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Abstract 

Background This research focused on the development of a motor imagery (MI) based brain–machine interface 
(BMI) using deep learning algorithms to control a lower‑limb robotic exoskeleton. The study aimed to overcome 
the limitations of traditional BMI approaches by leveraging the advantages of deep learning, such as automated fea‑
ture extraction and transfer learning. The experimental protocol to evaluate the BMI was designed as asynchronous, 
allowing subjects to perform mental tasks at their own will.

Methods A total of five healthy able‑bodied subjects were enrolled in this study to participate in a series of experi‑
mental sessions. The brain signals from two of these sessions were used to develop a generic deep learning model 
through transfer learning. Subsequently, this model was fine‑tuned during the remaining sessions and subjected 
to evaluation. Three distinct deep learning approaches were compared: one that did not undergo fine‑tuning, 
another that fine‑tuned all layers of the model, and a third one that fine‑tuned only the last three layers. The evalu‑
ation phase involved the exclusive closed‑loop control of the exoskeleton device by the participants’ neural activity 
using the second deep learning approach for the decoding.

Results The three deep learning approaches were assessed in comparison to an approach based on spatial features 
that was trained for each subject and experimental session, demonstrating their superior performance. Interestingly, 
the deep learning approach without fine‑tuning achieved comparable performance to the features‑based approach, 
indicating that a generic model trained on data from different individuals and previous sessions can yield similar effi‑
cacy. Among the three deep learning approaches compared, fine‑tuning all layer weights demonstrated the highest 
performance.

Conclusion This research represents an initial stride toward future calibration‑free methods. Despite the efforts 
to diminish calibration time by leveraging data from other subjects, complete elimination proved unattainable. 
The study’s discoveries hold notable significance for advancing calibration‑free approaches, offering the promise 
of minimizing the need for training trials. Furthermore, the experimental evaluation protocol employed in this study 
aimed to replicate real‑life scenarios, granting participants a higher degree of autonomy in decision‑making regard‑
ing actions such as walking or stopping gait.
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Background
Brain–machine interfaces (BMIs) have recently emerged 
as promising rehabilitation tools for promoting recov-
ery of lost motor function. By enabling direct commu-
nication between the brain and an external device such 
as a robotic exoskeleton, BMIs offer a novel approach to 
rehabilitation. Subjects are required to engage in specific 
mental practices that translate into concrete actions in 
the output device. One such practice is motor imagery 
(MI), which involves the imagination of a given move-
ment without actually executing it. When used to gener-
ate a movement-associated stimulus that is provided by 
the robotic exoskeleton, MI offers an effective strategy for 
facilitating motor recovery through enhancing the princi-
ples of neural plasticity [1].

There are several challenges BMI must face, one of 
which is related to the recording system used to capture 
brain activity [2]. While functional magnetic resonance 
imaging (fMRI) can serve as a recording system, portable 
systems such as electroencephalography (EEG) or elec-
trocorticography (ECoG) are preferred for rehabilitation 
applications [3]. Differences between EEG and ECoG rely 
on if the electrodes used to measure the brain signals are 
non-invasive (EEG) or invasive (ECoG). Consequently, 
most BMIs are based on EEG [4]. However, EEG has its 
own limitations. First, the signal-to-noise ratio is lower 
than the other two systems due to the susceptibility of the 
signal to various artifacts such as movement, sweating or 
external electromagnetic fields. Second, EEG signals are 
non-stationary, meaning that their properties can differ 
significantly between different rehabilitation sessions, or 
even within the same session [2, 5].

On the other hand, all EEG-based BMIs require cali-
bration, during which the system learns to discriminate 
brain activity through training under different mental 
strategies. Given the non-stationary nature of the EEG 
signals, this process must be performed for each subject 
and experimental session, rendering it time-consuming 
and potentially fatiguing for subjects [2].

Given the limitations of EEG-based BMI, process-
ing algorithms have been developed to extract generic 
features capable of discriminating different brain pat-
terns across all subjects. Traditional algorithms rely 
on manually designed temporal, spectral, or spatial 
features [6]. When considering temporal features, vari-
ous metrics can be computed to provide information 
about the signal, such as the mean, median, standard 
deviation, or kurtosis [7]. Other time domain features 
based on amplitude modulation (AM) or the readiness 

potential have been successfully used a features [6, 8, 
9]. Along with temporal features, spectral features 
have also been extensively studied in MI-based BMIs. 
Researchers have utilized power spectral density (PSD) 
as a discriminative feature in frequency ranges associ-
ated with motor planning and execution, such as theta, 
alpha, and beta [10, 11]. Various alternatives based on 
PSD have been proposed, including computing a rela-
tive PSD of the MI period with respect to a baseline 
[6, 12]. Additionally, some analyses have represented 
signals as a time-frequency resolution of magnitude 
and phase, rather than computing a single PSD over a 
period of time. Examples of such methods include the 
Stockwell transform [13, 14] and the Wavelet trans-
form [2]. In addition to spectral features, two state-of-
the-art methodologies in MI-based BMI rely on spatial 
features: common spatial patterns (CSP) [15] and Rie-
mannian manifold [16]. Both methods measure how 
each channel is related to the rest by computing cor-
relation or covariance matrices respectively.

