate goal was to establish the 
groundwork for the future development of an advanced 
dysphagia diagnosis and monitoring system.

Methods
Study design
This single-center, prospective study was conducted from 
October 2021 to February 2023 at the Seoul National 
University Bundang Hospital. The study protocol was 
approved by the Seoul National University Bundang Hos-
pital Institutional Review Board (IRB No.: B-2109-707-
303, First approval date: 2021.09.01, Approval expiration 
date: 2024.08.31, Actual study start date: 2021.10.07, 
Actual study completion date: 2023.02.28, Research type: 
Investigator Initiated Trial (IIT)) and registered at clini-
caltrials.gov (ClnicalTrial.gov ID: NCT05149976, Initial 
release: 2021.11.01, Last release: 2023.05.09). Participants 
with dysphagia symptoms underwent Videofluoroscopic 
Swallowing Study (VFSS), and with their guardians, 
received research information and consent forms from 
occupational therapists. Considering future applica-
tions in medical device development and the difficulties 
in recruiting normal participants in the hospital, addi-
tional healthy volunteers were recruited through notices 
on in-house bulletin boards and online announcements. 
The skilled occupational therapist and clinical dietitian 
provided detailed study explanations before obtain-
ing informed consent. The two clinicians made the final 
determination of eligibility for study participation based 
on a comprehensive review, considering factors like age, 
gender, underlying conditions, signs of dysphagia, and 
VFSS results. This study was conducted in accordance 
with the strengthening the reporting of observational 
studies in epidemiology (STROBE) guidelines.

Participants
The inclusion criteria for selecting study subjects are as 
follows: patients (1) who have signs and symptoms of 
dysphagia and are scheduled for VFSS, (2) can record 
‘Ah ~ for 5 s’, and (3) healthy volunteers without dyspha-
gia symptoms who can record voice as a normal. The 
exclusion criteria were as follows: (1) inability to speak 

according to the researcher’s instructions, (2) patients 
whose VFSS was reexamined, and (3) serious voice dis-
orders (such as vocal nodules, vocal fold paralysis, vocal 
fold muscle tension dysphonia, etc.).

The determination of normal in healthy volunteers was 
made through telephone interview surveys that recorded 
the presence or absence of dysphagia symptoms, as well 
as age, gender, and comorbid conditions. Among those 
assessed with VFSS, normal or the presence of aspira-
tion was classified based on the results of the VFSS: indi-
viduals with the Penetration-Aspiration Scale (PAS) 1 
were considered normal, while those with the PAS 5–7 
were classified as aspiration. The results for 126 partici-
pants (53 normal, 73 aspiration) who underwent VFSS 
were assessed based on images, interpreted by two clini-
cal physicians. A reliability test yielded a Cohen’s Kappa 
coefficient of 0.87. The final determination of the degree 
of dysphagia was made by consensus between two clini-
cians. Voice recordings were obtained with the consent 
of 285 participants, including 159 individuals without 
suspected dysphagia (healthy volunteers) and 126 who 
underwent VFSS because of suspected dysphagia aspira-
tion. In the patient group, 1 participant aged < 40  years 
was included in the aspiration subgroup. To eliminate 
age-related bias in the patient’s voice-based predictive 
model, 79 participants under the age of 40  years (com-
prising 75 participants without suspected dysphagia, 3 
participants from the normal group by VFSS examina-
tion, and 1 participant from the aspiration group) were 
excluded from the study population. 8 participants (2 
participants without suspected dysphagia, 4 participants 
from the normal group by VFSS examination, and 2 par-
ticipant from the aspiration group) with poor audio qual-
ity were excluded from the collected recordings. The final 
study population consisted of 198 participants, catego-
rized into the normal group (128 participants, including 
both individuals without suspected dysphagia and those 
who received a normal diagnosis based on VFSS), and the 
aspiration group (70 participants), based on VFSS inter-
pretations by physicians. Figure  1 shows detailed flow 
chart of the recruitment of research subjects.

Voice recording procedures
After obtaining consent from the patient, a VFSS was 
performed using the modified Logemann protocol which 
is commonly used in domestic hospitals, to evaluate dys-
phagia. [35] During the test, the patient was instructed to 
repeat the sound ’Ah ~ ’ once or more for at least 5 s after 
consuming water, fluid thickening with level 3 (FT3), liq-
uid food (LF), semi-blended diet (SBD), small fluid (SF), 
and yoplait (YP), while their voice was recorded using 
a Sony ICD-TX660 recorder (bit resolution: 16 bit, bit 
rate range: 32–192 kbps, actual recorded bit rate: 64 
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kbps, sampling frequency: 44.1  kHz, microphone band-
width: 95–20,000  Hz, recording: stereo) while limiting 
intake to 3  cc. Researchers instructed the participants 
from outside the soundproof window in the VFSS exami-
nation room, ensuring an environment isolated from 
external noise. For the healthy volunteers, which con-
sisted of subjects without dysphagia, their voices were 
recorded in a separate, noise-reduced room under the 
guidance of the researchers, and once or more for at least 

5 s after drinking water using a voice recording function 
on a mobile device. The recording was conducted with 
the recording device placed on the upper sleeve of the 
patient’s clothing.

