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Introduction
Surface electromyogram (SEMG) is a neuro-electro-
physiological signal formed with muscle contractions. 
It can be viewed as the algebraic summation of motor 
unit action potential (MUAP) trains from different active 
motor units (MU) [1], which are the basic components 
of the peripheral neuromuscular system [2]. The SEMG 
signal has been widely used as a non-invasive interface. 
Precise muscle force prediction from the SEMG signal is 
one of the representative myoelectric control techniques 
to decode motor intentions, which is of great significance 
for sports biomechanics, robotic control, and rehabilita-
tion [3–5].
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Abstract
Decoding movement intentions from motor unit (MU) activities to represent neural drive information plays a 
central role in establishing neural interfaces, but there remains a great challenge for obtaining precise MU activities 
during sustained muscle contractions. In this paper, we presented an online muscle force prediction method driven 
by individual MU activities that were decomposed from prolonged surface electromyogram (SEMG) signals in real 
time. In the training stage of the proposed method, a set of separation vectors was initialized for decomposing MU 
activities. After transferring each decomposed MU activity into a twitch force train according to its action potential 
waveform, a neural network was designed and trained for predicting muscle force. In the subsequent online stage, 
a practical double-thread-parallel algorithm was developed. One frontend thread predicted the muscle force in real 
time utilizing the trained network and the other backend thread simultaneously updated the separation vectors. 
To assess the performance of the proposed method, SEMG signals were recorded from the abductor pollicis brevis 
muscles of eight subjects and the contraction force was simultaneously collected. With the update procedure in 
the backend thread, the force prediction performance of the proposed method was significantly improved in terms 
of lower root mean square deviation (RMSD) of around 10% and higher fitness (R2) of around 0.90, outperforming 
two conventional methods. This study provides a promising technique for real-time myoelectric applications in 
movement control and health.
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Previous researches have reported stable and repro-
ducible performance of muscle force estimation utiliz-
ing global features of the SEMG signal such as root mean 
square (RMS) [6–8]. These amplitude-associated features 
have attracted much interest with various applications 
in machine learning [9]- [10] or deep learning networks 
[11]- [12]. However, by using these global features, the 
direct myoelectric control systems can be severely influ-
enced by motion artifacts, fatigue, background noise, and 
action potential variations, leading to performance deg-
radation [13–15].

With the recent development of electronic and sensing 
technologies, the use of high-density SEMG (HD-SEMG) 
has been rapidly developed to facilitate implementation 
of SEMG decomposition in the past ten years [16]. This 
enables resolution of the composite EMG signal into 
its constituent MUAP waveforms and MU spike trains 
(MUSTs) in a non-invasive way [17–19]. In addition, the 
advent of online SEMG decomposition in a two-stage 
framework makes its application in daily life within the 
bounds of possibility [20–24].

The extracted MU activities, including MU firing pat-
terns and waveform characteristic, contain neural infor-
mation embedded in the electrical activity of skeletal 
muscle [25]. On this basis, the muscle force can be pre-
dicted from the extracted MU activities, which shows 
superiority over the global features [26]-[27]. Generally, 
the myoelectric control methods that used MU activities 
are usually termed as MU-driven methods [28]. Among 
these MU-driven methods, Zheng et al. established an 
MU firing rate-force model based on a linear regression 
algorithm [22]. Furthermore, Tang et al. [29] and Li et 
al. [30] utilized deep learning networks to mine spatial 
information of MUAP waveforms to distinguish different 
MUs for performance improvement.

Although these MU-driven methods have been proved 
effective with great potential, prolonged muscle contrac-
tion has always been an inevitable limitation [22, 31]. In 
the online SEMG method, the decomposition accuracies 
decrease over time due to many factors such as variations 
in muscle fiber length and conduction velocity [32]- [33]. 
Researches have reported that a lower decomposition 
accuracy can lead to larger force estimation errors [34]. 
Extensive computations are required to alleviate perfor-
mance degradation during prolonged contraction [31], 
which conflicts with the online implementation of force 
prediction. Finding a way to establish an appropriate bal-
ance remains a great challenge.

To address the limitation, we proposed a novel online 
muscle force prediction method using a neural net-
work. A series of separation vectors were calculated 
in the training stage using offline progressive FastICA 
peel-off (PFP) method for decomposing sEMG data into 
corresponding MU activities. The MU activities were 

transferred into twitch force trains and a long short-term 
memory (LSTM) neural network was utilized to predict 
the muscle force. During the online stage, an adaptive 
online SEMG decomposition method based on double-
thread-parallel computation was employed to precisely 
trace MU discharges in the prolonged contractions so 
that force can be accurately estimated in real time. This 
study offers a useful tool for online myoelectric appli-
cation with wide potentials in movement control and 
health.