Deep learning has emerged as a promising tech-
nique in various fields, including BMI systems, as it 
eliminates the need for manual computation of features 
[17]. Many previous works have utilized deep learn-
ing approaches with raw or normalized EEG signals as 
input, which were band-pass filtered to the frequen-
cies of interest such as alpha or beta [17–19]. Alterna-
tively, some studies have applied Wavelet transform or 
CSP prior to using neural networks [20], or have used 
time-domain AM EEG features to train deep network 
architectures [8]. When it comes to the architecture of 
the deep learning model, studies that focused on MI 
as the mental strategy have preferred convolutional 
frameworks to capture spatial relationships among dif-
ferent brain areas [17, 21–23]. Another advantage of 
deep learning is the ability to perform transfer learning, 
where models can be trained with data from different 
domains and then fine-tuned for the desired one [22, 
24, 25]. While transfer learning can also be used with 
traditional methodologies, limitations arise due to dif-
ferences in manually extracted features across differ-
ent domains. While deep learning presents numerous 
advantages over feature-based methodologies, its appli-
cation in BMI systems with real-time control of robotic 
exoskeletons remains limited. As elucidated in the lit-
erature [26], deep learning techniques have primarily 
been explored in offline BMI scenarios due to their pro-
longed training durations. The imperative for practical 
online BMI applications demands classifiers capable of 
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rapid training, ideally within a few minutes, to facili-
tate real-world deployment. However, the computa-
tional complexity associated with deep learning poses 
a significant challenge. To address this, an alternative 
approach, as proposed in [26], involves the exploration 
of systems that obviate the need for subject-specific 
training.

In this study, we focused on developing a MI-based 
BMI using deep learning algorithms to control a lower-
limb robotic exoskeleton. When designing a protocol 
for such a system, two alternatives have been proposed 
in the literature: synchronous and asynchronous. In syn-
chronous BMIs, the researcher informs the subject when 
to perform each mental task and when to expect specific 
actions in the exoskeleton conditioning the subject. In 
contrast, asynchronous BMI is considered more natural 
as the subject decides when to perform each mental task 
without time constraints and any external cue. However, 
evaluating the efficacy of the system is challenging in an 
asynchronous BMI [27]. The main contributions of this 
study are:

• A BMI design based on neural networks that applies 
transfer learning, allowing to combine data from dif-
ferent subjects and sessions to train the model and 
reduce the calibration time. This approach was com-
pared against a CSP-based approach that uses con-
ventional calibration.

• A proposal for an evaluation protocol that simulates 
a real-life scenario where participants need to travel 
a path with a series of stops, validating the perfor-
mance through an objective oriented assessment 
instead of artificial external cues limited by time.

• An evaluation of the system with 5 participants.

Methods
Subjects
The experiments were conducted with the participation 
of five healthy subjects who did not report any known 
diseases or movement impairment and had no prior 
experience with BMI systems (mean age, 22.6 ± 3.05). 
Prior to the experiments, the participants were informed 
about the study and provided written informed consent. 
All the procedures were approved by the Institutional 
Review Board of the University of Houston, TX (USA), 
with study ID: STUDY00003848.

Equipment
During the experiments, EEG signals were recorded 
using 32 wet electrodes positioned over an actiCAP 
(Brain Products GmbH, Germany). Two additional elec-
trodes, serving as ground and reference, were located 
on the ear lobes. Electrodes were placed following the 

10–10 distribution, with four electrodes used for record-
ing electrooculography (EOG), arranged in a cross shape 
with respect to the eye with the vertical ones around the 
left eye. The data were wirelessly transmitted using a 
WiFi MOVE unit (Brain Products GmbH, Germany) and 
amplified with BrainAmpDC (Brain Products GmbH, 
Germany).

The REX exoskeleton (Rex Bionics, New Zealand) was 
utilized for the experiments. This exoskeleton is capable 
of independently supporting both itself and the weight of 
the subject, making it suitable for individuals with com-
plete spinal cord injury. It is comprised of powered hip, 
knee and ankle joints (bilaterally). This self-standing exo-
skeleton does not require crutches and can be controlled 
by high-level commands sent via Bluetooth to initiate or 
stop the gait. Real-time feedback on the exoskeleton sta-
tus was also provided during the experiments. Figure  1 
shows the equipment employed in the experiments.

Experimental protocol
In the study, five experimental sessions were conducted 
by the participants to test a lower-limb exoskeleton 
(REX) system controlled by a BMI as shown in Fig. 2.