The similarity between devices was assessed by pre-
processing voice data as outlined in the Voice Data 
Preprocessing section, and then converting it into Mel 
spectrograms to test using cosine similarity. This method 
measures the similarity between two datasets by utilizing 

Fig. 1 Flowchart of the dysphagia voice cohort
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the cosine angle between two vectors. Additional file  1: 
Table S1 highlights the negligible impact of devices and 
positions, adhering to the study’s protocol. The Sony 
recorder was exclusively used at the upper sleeve posi-
tion, whereas the mobile phones (Samsung and iPhone) 
were assessed at three distinct locations: the examin-
er’s upper sleeve, on a table, and in front of the mouth. 
This method enabled a direct comparison of data from 
mobile phones at each location with the Sony recorder’s 
sleeve data and assessed the cosine similarity between 
the mobile phones across the three positions. Additional 
file 2: Table S2 further investigates the effect of position 
within the same device, presenting results from record-
ings at the three positions and specifically focusing on 
the positional impact within each device. This compre-
hensive analysis determined that device type, and posi-
tion have a minimal effect on audio quality. All devices, 
including Samsung phones, iPhones, and the Sony 
recorder, showed similarity scores above 0.8, indicat-
ing no significant variance between devices or positions 
when subjected to the same preprocessing techniques. 
The testing was conducted by recording simultaneously 
with the same protocol and subject using three differ-
ent recorders and then assessing the similarity of the 
recorded data.

In total, 403 voice files were collected, consisting of 210 
files from the normal group (64 files for men, 146 files for 
women) and 193 files from the aspiration group (147 files 
for men, 46 files for women).

Voice data preprocessing
Following the procedure outlined in Fig.  2, preprocess-
ing was conducted on the voice data, and based on this, a 
machine learning model was constructed.

Step 1. Initial data cleaning in voice recording
To minimize background noise and external voices, all 

audio data was initially reviewed individually by research-
ers, and segments with excessive noise or external voices 
were uniformly trimmed.

Step 2. Conversion of voice data format
To make audio files suitable for machine learning and 

minimize bias due to recording environments, we per-
formed two steps: (1) Files recorded in stereo (due to 
the characteristics of the Sony recorder) were all con-
verted to mono. To minimize data loss, each side’s data 
(right and left) was split to form two mono files. Files 
originally recorded in mono were used as is. (2) For voice 
data standardization, audio files in various formats like 
wav, m4a, and mp3 were all converted to a unified for-
mat of mp3 at 64kbps. As a result, 673 data files (287 
normal group files: men (94 files), women (193 files), 386 
aspiration group files: men (294 files), women (92 files) 
were converted to mp3 format and utilized for model 

development. We analyzed the degree of data loss result-
ing from the compression of original audio files into 
64kbps mp3 format across various file extensions. This 
analysis, detailed in Additional file  3: Table  S3, utilized 
Mean Squared Error (MSE) and Peak Signal-to-Noise 
Ratio (PSNR) to evaluate the loss. The process confirmed 
the differences between the original audio data and the 
mp3 64kbps converted data, directly from the waveform 
of the source audio itself, prior to the preprocessing 
described in Step 5. The average MSE for the entire audio 
source was calculated to be Mean ± SD (0.0002 ± 0.0002), 
and the PSNR was Mean ± SD (35.95 ± 3.76). Given that 
a PSNR between 30 to 40 dB is indicative of good qual-
ity preservation, according to the literature, and quality 
should be maintained without a degradation exceeding 
10 to 20 information bits, this suggests that the conver-
sion process to mp3 at 64kbps effectively preserves good 
quality without resulting in significant loss. [36]

Step 3. Creation of train and test dataset for k-fold cross 
validation

The mp3-formatted data were divided into training and 
testing sets in a ratio of approximately 9:1 for each group. 
For 10-fold cross-validation, the data has been divided 
into ten subsets based on individuals in each group. 
In other words, data from the same person is grouped 
together in the same fold. The range of these sections was 
varied to create 10-fold cross-validation datasets.

Step 4. Conversion of voice data to hdf5 format for 
model training

To train MobileNet V3 with an Efficient Pre-trained 
CNNs for Audio Pattern Recognition (EfficientAT 
model, MIT license), we converted the data into a suit-
able format. This was achieved by modifying the create_
h5pymp3_dataset.py code from PaSST: Efficient Training 
of Audio Transformers with Patchout (PaSST, Apache-2.0 
license) research and transforming the training/test data 
into HDF5 format files [37, 38]. The structure of the 
transformed HDF5 data consisted of the audio file name, 
audio data information in mp3 format, and labeled infor-
mation on normal, or aspiration in numeric form.

Step 5. Preprocessing of voice data
Voice preprocessing was conducted using an Effi-

cientAT model, which is widely utilized for audio 
classification tasks [33, 34] This process involved 
defining the ‘MelSTFT’ class for converting audio 
waveforms into Mel spectrogram format suitable for 
machine learning. It consists of several steps, includ-
ing pre-emphasis filtering, short-time Fourier trans-
form (STFT), power magnitude computation, and a 
Mel frequency filter bank. The hyperparameters, such 
as the number of mels (128), sample rate (32,000), 
window length (640), hop size (320), and the number 
of Fast Fourier Transforms (FFT, 640), control the 
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preprocessing process. With the given hyperparam-
eters, the time shift (hop size) is 10 ms, and the win-
dow length is 20 ms. The parameters used for analysis 
were set considering the available GPU capacity, the 
recorder’s LPCM (Linear Pulse Code Modulation, 
44.1  kHz), performance, and the storage capacity of 
the final model. In summary, this process enables to 
transform audio data into a perceptually related Mel-
spectrogram representation.