Methods
Subjects
This study involved eight subjects (six males and two 
females, age: 26.00 ± 1.89 years) without any known mus-
cular injuries or neuromuscular disorders participated. 
The experimental protocol was approved by the Ethics 
Review Committee of University of Science and Tech-
nology of China (Hefei, Anhui, China, under Application 
No. 2022-N(H)-163, February 2022). All subjects gave 
their informed and written consent prior to any proce-
dure for the experiments.

Experimental protocols
The apparatus of the experiment is shown in Fig.  1a. A 
multi-channel electrode array arranged in 8 rows × 8 
columns (FlexMatrix, Shanghai, China) was attached to 
the abductor pollicis brevis (APB) muscles on the domi-
nant hand of a subject to record HD SEMG signals. Each 
electrode probe had a diameter of 2  mm with an inter-
electrode distance of 4  mm between consecutive elec-
trodes. At the beginning of the experiment, we tested all 
subjects’ maximum voluntary contraction (MVC) of the 
tested muscle (the maximum force of the thumb abduc-
tion contractions).

A series of contraction tasks were performed in the 
experiment, as shown in Fig.  1b. More specifically, the 
muscle force gradually increased from 0 to a targeted 
force level in 2s and then maintained at the targeted level 
for 3s in each trail of the contraction task so that a cor-
responding 5-s segment of SEMG signal could be col-
lected. The targeted levels were set to 20% and 30% MVC. 
During the experiment, the subjects were required to sit 
comfortably. To prevent muscular interferences from the 
wrist or other fingers, a set of 3D-printed modules was 
fixed on appropriate positions of the table. The EMG 
recording system included a one-dimensional load cell 
(LDST-V-HY, Luckly Inc., Beijing, China) for record-
ing EMG signals and muscle force simultaneously. The 
HD-SEMG signals in all channels were filtered through a 
10-order Butterworth band-pass filter to reduce possible 
low-frequency or high-frequency interference. The band-
width of the filter was 20–500 Hz. In addition, power line 
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interference was removed through a 50 Hz second-order 
notch filter. All the recorded SEMG and force data were 
digitized via a 16-bit A/D converter (ADS1198, Texas 
Instruments, TX) at a sample rate of 2 kHz. The reliabil-
ity of the data recording system has been proved in our 
previous studies [35]- [36].

Data collection for training
During this period, the subjects were instructed to per-
form the thumb abduction contraction task three times 
at 20% and 30% MVC, respectively. Sufficient rest was 
allowed for the subjects to avoid muscle fatigue. Data 
recorded in this experiment were used for calculating 
the MU separation vectors and training the muscle force 
model based on a deep learning network.

Online testing of the force prediction
To implement online testing, the data recording system 
was linked using a USB cable to a desktop computer with 
an Intel Core i9 CPU, 32 GB of RAM and an RTX3080Ti 
GPU for data transferring, recording, online SEMG 
decomposition and force estimation. Customized soft-
ware was developed with the Python language using the 
deep learning framework termed Keras [37]. All of the 
procedures of the proposed method were implemented 
in the software. A graphical user interface (GUI) was also 
developed for interaction between the software and its 
users via the computer screen, as illustrated in Fig. 1 (c).

After the initialization, the subjects started online test-
ing by repeating the force task mentioned above. For each 
of the subjects, 10 executions of the 5-s force task were 
required at 20% and 30% MVC. To meet the demand of 
online processing, the collected SEMG data stream was 

divided into a series of temporally overlapping windows 
with the window length and increment set at 1s and 
0.2s, respectively. Real-time decomposition and force 
prediction were performed in a single 1-s window. Dur-
ing the online testing, the GUI showed a picture demon-
stration at a fixed interval of 0.2s, which was consistent 
with the increment of processing windows. The picture 
demonstration included the historical 5-s SEMG signals, 
extracted MUSTs, measured force and predicted force to 
guide task performance. After the test was completed, 
the overall accuracy was calculated and displayed on the 
screen. Figure  2 shows the framework of the proposed 
method.

Training stage
The framework of the proposed method contained a 
training stage and online testing stage, which is con-
sistent with the two-stage approach of online sEMG 
decomposition [21]. The pre-processing of the time-
consuming computations and training can provide prior 
knowledge to benefit real-time applications. The training 
stage included the complete offline prework stage using 
the offline automatic PFP (APFP) [38] to obtain a series 
of separation vectors. The MUAP waveform of each MU 
was estimated following a least squares problem and all 
the waveforms were generated in 2D form.