First session
In the first session, participants were given an overview 
of the experimental protocol and asked to complete a 

Fig. 1 Equipment employed in the experiments
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consent form. An initial assessment was conducted to 
ensure that participants met the inclusion/exclusion cri-
teria, see Additional file 1. They were also asked general 
questions about their current physical state. If they were 
eligible to participate, baseline measurements were taken 
to properly set up the brain cap and exoskeleton, includ-
ing foot length and width, weight, height, lower limb 
lengths, and head size. Participants had the opportunity 
to gain some experience with the exoskeleton. No EEG 
recordings were accomplished during this first session.

Afterwards, the concept of kinesthesic and visual motor 
imagery were explained [28]. In addition, they received 
the Motor Imagery Questionnaire-3 (MIQ-3) to com-
plete at home. Two different versions, Spanish or English, 
were provided depending on the subjects’ mother tongue 
[29, 30]. The MIQ-3 is a 12-item questionnaire designed 
to evaluate the individual’s capacity to mentally visualize 
four specific movements using internal visual imagery, 
external visual imagery, and kinesthetic imagery. Kines-
thetic motor imagery refers to the cognitive capacity to 
mentally simulate the execution of a physical action by 
generating a vivid perception of the muscular contrac-
tions and sensations that accompany the actual move-
ment. In contrast, visual motor imagery involves the 
ability to create a mental representation of the desired 
movement. During the following sessions, participants 
were instructed to perform only kinesthetic motor 
imagery since it produces more similar brain patterns as 
motor execution and therefore, it promotes mechanisms 
of neuroplasticity that induces motor rehabilitation [31].

Second and third session
In the second and third session, participants wore the 
EEG equipment and lower-limb exoskeleton and walked 
with it for 30 min while being commanded by an external 
operator/researcher before the real experiment began. 
This preliminary phase aimed to acquaint participants 
with the device prior to commencing the actual experi-
mental tasks. The operator sent commands from a com-
puter to the exoskeleton via Bluetooth to start or stop the 
gait at certain periods, with participants being given an 
acoustic cue beforehand.

After becoming familiar with the device, training with 
the BMI and the lower-limb exoskeleton began, which 
is also referred as calibration. Participants performed 
14 trials with the exoskeleton in open-loop control, dur-
ing which they engaged in a series of mental practices 
including idle state and kinesthetic motor imagery. The 
sequence of tasks is shown in Fig. 3.

During half of the trials, participants stood still with the 
exoskeleton, and during the other half, they walked. The 
lower-limb exoskeleton was controlled the whole time by 
the predefined open-loop controlled periods. These pro-
cedural steps were implemented to facilitate the devel-
opment of a dual-state BMI, specifically comprising two 
distinct models: Static and Motion, which were then used 
in the closed-loop control phase.

Fourth and fifth session
In the fourth and fifth sessions, participants were first 
fitted with EEG equipment and lower-limb exoskeleton. 

Fig. 2 Five subjects participated in five experimental sessions
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They then walked with the exoskeleton for a period of 
30  min, which was controlled by an external operator/
researcher before the actual experiment began.

Following this, the participants underwent training 
with a BMI in the same manner as in the second and 
third sessions. However, after the training, the BMI was 
updated with data specific to each participant and ses-
sion, and it was then tested in closed-loop control as 
shown in Fig. 2.

To test the BMI, participants walked along a straight 
path that had five lines marked on the floor. The yel-
low lines marked the areas in which the subject should 
begin walking, while the red lines marked the areas in 
which they should stop. Participants had to perform 
various mental tasks to make the exoskeleton move or 
stop. They were trained during the previous sessions 
to imagine themselves during two different classes 
(MI and idle state) and in two different states (Static 
and Motion): static motor imagination for starting 
the gait vs. static in an idle state to remain standing 
still; and motion in an idle state to continue walking 
vs. motion motor imagination for stopping the gait. 

A diagram of the path is shown in Fig.  4. They per-
formed five test trials and in each of them they had to 
go through the whole move/stop areas path. This pro-
tocol was designed as an asynchronous control, so sub-
jects decided when to begin each mental task trying to 
reach the different stop areas keeping the exoskeleton 
in motion up to them.

As mentioned above, two models were trained with 
data from training phase: Static model was trained only 
with the trials in which subjects were standing still, and 
Motion model was trained only with trials in which 
subjects were walking assisted by the exoskeleton. They 
were utilized for the control process as a dual-state 
machine. The Static model had the purpose of preserv-
ing the exoskeleton in a stationary position and detect-
ing the initiation of gait. However, once the exoskeleton 
started its movement, the control mechanism of BMI 
shifted to the Motion model. This model effectively 
controlled the continuous motion of the exoskeleton 
until a desire to halt its progression was detected. Upon 
such detection, the control model was switched to the 
Static model again. Figure  4 shows a schema of this 
dual-state control.