Development of dysphagia prediction models
MobileNet V3 was utilized as the machine learning tech-
nique for voice training. Binary cross entropy with logits 
loss was used as the loss function to evaluate the predic-
tive performance of the algorithm [33, 34]. The two pre-
trained models were named mn30_as, and mn40_as in 
accordance with the width_mult and hyperparameters 
in the EfficientAT model. Similarly, two non-pre-trained 
models were designed with the same width_mult and 

Fig. 2 Overview of voice data preprocessing and modeling.  The voice data collected from normal and aspiration subjects is preprocessed 
through the following steps, then used to create a prediction model through training, and subsequently evaluated using 10‑fold Cross‑Validation

 1) Initial Data Cleaning in Voice Recording: To reduce background noise and external voices, researchers individually reviewed all audio data 
and removed segments with excessive noise or external voices

 2) Voice Data Format Conversion: To standardize audio files for machine learning and reduce bias from recording environments, we converted 
stereo files to two separate mono files and standardized all audio formats to mp3 at 64kbps

 3) Train, Test split: The mp3‑formatted data were split into training and testing sets in a 9:1 ratio and then divided into ten subsets for 10‑fold 
cross‑validation, ensuring data from the same individual remained in the same fold

 4) Converting to HDF5 Format: We converted voice data into HDF5 format, structuring the data information with audio file names, audio (mp3) 
information, and numerical labels for normal or aspiration

 5) Preprocessing of Voice Data: Voice preprocessing was conducted using the EfficientAT model, involving transformation into Mel spectrograms 
with specific hyperparameters and techniques like STFT

 6) Development Prediction Models and 10‑fold Cross‑Validation: MobileNet V3 was used for voice training with binary cross‑entropy loss, 
comparing pre‑trained (mn30_as, mn40_as) and non‑pre‑trained (mn3.0, mn4.0) models and predictive performance, validated using 10‑fold 
cross‑validation and trained with specific settings including MLP head type
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hyperparameters as the pre-trained models, and were 
uniformly named mn3.0, and mn4.0, respectively. In the 
naming of models, ’mn’ stands for MobileNet, a type of 
neural network architecture designed for use in mobile 
and embedded applications. The number that follows 
’mn’ represents the ’width_mult’ parameter. For exam-
ple, ’mn40_as’ and ’mn4.0’ indicate that the ’width_mult’ 
parameter is set to 4.0. This particular parameter is cru-
cial as it adjusts the width of the network, thereby directly 
influencing the overall size and computational demands 
of the model. Maintaining consistency with the naming 
convention of the precedent code, we have employed 
this same system in the EfficientAT model. Essentially, 
this method of naming helps in quickly identifying the 
architectural features and complexity of the model [33, 
34]. In  situations where the dataset is limited, non-pre-
trained models may encounter challenges in effectively 
extracting features [39, 40]. Therefore, this study con-
ducted a comparison between the pre-trained and non-
pre-trained models [33, 34]. The model constructed in 
this manner was validated for prediction accuracy using 
a k-fold cross-validation with k = 10. All the models 
were trained for 12 number of workers, 150 epochs, and 
64 batch sizes. The learning rate, using a learning rate 
scheduler, was initially maintained at a constant 5.00e-5, 
then began to decrease from around epoch 100 to 105, 
ultimately reaching a final learning rate of 5.00e-7. Head 
type has been set to Multi-Layer Perceptron (MLP).

Outcome variables
The primary outcome of this study is the Area Under the 
ROC Curve (AUC), considering the imbalanced distribu-
tion of data among groups in the medical field. The ROC 
curve visually shows how well the model distinguishes 
between actual aspiration and normal cases by plotting 
the true aspiration rate against the false normal rate, 
while the AUC, which varies between 0 and 1, measures 
this distinction’s accuracy, with values closer to 1 signify-
ing more accurate predictions. Additionally, the degree of 
prediction for the model was analyzed from the perspec-
tives of accuracy, mean average precision (mAP), sensi-
tivity, specificity, precision, F1-score, loss, train accuracy, 
and train loss, and a final model was established. Accu-
racy is how often the model is right, the ratio of accurate 
predictions out of all predictions made. The mAP aver-
ages out the precision (the proportion of true positive 
predictions out of all positive predictions) for each class 
(like normal or aspiration) to get an overall score. Sensi-
tivity checks how many of the actual aspiration cases the 
model correctly identified out of all the possible aspira-
tion cases. Specificity measures how many of the actual 
normal cases the model correctly identified out of all the 
possible normal cases. Precision shows how many of the 

model’s predicted aspiration are actually aspiration. The 
F1 score is a balanced average of precision and sensitiv-
ity. The loss is calculated using Binary Cross Entropy 
with Logits that quantifies the discrepancy between the 
model’s predicted probabilities and the actual values for 
binary classifications. Train accuracy and train loss per-
tain to training datasets, while all other parameters are 
designated for assessing test datasets.