Afterwards, the model for muscle force prediction 
needs to be established and trained. The establishment 
was two folds that are further explained in the following 
section.

Fig. 1 Experimental setup and protocol. (a). Apparatuses used for simultaneously recording thumb abduction force and HD-SEMG data. (b) Illustration of 
the force generation pattern with both the designed force curve (red line) and an actual recorded force curve (blue line) (c). The recorded EMG signals. (c) 
User interface of the software used for the online testing. There is an SEMG signal in one single channel as an example to exhibit the data stream on the 
top of the interface. Extracted MUSTs, measured force (red line) and predicted force (the blue line) are shown below
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Transfer of MUAP to twitch force
The twitch force model [39] can establish an electricity-
to-force transformation process at MU level. In this 
model, the muscle force is described to be generated 
from the twitch forces of a series of activated MUs. Spe-
cifically, the twitch force of an activated MU is expressed 
as the second-order-system [39]:

 
fi (t) =

Pi • t
Ti

• e1−
t
Ti  (1)

where Pi  and Ti  represent the contraction time and the 
twitch force amplitude of the i th MU, respectively. In 
addition, an inverse power function is used to describe 
the relationship between Pi  and Ti :

 
Ti = TL •

(
1

Pi

) 1
C

 (2)

where TL  is the maximal contraction time with a value 
set to 90ms and c  is a constant set to 4.2. Pi  is modeled 

to be linearly correlated with the peak-to-peak amplitude 
of the MUAP waveform. Generally, an activated MU usu-
ally discharges regularly. For the j th discharge time of 
the i th MU, the twitch force was described as:

 
fi,j (t) = gi,j •

Pi • t
Ti

• e1−
t
Ti  (3)

where gi,j  denotes the gain of the j th discharge time of 
the i th MU. It is defined as the ratio of the force to the 
firing rate. In this regard, the value of the gain was calcu-
lated as:

 ISIj = ti,j+1 − ti,j  (4)

 

gi,j =






1, Ti
ISIj

≤ 0.4

k • 1−e
−2

(
Ti

ISIj

)3

Ti
ISIj

, otherwise
 (5)

where k  is a constant and ISIj  is the inter-spike inter-
val (ISI), which means the time interval between two 

Fig. 3 Architecture of the neural network used in this study. “conv” refers to a convolutional filter

 

Fig. 2 Block diagram of the proposed method for estimating muscle force using HD-SEMG data in real time. The framework of the proposed force predic-
tion method contains the training stage (blue block) and the online testing stage (yellow block). The separation vectors were periodically update in the 
backend thread (red block) to maintain their validity
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consecutive discharges of a single MU [40]. Ti/ISIj  is 
the normalized stimulus rate.

The twitch force model was employed in each channel 
separately. To be consistent with the procedures of online 
decomposition, force prediction was performed on every 
200-ms window (corresponding to a 0.2-s step of the 1-s 
window in the online decomposition, which contains 400 
data points at a sampling rate of 2000 Hz). When there 
were N MUs decomposed in the online stage, the input 
SEMG feature map in a 400 × 8 × 8 × N data matrix was 
obtained as a basic sample for network training and test-
ing. Each sample was labelled via the corresponding 100-
point normalized force curve.

Muscle force model based on neural network
Figure 3 shows the architecture of the network. One con-
volution layer was designed to take advantage of mining 
and characterize the spatial information from the 2D 
electrode array. The size of the convolutional filter was 
3 × 3, the number of filters was 16, and the stride step was 
1 × 1. The features obtained from the convolution layer 
were then processed using the typical LSTM to capture 
the long-term dependencies of data. The network con-
tained two LSTM layers: one with 64 units and one with 
1 unit. The final output of the predicted force (i.e. 400 × 1) 
was obtained from a fully connected layer. The whole 
network was trained with the Adam optimizer with a 
learning rate of 0.001. The root mean squared deviation 
(RMSD) was chosen as the loss function of the neural 
network and was calculated as:

 
RMSD =

√∑n
i=1[F̂ (t)− F (t )]

2

n
× 100% (6)

where n  denotes the number of the samples (i.e. 400). 
F̂ (t) and F (t) represent the predicted force and the 
measured force, respectively.

To this end, the force prediction model was established. 
The initial 15-s SEMG signals were decomposed offline 
to obtain the MU activities and the twitch forces. These 
decomposition results were divided into a training set 
and a validation set at a ratio of 2:1. Then, the neural net-
work was trained with the labels of measured force with 
a batch size of 32 and the network was trained for 150 
epochs. This training stage is equivalent to the model 
training in the deep-learning approach.