Fig. 3 BMI calibration. It involved the training phase, during which participants completed a total of 14 trials involving specific mental tasks. Half 
of these trials were conducted under full static conditions (blue), where participants stood still with the exoskeleton, while the other half involved 
walking assisted by the exoskeleton during the whole trial (orange). The trials conducted under static and motion conditions followed a similar 
structure. Each trial started with a 15‑s period to allow the convergence of the denoising algorithms. Subsequently, an acoustic cue signaled 
the initiation of the idle state, during which participants were instructed to relax. Following this, another cue indicated the onset of the motor 
imagery period. Notably, the motor imagery task differed between static and motion trials. In the static trials, participants were instructed 
to imagine the act of walking, whereas in the motion trials, the task involved imagining the action of stopping the gait. Specifically, this stopping 
action was defined as bringing the legs together after completing a step
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Brain–machine interface
Deep learning
EEGNet [32] was used in the experiments. This net-
work combines the principles of temporal, frequency 
and spatial features that were manually computed in 
traditional approaches. This framework starts with a 
temporal convolution to learn specific frequency filters 
that highlight relevant brain rhythms. It is followed by a 
depthwise convolution in spatial dimension that learns 
a spatial filter for each filtered signal from the previous 
layer. Finally, the separable convolution is a combina-
tion of a depthwise convolution that learns a temporal 
summary from each spatially filtered signal from the 
previous step, and a pointwise convolution that com-
bines all features in the most discriminant way. This 
network was preferred for this experiment due to its 
relatively low number of trainable parameters as com-
pared to other frameworks present in the literature, 

such as DeepConvnet [18]. The network hyper-parame-
ters are shown in Table 1.

Two networks were trained, one with static trials (Static 
model) and one with trials in motion (Motion model). 
The Static model’s input data consisted of 2 s epochs of 
the pre-processed EEG signals of 27 channels sampled at 
200 Hz. Each epoch was shifted at a 0.5  s pace, so they 
were overlapped 1.5  s. Pre-processing involved apply-
ing a Notch filter at 60 Hz to remove the contribution of 

Fig. 4 Asynchronous closed‑loop control. During this phase, participants engaged in five trials where they utilized their thoughts to control 
the lower‑limb exoskeleton. The experimental setup involved navigating through a pathway that was divided into distinct regions: MOVE areas 
marked by yellow lines and STOP areas demarcated by red lines. Within the MOVE areas, participants were required to engage in motor imagery 
of the gait until a command was sent to the exoskeleton, initiating the walking motion. To maintain the gait, participants were instructed 
to maintain an idle state until they reached the STOP area. Upon entering the STOP area, participants were tasked with performing a single stop. 
This involved mentally imagining the movement of stopping the gait. Participants were required to sustain this mental task until a command 
was issued to the device or until they exited the STOP area and reentered a MOVE area. Failure to execute a stop within the designated STOP area 
constituted an unsuccessful attempt

Table 1 EEGNet hyper‑parameters

Learning rate 0.001

Batch size 32

Epochs 80

Dropout rate 0.4
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the power line and a high-pass filter at 0.1 Hz to reduce 
DC offset. A denoising algorithm was employed using 
the four EOG channels to estimate the contribution to 
each EEG channel and mitigate the artifact contribution 
[33]. The following step was to apply a common average 
reference (CAR) spatial filter [34], to enhance the activ-
ity of each electrode by subtracting the mean from all of 
them for every time point. Finally, a band-pass filter was 
applied between 8 and 40 Hz to focus on alpha, beta and 
low gamma rhythms [19].

For the Motion model, input data were pre-processed 
in the same window size and sliding window, but with a 
slightly different method. The first steps till CAR spatial 
filter were the same. However, the following steps were 
a band-pass filter between 1 and 100  Hz [17], and sig-
nals were normalized [14]. The selection of pre-process-
ing approaches was guided by the findings of our prior 
research [35], which identified the approach that yielded 
the most favorable outcomes.

In this study, we conducted a comparative analy-
sis of three distinct training sub-approaches for both 
static and motion networks. The selection of the opti-
mal approach for closed-loop control was based on 
the results obtained from an open-loop evaluation 

pseudo-online, which means they were evaluated post 
hoc after the completion of all the sessions simulating a 
real-time prediction system. The three sub-approaches 
investigated were: (1) a generic model, (2) a generic 
model fine-tuned to individual subject and session data, 
and (3) a generic model fine-tuned to individual subject 
and session data with a focus on the last three layers.

To elucidate the training and evaluation procedures, 
Fig. 5 provides a visual representation of the following: 

1. Deep learning with generic model:

• The model was trained with training data from 
sessions 2 and 3 from all subjects.

• Evaluation was performed using data from ses-
sions 4 and 5.

2. Deep learning with generic model and fine-tuning:

• The generic model was initially trained with data 
from sessions 2 and 3 from all subjects.

• In session 4, fine-tuning involved 12 training trials 
and 2 evaluation trials. This process was iterated, 
with each trial serving as evaluation once and 
remaining ones for fine-tuning parameters (static 

Fig. 5 Visual representation of the training and evaluation procedures
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model: 6 fine-tuning and 1 evaluation, motion 
model: 6 fine-tuning and 1 evaluation).

• Similar procedures were applied in session 5. 
Therefore, the generic model was adapted to each 
subject and session.

3. Deep learning with generic model and fine-tuning 
last three layers only:

• Similar to the previous model, training and evalua-
tion were conducted using data from sessions 2, 3, 
4, and 5.