Statistical analysis
In the Demographic characteristics section, we analyzed 
the distribution of gender and age in each group, which 
could influence individual voice characteristics, before 
training on the voice data. We also presented six catego-
ries of comorbid conditions that may accompany dyspha-
gia, based on previous studies [41–43]. The distributions 
of gender and comorbid conditions were presented as 
categorical variables using Number (%) and tested using 
the chi-square test. Age, a continuous variable, was ana-
lyzed using Mean ± Standard Deviation (SD) and tested 
with the non-parametric Mann–Whitney U test due to 
violations of normality and sphericity, as indicated by 
the Shapiro–Wilk and Mauchly’s tests, respectively. The 
significance level for these variables was set at p < 0.05, 
reflecting the conventional balance between the risks of 
Type I and Type II errors. Model performance was pri-
marily measured using the AUC, along with other met-
rics including accuracy, mAP, sensitivity, specificity, 
precision, F1-score, loss, train accuracy, and train loss, to 
provide a comprehensive view of the model’s predictive 
performance. To enhance the model’s validity, given the 
variability in human voices, each performance metric was 
calculated for each fold and then presented as an average, 
with a 95% confidence interval and maximum perfor-
mance across 10 folds. All the analyses were conducted 
using Python and Google Colaboratory Pro + GPU A100. 
Statistical analysis and machine learning modeling were 
conducted between January and December 2023.

Results
Demographic characteristics
Table 1 shows the demographic characteristics of all the 
study subjects.

Model performance
For the 10-fold cross-validation, male-only, female-only, 
and combined (men + women) models were constructed. 
Table 2 shows the average predictive performance of the 
combined (men + women) model across 10 folds. Regard-
ing the primary outcome, the average AUC values were 
mn40_as = 0.8275 (95% CI 0.7643–0.8908; max in 10 folds 
0.9500) and mn30_as = 0.8361 (95% CI 0.7667–0.9056; 
max in 10 folds 0.9541) for the pre-trained models and 



Page 8 of 16Kim et al. Journal of NeuroEngineering and Rehabilitation           (2024) 21:43 

mn4.0 = 0.8039 (95% CI 0.7378–0.8700; max in 10 folds 
0.9691), mn3.0 = 0.8177 (95% CI 0.7601–0.8753; max in 
10 folds 0.9561) for the non-pre-trained models. Owing 
to the smaller amount of available data, the pre-trained 
models (mn40_as and mn30_as) demonstrated higher 
performance than the non-pre-trained models (mn4.0 
and mn3.0). In addition, all models consistently showed 
high prediction accuracy in analyzing a person’s voice, 
with metrics such as accuracy, mAP, sensitivity, specific-
ity, precision, and F1-score exceeding approximately 70% 
or 0.7.

Table  3 presents the average predictive performance 
for each gender (men and women) across the 10 folds. 

The average AUC values for the pre-trained model, using 
mn40_as, were 0.7550 (95% CI 0.6056–0.9045; max in 
10 folds 1.0000) and 0.7622 (95% CI 0.6169–0.9075; 
max in 10 folds 1.0000) for the male and female model, 
respectively. Additionally, for the pre-trained model 
using mn30_as, the AUC values were 0.8010 (95% CI 
0.6589–0.9432; max in 10 folds 1.0000) and 0.7572 (95% 
CI 0.6578–0.8567; max in 10 folds 0.9779) for the male 
and female models, respectively. For the non-pre-trained 
model, using mn4.0, the AUC values were 0.7429 (95% CI 
0.6262–0.8596; max in 10 folds 1.0000) and 0.7679 (95% 
CI 0.6426–0.8931; max in 10 folds 0.9722) for the male 
and female models, respectively. For the non-pre-trained 

Table 1 Demographic characteristics

* The Chi-square test results show a significant difference. To address gender bias, separate models were constructed for each gender (male and female). The data was 
then divided into 10 folds for each gender. After that, the results were combined in the gender-neutral model, effectively removing any gender-related biases
** The Mann–Whitney U test results indicate a significant difference between the two groups. However, to eliminate bias, participants under the age of 40 were 
excluded from the analysis
*** Regarding the comorbid conditions, a Chi-square test was conducted for analysis. While there are no significant differences observed among females, statistically 
significant differences are found in the overall dataset or males. However, vocal fold-related conditions were excluded, and dysphagia can occur in conjunction with 
various other conditions, which may account for differences when compared to the normal group

Normal Aspiration p-value

Gender (N (%))

 Men 41 (32.03%) 52 (74.29%)  < 0.001*
(χ2: 30.76, df: 1) Women 87 (67.97%) 18 (25.71%)

Age (mean ± SD)

 Total 61.16 ± 13.00 72.30 ± 12.03  < 0.001**

 Men 63.27 ± 13.57 72.25 ± 11.68 0.001**

 Women 60.16 ± 12.66 72.44 ± 13.34 0.001**

Comorbid conditions (N (%))

 Total

  Central nervous system disorders 17 (13.28%) 18 (25.71%)  < 0.001***
(χ2: 36.10, df: 5)  Digestive system and dental disorders 3 (2.34%) 12 (17.14%)

  Pulmonary disorders 4 (3.12%) 9 (12.86%)

  Other cancers 7 (5.47%) 3 (4.29%)

  Aging‑related disorders 12 (9.38%) 8 (11.43%)

  None 85 (66.41%) 20 (28.57%)