Online force prediction
During the online testing stage, the MUSTs were iden-
tified in short time windows from the extended and 
whitened SEMG data stream in real time, as shown in 
Fig.  4. The procedures of the MUST extraction kept 
consistent with our previous work using the successive 

multi-threshold Otsu algorithm [21]. In a single 1-s win-
dow, the MU firing events from the overlapping 0.8s were 
used to track the same MUs to ensure the continuity of 
decomposition results. The MU firing events from the 
last 0.2s were applied to estimate the force. More details 
of the processing and the corresponding parameters 
can be found in our previous study [21]. The online PFP 
method used in this study had the same settings reported 
in the same study [21].

After executing the online decomposition of SEMG 
signals, the MUSTs were continuously extracted and then 
transferred to multi-channel twitch force trains. These 
twitch force trains were input into trained neural net-
work and the estimated muscle forces over windows were 
connected to form the resultant force.

To improve the performance of muscle force predic-
tion, we designed a backend thread to update the MU 
separation vectors in the 5-second EMG segment at 
intervals of 10 s. This was done to adaptively update the 
MU separation vectors and maintain the validity of the 
vectors to precisely decode neural information. More 
specifically, the constrained FastICA was used to con-
tinuously track the same MUs with high precision in the 
backend thread. The spike trains of the identified MUs 
were used as constraints to drive the FastICA algorithm 
to converge rapidly (The detailed calculation steps of 
this constrained FastICA algorithm are given in previous 
studies [38, 41]). Therefore, for each MU, the separation 
vector can be effectively updated, and all the potential fir-
ing errors are believed to be corrected. After this update 
procedure, the original MU separation vectors were 
replaced by the updated version using the described pro-
cedure. The frontend thread applied the newly updated 
vectors to extract MUSTs and estimate muscle force in 
real time, processing in parallel with the backend thread.

Performance evaluation
Performance metrics
The performance of force prediction was quantified by 
RMSD and the coefficient of determination (R2). For 
each of the different force levels, the RMSD and R2 val-
ues were averaged across subjects to represent the over-
all performance. In addition, we calculated the matching 
rates (MRs) of each individual MUST decomposed in the 
online decomposition stage with the ground-truth refer-
ence (the offline decomposition results). To better under-
stand the effect of the backend update thread on the 
decomposition precision, the EMG data used in online 
testing stage were additionally decomposed by an offline 
APFP method [38]. The MR is defined as:

 
MR =

2Ncom

N1 +N2
 (7)
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where N1 and N2 are the number of spikes of the two 
spike trains decomposed online and offline, respectively, 
and Ncom  is the number of common spikes. MR and the 
rate of agreement (RoA) are both commonly used criteria 
to assess the degree of matching of two spike trains and 
can effectively evaluate the decomposition performance 
[42]. Each MUST decomposed online was compared with 
each of the reference MUSTs, and the MUST achieving 

the maximum MR was selected from the reference to pair 
with the online decomposed MUST. This maximum MR 
was set as the decomposition accuracy for that MU.

To evaluate the real-time performance of the proposed 
method, we also calculated the time delay for process-
ing the EMG data in a single 1-s time window, which was 
averaged all windows and all subjects.

Fig. 5 Comparison between the reference spike train from offline decomposition and the spike trains obtained through the online decomposition with 
and without update procedures. Two 2-second segments of spike trains are shown to illustrate more detailed spike timings

 

Fig. 4 The illustration of the online force prediction process using the proposed method
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Comparison methods
To demonstrate the outperformance of our method 
more comprehensively, two evaluations were performed. 
First, the RMSD and R2 values were evaluated with and 
without the backend update thread. In other words, the 
online force prediction without the update procedures 
could only use the MU information initialized in the 
training stage. This comparison method was denoted as 
the “no update” method, and the proposed method was 
termed as the “update” method.

Second, some conventional methods for muscle force 
prediction were also applied for comparison. One pre-
viously reported method using microscopic informa-
tion was also adopted. This method employed the MU 
firing rate (FR) of the decomposed MUSTs to estimate 
force through a two-order polynomial regression model 
(termed as FR method) [22]. The FR in a single time win-
dow was calculated with a length of 250ms and incre-
ments of 50ms.

In addition, the RMS was also selected as a represen-
tative macroscopic feature for the conventional force 
prediction method based on EMG amplitude (termed as 
RMS method). The calculation of RMS was consistent 
with that of the FR, and the same two-order polynomial 
regression model was applied. Other settings of the com-
parison methods and the proposed method remained 
consistent or were fine-tuned for optimal performance.