• However, fine-tuning focused exclusively on the 
last three layers of the generic model.

The second alternative showed the highest results (it 
can be seen in “Results”), and thus these models were 
used in the closed-loop evaluation during the fourth and 
fifth sessions.

Features‑based approach
The three deep learning sub-approaches aforemen-
tioned were compared against a baseline approach that 
is feature-based and commonly used for BMI [36–38]. 
Pre-processing of signals was performed differently for 
the features-based approach than for neural networks. 
Firstly, a Notch filter was applied at 60 Hz to remove 
power line noise, followed by a high-pass filter at 0.1 Hz 
to reduce the DC offset. The same EOG denoising algo-
rithm employed in deep learning was then applied, as 
previously described [33]. Subsequently, four band-pass 
filters were applied at 5–10, 10–15, 15–20 and 20–25 Hz, 
consistent with our previous works [36, 37]. The next 
step involved computing CSP for each frequency band. 
The goal of CSP was to calculate spatial filters that lin-
early transform the signal from each channel to maxi-
mize differences between two mental tasks, in this case, 
between MI of gait and idle state for both models, static 
and motion. The signals from 27 electrodes were filtered, 
and only the eight most discriminant new components 
were selected as features. The log-variance was computed 
for all of them, resulting in a vector of 32 features (8 × 4 
frequency bands). Linear discriminant analysis (LDA) 
was trained with these features to distinguish between 
the two classes: MI and idle state.

The training and evaluation of this approach are 
illustrated in Fig.  5. In session 4, 12 trials were used to 
train the model and 2 for evaluation. This process was 
repeated, using all trials for evaluation once (static model: 
6 training and 1 evaluation, motion model: 6 training and 
1 evaluation). The same procedure was applied in session 
5. Data from sessions 2 and 3 were not included in train-
ing the model because CSP has previously shown poor 

generalization and higher performance when trained 
with each subject and session’s data [38, 39].

Evaluation
The efficacy of the BMI was evaluated using a set of 
defined metrics. The evaluation encompassed both train-
ing data and closed-loop trials, providing a comprehen-
sive assessment of the system capabilities. The following 
metrics were employed: 

1. Evaluation of training data (open-loop pseudo-
online): cross-validation was performed and the 
accuracy was measured as the percentage of epochs 
with correct classification during trials, both in static 
and motion conditions.

2. Evaluation of closed-loop trials:

• Average time to Start: This metric quantified the 
duration, measured in seconds, that subjects 
required to send a START command to the exo-
skeleton while in a static state and performing MI. 
Notice that as the starting moment of the imagi-
nation is marked by the subject will, a high value 
does not mean a bad evaluation. However, an 
excessive time could be considered as a timeout.

• Average time to Stop: This metric measures the 
time, in seconds, participants took to issue a STOP 
command to the exoskeleton while in motion, 
providing insights into the promptness of their 
response.

• Timeout: In cases where participants were unable 
to send a START command within 60 s, the trial 
was considered a timeout. Additionally, if the 
subject made eight attempts to activate the exo-
skeleton but failed to reach the end of the path, it 
was also categorized as a timeout. This metric cap-
tured the number of trials that resulted in a time-
out.

• Accuracy to Start (%): This percentage reflected 
the frequency at which subjects successfully sent 
a START command without experiencing a time-
out. It indicated the proficiency of subjects in ini-
tiating the desired actions within the given time-
frame.

• Accuracy to Stop (%): This metric measured the 
success rate of subjects in stopping the exoskel-
eton within the designated STOP areas along 
the five testing trials. The presence of two STOP 
areas allowed for the calculation of a percentage. If 
subjects managed to make a stop in both areas, it 
would be considered 100% accuracy, while a single 
stop corresponded to a 50% accuracy for the trial. 
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A value of 0% indicated that the exoskeleton failed 
to stop at all.

• Ratio of Stops (%): This ratio provided insights 
into the quality of the stops made by the device. It 
measured the proportion of successful stops with 
respect to the total number of stops performed.

Results
Participants engaged in a total of five sessions, during 
which training with the BMI was conducted in all ses-
sions except for the initial one, which solely served the 
purpose of familiarizing participants with the system. 
The evaluation, i.e., closed-loop control, was only per-
formed in fourth and fifth sessions. The data acquired 
from the second and third sessions were utilized to train 
a generic model that was evaluated in the last two ses-
sions. As outlined in the preceding section, four distinct 
evaluation approaches were employed, three deep learn-
ing methods and a features-based approach.