Men

  Central nervous system disorders 5 (12.20%) 11 (21.15%) 0.002***
(χ2: 18.54, df: 5)  Digestive system and dental disorders 1 (2.44%) 12 (23.08%)

  Pulmonary disorders 2 (4.88%) 8 (15.38%)

  Other cancers 2 (4.88%) 2 (3.85%)

  Aging‑related disorders 5 (12.20%) 6 (11.54%)

  None 26 (63.41%) 13 (25.00%)

Women

  Central nervous system disorders 12 (13.79%) 7 (38.89%) 0.140***
(χ2: 8.31, df: 5)  Digestive system and dental disorders 2 (2.30%) 0 (0.00%)

  Pulmonary disorders 2 (2.30%) 1 (5.56%)

  Other cancers 5 (5.75%) 1 (5.56%)

  Aging‑related disorders 7 (8.05%) 2 (11.11%)

  None 59 (67.82%) 7 (38.89%)
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model using mn3.0, the AUC values were 0.6905 (95% CI 
0.5358–0.8451; max in 10 folds 1.0000) and 0.7100 (95% 
CI 0.5595–0.8605; max in 10 folds 0.9559) for the male 

and female models, respectively. Figure  3 presents the 
average ROC across 10 folds for each model.

Table 2 The levels of prediction for combined (men + women) model

* All metrics represent the predictive performance on the Test Data except Train accuracy, and Train loss. The results presented in this table are the average predictive 
performance (95% CI) across all folds of each model after performing tenfold cross-validation

Model Pre-trained models Non-pre-trained models

mn40_as mn30_as mn4.0 mn3.0

AUC (Area under the curve)

AUC average
(95% CI)

0.8275
(0.7643, 0.8908)

0.8361
(0.7667, 0.9056)

0.8039
(0.7378, 0.8700)

0.8177
(0.7601, 0.8753)

AUC max in 10 folds 0.9500 0.9541 0.9691 0.9561

Accuracy (%)

Accuracy average
(95% CI)

71.47
(66.73, 76.21)

77.98
(70.07, 85.89)

73.43
(68.23, 78.63)

74.98
(70.18, 79.77)

Accuracy max in 10 folds 84.91 92.45 86.90 88.68

mAP (mean average precision, %)

mAP average
(95% CI)

83.62
(77.74, 89.51)

84.54
(78.57, 90.52)

81.05
(75.10, 87.00)

83.07
(78.13, 88.02)

mAP max in 10 folds 95.47 95.46 97.23 95.10

Sensitivity (%)

Sensitivity average
(95% CI)

71.47
(66.73, 76.21)

77.80
(69.87, 85.74)

73.55
(68.34, 78.77)

74.85
(70.07, 79.63)

Sensitivity max
in 10 folds

84.91 92.45 86.90 88.68

Specificity (%)

Specificity average
(95% CI)

72.43
(67.26, 77.60)

77.52
(69.75, 85.28)

73.16
(67.67, 78.64)

74.73
(69.01, 80.45)

Specificity max in 10 folds 85.91 93.94 88.39 90.91

Precision (%)

Precision average
(95% CI)

71.47
(66.80, 76.15)

77.78
(70.14, 85.42)

72.90
(68.17, 77.64)

74.06
(69.08, 79.03)

Precision max in 10 folds 84.05 91.67 85.10 88.46

F1 Score

F1 Score average
(95% CI)

0.7173
(0.6697, 0.7648)

0.7777
(0.6994, 0.8560)

0.7350
(0.6811, 0.7889)

0.7492
(0.7004, 0.7980)

F1 Score max in 10 folds 0.8510 0.9255 0.8720 0.8885

Loss

Loss average
(95% CI)

0.9225
(0.6930, 1.1520)

0.8524
(0.5410, 1.1640)

1.6013
(1.0110, 2.1920)

1.3553
(0.9250, 1.7860)

Loss max in 10 folds 1.6120 1.4136 3.1602 2.3892

Train accuracy (%)

Train accuracy average
(95% CI)

99.97
(99.91, 100.02)

99.98
(99.95, 100.02)

99.98
(99.94, 100.02)

99.93
(99.85, 100.02)

Train accuracy max
in 10 folds

100.00 100.00 100.00 100.00

Train loss

Train loss average
(95% CI)

0.0017
(0.0004, 0.0031)

0.0022
(0.0014, 0.0031)

0.0010
(− 0.0001, 0.0021)

0.0052
(− 0.0024, 0.0129)

Train loss max in 10 folds 0.0070 0.0045 0.0055 0.0350
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Table 3 The levels of prediction for gender‑specific model

Model Male models Female models

Pre-trained models Non-pre-trained models Pre-trained models Non-pre-trained models

mn40_as mn30_as mn4.0 mn3.0 mn40_as mn30_as mn4.0 mn3.0

AUC (area under the curve)

AUC average
(95% CI)

0.7550
(0.6056, 0.9045)

0.8010
(0.6589, 0.9432)

0.7429
(0.6262, 0.8596)

0.6905
(0.5358, 0.8451)

0.7622
(0.6169, 0.9075)

0.7572
(0.6578, 0.8567)

0.7679
(0.6426, 0.8931)

0.7100
(0.5595, 0.8605)

AUC max
in 10 folds

1.0000 1.0000 1.0000 1.0000 1.0000 0.9779 0.9722 0.9559

Accuracy (%)