To evaluate the calibration data, the training data from 
the fourth and fifth sessions were utilized to infer predic-
tions of either idle state or MI. In the first deep learn-
ing approach, the trained generic model was directly 
employed for predictions (1). In the second and third 
approaches, a fine-tuning was performed updating the 
model with the information derived from the fourth and 
fifth sessions. However, the adaptation process varied 
between the two cases. In one scenario, all layers of the 
network were subjected to fine-tuning (2). In the other 
case, only the last three layers of the network underwent 
retraining (3). On the other hand, the features-based 
model was only trained with data from the fourth or fifth 
sessions respectively without using data from the previ-
ous sessions or other subjects. The initial approach was 
assessed by extrapolating predictions in training trials 
from fourth and fifth sessions at intervals of 0.5 s (1). The 
last three approaches, deep learning with fine-tuning (2, 
3) and the features-based model, were evaluated using 

cross-validation. For instance, if the fourth session com-
prised seven static training trials, six of them were uti-
lized for fine-tuning or training the features-based model 
from scratch, while the remaining trial was reserved for 
evaluation. This procedure was repeated, utilizing each 
trial once for evaluation purposes. This comprehensive 
process was carried out separately for static and motion 
trials and predictions were also given every 0.5 s.

Table  2 shows the results of the four approaches for 
each participant and as the average of fourth and fifth 
sessions. The deep learning approach with a generic 
model and fine-tuning all layers (2) was the one that 
showed the highest results.

Statistical differences among subjects were assessed 
using a one-way analysis of variance (ANOVA) with the 
model accuracy ∼ subject for both static and motion 
data. The normality assumption was examined using 
the Shapiro–Wilk test, revealing no evidence of non-
normality for static data (A01: W = 0.982, p > 0.01; 
A02: W = 0.970, p > 0.01; A03: W = 0.982, p > 0.01; A04: 
W = 0.982, p > 0.01; A05: W = 0.971, p > 0.01) and motion 
data (4A01: W = 0.962, p > 0.01; A02: W = 0.984, p > 0.01; 
A03: W = 0.945, p > 0.01; A04: W = 0.960, p > 0.01; A05: 
W = 0.964, p > 0.01). The assumption of homoscedastic-
ity was evaluated using the Breusch-Pagan test, indicat-
ing homoscedasticity for static trials (BP(4) = 2.9483, 
p > 0.01) but non-homoscedasticity for motion trials 
(BP(4) = 16.78, p < 0.01). Consequently, static data under-
went the original ANOVA test, revealing significant dif-
ferences among subjects ( F(4, 275) = 42.58, p < 0.01 ), 
while motion data were subjected to the Kruskal–Wallis 
non-parametric test, indicating significant differences 
among subjects ( χ2(4) = 36.64, p < 0.01).

Differences among BMI methodologies and sessions 
were further analyzed using a two-way repeated meas-
ures ANOVA: accuracy ∼ methodology× session . The 
first hypothesis examined whether distinct BMI meth-
odologies exhibited significant performance differ-
ences. The second focused on the impact of practice on 

Table 2 Results from training data of fourth and fifth sessions

DL deep learning, FA features-based approach

A01 A02 A03 A04 A05 Avg.

Static DL Re‑train all 50.8 55.9 67.6 76.5 69.9 64.1 ± 10.6

Re‑train last 3 43.5 55.2 64.8 74.2 68.5 61.3 ± 12.1

No re‑train 51.7 53.8 62.9 70.5 65.1 60.8 ± 7.9

FA 55.4 60.1 57.3 65.9 64.5 60.6 ± 4.6

Motion DL Re‑train all 52.9 66.2 61.7 65.2 54.2 60.1 ± 6.2

Re‑train last 3 49.2 59.7 50.6 60.1 49.0 53.7 ± 5.7

No re‑train 53.3 61.0 52.4 60.6 51.7 55.8 ± 4.6

FA 56.5 59.8 55.5 57.8 55.1 56.9 ± 1.9
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system efficacy, assessing if the fifth session significantly 
outperformed the fourth. The third explored synergy 
between methodology and session, investigating if the 
classifier achieving the highest results varied across ses-
sions. The Shapiro–Wilk test did not show evidence of 
non-normality for any group, with no significant out-
liers detected, and Mauchly’s Test of Sphericity con-
firmed equal variances of group differences. Results 
from static trials showed no significant differences in 
terms of methodology ( F(3, 102) = 2.529, p > 0.01 ), 
session ( F(1, 34) = 1.307, p > 0.01 ), and the 
interaction between both was non-significant 
( F(3, 102) = 2.911, p > 0.01 ). In the context of motion 
trials, distinctions in methodology yielded statisti-
cal significance ( F(3, 102) = 6.298, p < 0.01 ), while 
disparities in session outcomes were not significant 
( F(1, 34) = 0.007, p > 0.01 ). Additionally, the interaction 
between methodology and session exhibited non-signifi-
cance ( F(3, 102) = 1.210, p > 0.01).

During the fourth and fifth sessions, the closed-loop 
control approach was employed to assess the perfor-
mance of BMI. Participants utilized their mental prac-
tices to elicit desired changes in the robotic exoskeleton, 
while navigating through a path designed to simulate 
real-life scenarios. Since the deep learning approach that 
involved a generic model with fine-tuning all the layers 
(2) was the one that showed the highest results in open-
loop trials, it was used in this closed-loop control phase. 
The results of these experiments are summarized in 
Table 3 and Fig. 6.