Accuracy aver‑
age
(95% CI)

79.44
(69.01, 89.88)

85.13
(78.07, 92.19)

78.61
(70.21, 87.01)

69.96
(58.61, 81.30)

69.17
(58.35, 79.99)

69.16
(61.76, 76.57)

69.16
(62.42, 75.89)

69.30
(61.13, 77.48)

Accuracy max
in 10 folds

100.00 100.00 96.00 87.50 93.10 88.00 78.57 88.00

mAP (mean average precision, %)

mAP average
(95% CI)

78.13
(65.24, 91.03)

82.36
(70.38, 94.34)

76.66
(66.13, 87.19)

74.88
(62.57, 87.20)

75.69
(63.10, 88.29)

75.86
(66.33, 85.40)

74.65
(64.61, 84.69)

71.55
(59.37, 83.74)

mAP max
in 10 folds

100.00 100.00 100.00 100.00 100.00 97.19 97.49 95.44

Sensitivity (%)

Sensitivity aver‑
age
(95% CI)

79.79
(69.85, 89.73)

84.95
(77.73, 92.16)

78.61
(70.21, 87.01)

69.96
(58.61, 81.30)

69.42
(58.74, 80.10)

69.16
(61.76, 76.57)

69.16
(62.42, 75.89)

69.30
(61.13, 77.48)

Sensitivity max
in 10 folds

100.00 100.00 96.00 87.50 93.10 88.00 78.57 88.00

Specificity (%)

Specificity aver‑
age
(95% CI)

73.22
(59.93, 86.50)

75.92
(62.97, 88.86)

68.75
(57.86, 79.64)

65.39
(54.48, 76.30)

61.55
(49.89, 73.21)

64.78
(56.87, 72.70)

50.00
(50.00, 50.00)

54.65
(46.67, 62.63)

Specificity max 
in 10 folds

100.00 100.00 91.67 87.50 92.86 81.25 50.00 84.56

Precision (%)

Precision average
(95% CI)

73.57
(60.88, 86.25)

74.68
(60.26, 89.10)

71.37
(56.10, 86.63)

68.61
(57.10, 80.11)

64.87
(49.88, 79.86)

66.26
(55.97, 76.55)

34.58
(31.21, 37.94)

41.84
(28.80, 54.89)

Precision max 
in 10 folds

100.00 100.00 97.73 90.00 86.36 92.50 39.29 87.30

F1 Score

F1 Score average
(95% CI)

0.7971
(0.6997, 0.8946)

0.8317
(0.7407, 0.9228)

0.7744
(0.6855, 0.8632)

0.6973
(0.5957, 0.7989)

0.6611
(0.5449, 0.7772)

0.6878
(0.6201, 0.7555)

0.5689
(0.4829, 0.6548)

0.5962
(0.4874, 0.7051)

F1 Score max
in 10 folds

1.0000 1.0000 0.9576 0.8730 0.9202 0.8710 0.6914 0.8777

Loss

Loss average
(95% CI)

0.8648
(0.4610, 1.2690)

0.5064
(0.2040, 0.8090)

1.1312
(0.6060, 1.6560)

1.6051
(0.8250, 2.3860)

0.9823
(0.5800, 1.3850)

1.2326
(0.4640, 2.0010)

1.0512
(0.6140, 1.4890)

0.9657
(0.5680, 1.3630)

Loss max
in 10 folds

1.6027 1.1415 2.5325 4.3304 2.0750 4.0219 2.3448 1.9062

Train accuracy (%)

Train accuracy
average
(95% CI)

99.94
(99.80, 100.08)

100.00
(100.00, 100.00)

99.97
(99.91, 100.04)

99.97
(99.90, 100.04)

100.00
(100.00, 100.00)

99.92
(99.81, 100.04)

99.92
(99.81, 100.04)

99.81
(99.61, 100.00)

Train accuracy 
max
in 10 folds

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Train loss

Train loss average
(95% CI)

0.0065
(− 0.0037, 
0.0168)

0.0033
(0.0018, 0.0049)

0.0013
(− 0.0004, 
0.0029)

0.0016
(− 0.0004, 
0.0036)

0.0150
(0.0014, 0.0287)

0.0284
(0.0045, 0.0523)

0.0298
(0.0046, 0.0550)

0.0357
(− 0.0047, 0.0760)

Train loss max
in 10 folds

0.0474 0.0078 0.0076 0.0092 0.0618 0.0799 0.0998 0.1849

* The table shows average predictive performance across all folds of each model after tenfold cross-validation
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Fig. 3 ROC curve for each prediction model.  The pre‑trained models demonstrated higher performance compared to the non‑pre‑trained 
models. Among the four models, the mn30_as (pre‑trained model) performed the best on average in combined model and male model. However, 
for the female model, the mn4.0 (non‑pre‑trained model) was the best on average. The ROC curve was plotted, and the AUC (Area Under the Curve) 
was calculated

Fig. 4 Inference.  After evaluating one example of postprandial voice data that was not used during model training, it was observed 
that when classifying it as aspiration, the model assigned a probability of 92.7%. The output window displayed the results as mentioned earlier
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Inference design based on trained machine learning 
models
The inference part is a crucial step where the trained 
model is applied to new patient voice data to determine 
if their condition is normal or dysphagia-aspiration. This 
process is carried out in four main stages: (1) New voice 
data input: We input the new patient’s voice in the same 
format (mp3, mono, 64kbps) used during model training. 
(2) Converting mp3 to waveform: The voice file is trans-
formed into a waveform that the computer can under-
stand and analyze. (3) Preprocessing and converting to 
visual representation: The voice data is processed using 
same settings as training (like mels (128), sample rate 
(32,000), window length (640), hop size (320)) to convert 
it into a visual format called a mel-spectrogram. (4) Load-
ing the model and displaying results: The trained model 
is loaded, and it analyzes the visual representation of the 
voice to predict if the condition is normal or dysphagia-
aspiration. The results are then displayed in a window, 
showing the likelihood of each condition, like Fig. 4.

Discussion
Through this study, we developed a machine learn-
ing algorithm that can distinguish between normal and 
dysphagia-aspiration using postprandial voice data. This 
research is significant as it is the first to apply the Effi-
cient Pre-trained CNNs for Audio Pattern Recognition, 
developed for existing audio classification problems 
(EfficientAT model, MIT license), to the differentiation 
of dysphagia-aspiration [33, 34]. Unlike previous studies 
on dysphagia patients’ voices, which primarily used voice 
analysis software to extract numerical data such as fre-
quency variation, amplitude variation, and harmonics-to-
noise ratio for statistical analysis or traditional machine 
learning methods [26–31], our study value by directly 
analyzing the patient’s voice itself in the form of a mel-
spectrogram and learning it through deep-learning.

In the initial of research, considering that the voice 
patterns of men and women are different, we created 
separate models for males and females. Looking at the 
results of the tenfold cross-validation analysis for each 
gender, all models for male showed an average AUC 
(Area Under the Curve) over 0.70, with two pre-trained 
models showing over 0.75 (mn40_as: 0.7550, mn30_as: 
0.8010). Sensitivity, an import indicator for accurately 
screening dysphagia aspiration patients in a clinical set-
ting, also showed results of over 70% on average, par-
ticularly over 80% in pre-trained models (mn40_as: 
79.79%, mn30_as 84.95%). For female models, the AUC 
indicator for all models averaged over 0.70, and similarly, 
both pre-trained models showed over 0.75 on average 
(mn40_as: 0.7622, mn30_as: 0.7572), but sensitivity was 
low, around 69% (mn40_as: 69.42%, mn30_as: 69.16%). 

This is interpreted as a limitation due to the small num-
ber of recruited aspiration female participants, totaling 
only 18, which was insufficient for adequate learning on 
actual patients. Therefore, we developed combined gen-
der model by using both of genders’ data. As a results, 
the AUC for all models over 0.80, especially in the pre-
trained models, which showed an average of about 0.83 
(mn40_as: 0.8275, mn30_as: 0.8361), slightly higher com-
pared to the male models. This increase is anticipated 
due to the increased amount of data used for learning 
and evaluation as both genders were studied. Regarding 
sensitivity, all models showed results of over 70% (par-
ticularly pre-trained model mn40_as: 71.47%, mn30_as: 
77.80%), which, although relatively lower than the male 
models, showed higher outcomes compared to the female 
models. When analyzing the overall performance indica-
tors, the pre-trained models showed higher results across 
all models (male, female, combined model), with the 
mn30_as model demonstrating the highest performance 
when applied to our data. This study’s results also perfor-
mance comparable to previous research such as the 3-oz 
water swallow test and Gugging swallowing screen test, 
which aimed to develop non-invasive screening methods 
for dysphagia, thereby presenting another methods for 
non-invasively monitoring patients’ conditions [11–25].

In this study, the reasons for using each analytical 
method at each stage of the study are as follows. While 
there are methods such as Mel Frequency Cepstral Coef-
ficients (MFCCs) for audio signal processing, we chose 
analysis through Mel-spectrograms for the following 
reasons: (1) Prior research indicating that the voices of 
patients with dysphagia are sensitive in the frequency 
domain was considered, emphasizing the importance of 
visual analysis of frequencies over time for critical signal 
processing and sound event characterization [27, 29–31]. 
(2) Transforming audio signals into Mel Spectrograms 
provides a perceptual and visual understanding of audio, 
preserving more spectral and detailed frequency infor-
mation than MFCCs [44]. (3) The compatibility with 
CNNs (Convolutional Neural Networks) was taken into 
account [45, 46].