The outcomes of the MI questionnaire have been pre-
sented in Table 4. It is noteworthy that, with the excep-
tion of participant A02, all participants found visual MI 

to be a more accessible cognitive process compared to 
kinesthetic MI. The latter form of imagery appeared to 
require additional practice before achieving proficiency. 
However, only kinesthetic MI was employed in the exper-
iments, as it is known to elicit comparable neural pat-
terns to actual motor execution and has shown promise 
in facilitating rehabilitation processes [28].

Table 3 Results from closed‑loop control of fourth and fifth sessions (averaged across trials)

Time start (s) Time stop (s) Timeout (no) Acc. start (%) Acc. stop (%) Ratio stops (%)

A01

Session 4 7.5 ± 3.8 31.5 ± 10.7 0 100.0 ± 0.0 40.0 ± 41.8 53.3 ± 50.6

Session 5 10.5 ± 6.8 16.2 ± 20.0 1 80.0 ± 44.7 30.0 ± 27.4 25.0 ± 25.0

A02

Session 4 2.5 ± 3.3 11.5 ± 12.5 0 100.0 ± 0.0 80.0 ± 27.4 40.7 ± 17.4

Session 5 13.9 ± 13.3 12.6 ± 6.7 0 100.0 ± 0.0 60.0 ± 41.8 63.3 ± 41.5

A03

Session 4 9.2 ± 5.4 20.1 ± 11.8 0 100.0 ± 0.0 80.0 ± 27.4 58.0 ± 26.6

Session 5 2.5 ± 0.3 7.3 ± 6.4 0 100.0 ± 0.0 100.0 ± 0.0 32.0 ± 5.7

A04

Session 4 2.7 ± 0.2 7.3 ± 2.6 0 100.0 ± 0.0 100.0 ± 0.0 31.4 ± 2.6

Session 5 9.5 ± 4.3 5.5 ± 2.1 1 100.0 ± 0.0 80.0 ± 27.4 22.7 ± 9.0

A05

Session 4 9.7 ± 2.3 10.0 ± 3.2 0 100.0 ± 0.0 100.0 ± 0.0 47.3 ± 11.6

Session 5 8.6 ± 6.8 10.3 ± 4.5 0 100.0 ± 0.0 80.0 ± 27.4 32.0 ± 13.9

Fig. 6 Results from closed‑loop control. Subjects were tasked 
with traversing a designated pathway, requiring them to engage 
in specific mental imagery practices. To initiate the gait, participants 
were instructed to imagine themselves walking. Subsequently, they 
were required to maintain an idle state to sustain the walking motion. 
When it came to halting the gait, subjects were instructed to imagine 
the act of stopping. Metrics represent the successful number 
of activations and stops

Table 4 Results from MI questionnaire 3

A01 A02 A03 A04 A05

Internal visual MI 4.5 7.0 6.5 6.3 6.3

External visual MI 5.5 7.0 6.8 6.5 7.0

Kinesthetic MI 3.3 7.0 5.3 5.8 6.5
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Focusing on the specific scores attained within the kin-
esthetic MI category, participant A01 exhibited the high-
est level of difficulty in performing this particular form of 
imagery. These findings align with A01’s earlier calibra-
tion and closed-loop results, which indicated the lowest 
levels of proficiency.

Discussion
Considering training data, deep learning approaches 
have outperformed the approach based on spatial fea-
tures. Remarkably, the deep learning approach without 
fine-tuning achieved a performance level equivalent to 
that of the feature-based approach. This underscores the 
effectiveness of a generic model trained on data from 
different individuals and past sessions, attaining a com-
parable level of efficacy as the subject-specific and ses-
sion-adapted feature-based approach. This observation 
holds significant implications for the reduction of cali-
bration time, as it suggests that subjects may not need to 
perform training trials in every session while still achiev-
ing optimal performance.

On the other hand, with respect to the differences 
among the three deep learning approaches, the fine-
tuning of all layer weights was the one that showed the 
highest performance. These findings are in line with our 
previous research [40]. However, differences were only 
significant for motion data. This provides evidence that 
models can still further benefit when they are adapted to 
each subject.

Subjects showed significant differences in success rates, 
both in calibration and closed-loop evaluation. It is some-
thing already presented in the literature [14, 36, 37]. In 
this research, MI questionnaire was used to see if those 
differences could be identified before using the system.

The MI questionnaire was proven to be an efficient tool 
to analyze the ability of each subject to use a BMI based 
on MI. In this research, although subjects experimented 
different levels of difficulty in performing imagery, there 
were not applied any differences in the experimental 
protocol. It could be interesting to include this test as a 
metric for inclusion/exclusion criteria or to define tailor-
made training approaches that could benefit all subjects.