Our model also design focused on noise reduction, pre-
diction performance, and light-weighting for mobile inte-
gration. To minimize noise, we conducted an initial data 
cleaning process where the patient’s voice was individu-
ally reviewed, and segments with significant device noise 
or the presence of other voices were removed. Addition-
ally, during the preprocessing stage using an EfficientAT 
model, we applied pre-emphasis filtering to reduce low-
frequency components and enhance the clarity of the 
audio [33, 34, 47]. Both VFSS examinations and record-
ings of the healthy volunteers were carried out in sound-
proofed environments, resulting in minimal noise in the 
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recorded voices. Regarding the second consideration, we 
experimented with different models including the ResNet 
model, which is known for its excellent performance in 
CNN image recognition [48, 49]. However, its accuracy 
was relatively low. Therefore, taking performance into 
consideration, we ultimately chose the current learning 
model. Moving on to the third consideration, we focused 
on model light-weighting, to achieve real-time dyspha-
gia diagnosis, monitoring, and intervention in mobile or 
resource-constrained environments. We converted the 
audio data from stereo to mono format, improving effi-
ciency by eliminating the need for simultaneous process-
ing of the two channels and enhancing voice recognition 
accuracy [50]. Additionally, we unified and compressed 
the files into mp3 format for real-time processing on 
mobile devices and medical devices [51, 52]. Studies 
have reported the existence of data loss in voice due to 
the compressed nature of the mp3 format [53]. However, 
prior research related to mp3 compression has shown 
that for mp3s with compression rates between 56 and 
320 kbps, the loss rate was less than 2% for small mean 
errors based on the  f0, and less than 1% for pitch range 
[52]. Given the low loss rate reported in prior studies, and 
the objective of our research team, which is ultimately 
to incorporate it into medical devices, we have chosen a 
file format that imposes less burden on storage [51, 52]. 
Utilizing the HDF5 data format provides faster loading, 
increased storage efficiency, and compatibility with vari-
ous programming languages [54, 55]. Throughout the 
study, we prioritized a compact model that occupied 
less storage space and enabled fast prediction of speech 
impairments. Employing MobileNetV3, a light-weighting 
and high-performance model, ensures the efficient exe-
cution of mobile devices [56]. We adapted an EfficientAT 
model [33, 34] as a reference, tailored to our specific data 
environment.

Lastly, the small volume of 3 cc was chosen for the pro-
tocol of this study in order to minimize the burden on 
patients during dysphagia assessments and to ease their 
consumption. The volume limitation of 3  cc was estab-
lished based on our team’s prior research, where kin-
ematic analysis of VFSS images showed no significant 
difference in muscles (suprahyoid muscle, retrohyoid 
muscle, thyrohyoid muscle, sternothyroid muscle) acti-
vation duration, peak amplitude, and other parameters 
between 2 and 5 cc volumes [57]. Additionally, a system-
atic review related to dysphagia assessments indicated 
that many studies employed 3 cc [22]. These findings col-
lectively informed the decision to set the volume at 3 cc.

This study developed a model to predict dysphagia—
aspiration based on the postprandial voice. The expected 
benefits of this study are as follows. First, by determin-
ing the occurrence of aspiration and providing clinicians 

with more parameters through voice, it enhances the 
clinical utility compared to previous studies. Second, it 
is anticipated that the diagnosis time for both outpatient 
and inpatient cases will be significantly reduced, provid-
ing additional diagnostic parameters for a more accurate 
assessment of dysphagia. Third, this study is expected 
to lay the groundwork for designing diagnostic, treat-
ment, and management systems by integrating them with 
future developments, such as a mobile application-based 
dysphagia meal guide monitoring system.

Limitations
This study has several limitations. First, owing to the lim-
ited availability of voice data for individuals with dyspha-
gia, we did not create a validation set, instead, we used 
a 9:1 training-to-testing data split (10-fold cross-valida-
tion). Second, due to the limited number of recruited 
female aspiration subjects, the female model showed 
lower performance compared with the combined model 
and male model. Third, voice data collection for healthy 
individuals and patients with dysphagia occurred in dif-
ferent environments and with varying numbers of par-
ticipant, whereas the diet types were not standardized. 
Fourth, we addressed limitations in collecting clinical-
normal data by recruiting general population partici-
pants, including those recorded with various devices 
and positions. Device bias was ruled out with cosine 
similarity consistently exceeding 0.8 after preprocess-
ing. Fifth, this study aims to develop a voice-based dis-
ease prediction algorithm for integration into mobile 
and medical devices, targeting dysphagia monitoring 
and intervention. Creating a lightweight model and opti-
mizing audio formats for input were essential steps. The 
use of diverse recording devices resulted in a variety of 
audio formats (wav, m4a, mp3), necessitating standard-
ized preprocessing. From the start, all data was converted 
to mp3 at 64kbps for efficient training. Minimal data 
loss was observed, as analyzed by the Peak Signal-to-
Noise Ratio (PSNR) in Additional file 3: Table S3. How-
ever, the potential for data loss represents a limitation 
of this study, underscoring the need for further investi-
gation. Sixth, as a machine learning model trained on 
mel-spectrograms, we faced limitations in understand-
ing which aspects of the model were crucial for dyspha-
gia aspiration prediction. Consequently, we encountered 
a limitation in measuring feature importance, making it 
challenging to determine the significance of specific fea-
tures in our model. In future studies, we aim to develop 
a more predictive model with better performance by 
recording a more diverse range of voices and diet types 
in patients with dysphagia, and comparing voice changes 
before and after meals.
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Conclusions
In this study, we utilized mel-spectrogram analysis of post-
prandial voice recordings and trained a MobileNetV3 model 
for mobile and medical device applications. This model 
showed high performance in predicting dysphagia aspira-
tion, suggesting advancements in machine learning-based 
monitoring. Our study highlights the potential of voice anal-
ysis as valuable tool for screening, diagnosing, and monitor-
ing dysphagia. It simplifies analysis compared to traditional 
methods like VFFS or FEES. Patients can also record their 
voices at home for self-monitoring, providing clinicians with 
valuable everyday data to track patients’ conditions. Identi-
fying aspiration in daily life can improve patient quality of 
life and lead to non-invasive, safer interventions.
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