Regarding the comparison between open-loop and 
closed-loop trials, it is important to note that there is 
no direct correlation in terms of performance. Despite 
subject A04 achieved the highest decoding results in the 
open-loop phase, its performance did not translate to the 
best outcomes in closed-loop control. Conversely, subject 
A01 exhibited similar performance for both approaches. 
During real-control experiments, various factors come 
into play that can impact performance, which were 
absent during the calibration phase. Firstly, the mental 
state of the subject differs as they anticipate the reception 

of feedback, leading to a state of expectation. Addition-
ally, their emotional state can be influenced by the results 
they obtain, leading to feelings of excitement or frustra-
tion. However, during the calibration phase they were 
unaware of their task performance [7, 41].

The outcomes from the open-loop phase reveal an 
accuracy that is comparatively lower than some other 
MI-based BMIs documented in the literature [6]. It is 
imperative to acknowledge the absence of a standard-
ized method for evaluating MI performance across the 
existing literature. Many studies treat the entire duration 
of the MI task as a unified class, deeming a trial 100% 
accurate solely if MI is detected during that trial [6, 7]. 
In contrast, this study provides epoch-based metrics. It is 
also noteworthy that the methods proposed in this inves-
tigation are deployable in real-time, distinguishing them 
from more complex methodologies. Lastly, it is crucial 
to note that subjects received feedback exclusively dur-
ing sessions 4 and 5 in the closed-loop control; conse-
quently, their ability to adapt their activity was limited to 
the training phase of session 5.

The closed-loop trials employed in our experimental 
protocol aimed to simulate real-life scenarios, where par-
ticipants had the autonomy to make decisions regarding 
actions such as walking or stopping gait. This approach 
allowed participants to have greater control over the situ-
ation, reducing potential biases compared to cue-based 
approaches that could negatively impact the results [14, 
36, 42, 43]. It is challenging to directly compare the per-
formance of our study with other works in the literature 
due to the adoption of different evaluation methodolo-
gies [6, 12].

The Static model demonstrated superior efficiency 
compared to the Motion model. In nearly all trials, the 
Static model successfully decoded subjects’ intentions to 
initiate gait, with only a single exception in subject A01 
and fifth session. Conversely, the Motion model exhibited 
a higher susceptibility to errors, as indicated by a Ratio 
of Stops that never surpassed 65%. This implies that the 
exoskeleton halted the gait more frequently than the 
subjects’ actual intentions. To address this issue, novel 
paradigms have emerged that explore the identification 
of subject-perceived errors, which could potentially be 
incorporated to mitigate and increase this ratio [35].

Limitations
This research has some limitations, especially regarding 
the dataset.The able-bodied participants in the research 
shared common characteristics, such as being in their 
twenties, demonstrating right-dominance laterality, and 
lacking prior experience with a BMI. While these shared 
features establish a baseline, it’s crucial to acknowledge 
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the homogeneity of this participant group, potentially 
constraining the generalizability of our findings.

Furthermore, participants engaged in five sessions, yet 
feedback on their performance was only provided during 
sessions 4 and 5, specifically with the closed-loop control 
of the exoskeleton. Consequently, the limited exposure to 
the system might have constrained their ability to fully 
adapt or comprehend its usage.

Importantly, the envisioned users for this system are 
individuals with spinal cord injuries and motor limita-
tions. Therefore, the inferences drawn from able-bodied 
participants may not accurately reflect the experiences or 
challenges faced by this target group.

Despite efforts made, there were notable variations in 
BMI performance among subjects, making it challenging 
to formulate definitive conclusions about system efficacy. 
Additionally, the dataset size, while aligning with typical 
participant numbers in many BMI applications [44], may 
not be extensive enough to encompass the full spectrum 
of potential usage outcomes. Consequently, determin-
ing the average efficiency of the system proves difficult. 
Subsequent research endeavors should prioritize expand-
ing the sample size to enhance the representativeness of 
the study population and provide a more comprehensive 
understanding of the system’s performance across diverse 
users.

Conclusion
The present study introduces a BMI utilizing MI practice 
to control a lower-limb exoskeleton. Participants under-
went five experimental sessions, with the initial session 
aimed at familiarizing them with the system, two sessions 
to record brain activity during various mental tasks, and 
two sessions to evaluate the system performance.

Four different approaches were compared to decode 
brain signals and convert them into control commands. 
Three approaches utilized deep learning frameworks, 
while the fourth approach involved manually extracted 
features using CSP methodology. Among the deep learn-
ing approaches, two explored fine-tuning, where the 
model learned from data collected from other partici-
pants and sessions was adjusted to each subject and ses-
sion. Results revealed that the deep learning algorithms 
achieved performance levels equal to or even surpassing 
that of CSP. Notably, the fully fine-tuned neural network 
yielded the highest performance, suggesting promising 
prospects for reducing calibration time. This deep learn-
ing approach was employed for evaluation in closed-loop 
control.

Furthermore, the evaluation protocol employed in 
this study simulated a real-life scenario where partici-
pants navigated through a pathway. This approach was 
deemed more intuitive for subjects, as it granted them 

the freedom to initiate each mental task. Future investi-
gations in this field should consider incorporating such 
asynchronous control paradigms to further enhance the 
subject experience and system performance.
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