Statistical analysis
In order to evaluate the effect of the update procedure 
in the backend thread, two two-way ANOVAs were con-
ducted on the RMSD percentage and R2, with both the 
update procedure (two levels: update and no update) 
and the method (three levels: the proposed method, FR 
method and RMS method) considered as the within-
subject factors. The level of significant difference was set 
as p < 0.05. All statistical analyses were performed with 
SPSS software (ver. 22.0, SPSS Inc. Chicago, IL, USA).

Results
Time delay
The computational complexity of the proposed force pre-
diction method was 0.106 ± 0.022s and was always less 
than 0.2s (the time length of the window increment). 
The processing time of the backend update thread was 
4.56 ± 1.74s and was less than the 10s update period. 
The result demonstrated that the update strategy can 
meet the requirement for real-time processing [21, 22, 
24]. Additionally, we also calculated the time delay of 

the comparison methods, which was much lower than 
the proposed method (FR method: 0.095 ± 0.014s, RMS 
method: 0.051 ± 0.018s).

Results of online identification of MUSTs
Figure 5 shows a comparison of the MUSTs of an identi-
fied MU obtained from the online decomposition process 
with and without update. The MU discharges derived 
from the decomposition process with update procedures 
matched well with the reference while there were many 
missing or erroneous discharges in the results of online 
decomposition without any update. Table 1 lists the 
online decomposition accuracies of all MUs across the 
subjects. For each subject, the accuracy was significantly 
improved by the update procedures.

Results of online force prediction
Fig. 6 shows examples of force estimation results of the 
proposed method with and without the update process 
at two contraction levels. The results show that the esti-
mated force of the proposed method curve fitted the 
measured force curve much better than the “no update” 
method and the subtle force fluctuations can be effec-
tively tracked with stable performance over time. Fig-
ure  7 exhibits representative results derived from using 
two comparison methods and the corresponding MUSTs. 
It can be observed that the estimated force curve of the 
proposed method had a better fit with lower RMSD and 
higher R2 than the other methods.

The performance of force estimation in terms of both 
RMSD and R2 metrics averaged over all subjects is shown 
in Fig.  8. The ANOVA showed that the update proce-
dure significantly improved the RMSD of both the pro-
posed method and the FR method (p < 0.001). Similarly, 
the ANOVA revealed that the R2 values of the proposed 
method and the FR method with the update procedure 
has a higher correlation with the measured force than 
those with no update (p < 0.001). The RMSD and R2 of 
the RMS method stayed the same with and without the 
update procedure. In addition, we also evaluated the 
force prediction performance of the proposed method 
and the two comparison methods. The results demon-
strated a significantly smaller estimation error of the 
proposed method than the FR method (p < 0.05) and the 
RMS method (p < 0.001) when there was an update pro-
cedure. The proposed method also showed a higher R2 
value of force prediction than the FR method (p < 0.001) 
and RMS method (p < 0.001).

Table 1 Decomposition accuracies (%) for experimental EMG across subjects
Subjects S1 S2 S3 S4 S5 S6 S7 S8
Update 94.28 ± 4.51 95.91 ± 3.41 95.04 ± 4.28 93.52 ± 3.50 92.92 ± 6.71 91.92 ± 4.84 93.40 ± 4.87 93.18 ± 3.85
No update 87.24 ± 5.22 83.70 ± 3.41 82.93 ± 4.74 85.26 ± 4.88 84.80 ± 5.43 85.74 ± 3.74 86.17 ± 3.33 85.60 ± 5.35
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Discussion
This study presents a novel method for predicting muscle 
force from SEMG signals in real time. In the proposed 
method, the MU separation vectors were first calcu-
lated in the training stage and the corresponding MUAP 
waveforms were transferred into the twitch force trains. 
Meanwhile, the muscle force model that contained a 
twitch force model and a neural network was established 
and trained. During the online testing stage, one fron-
tend thread obtained MUSTs from SEMG streams in 
real time and fed them into the trained network to esti-
mate the corresponding muscle force. The other backend 
thread simultaneously refined the MU separation vectors 
at fixed intervals to provide precise MUSTs for the force 
model. Our results proved the feasibility and effective-
ness of the proposed method, which can help develop a 
more useful neural interface technique decoding neural 
drive information from individual MU activities.

Benefits of adaptive online decomposition
With the update procedure in the backend thread, high 
decomposition accuracy was maintained during pro-
longed muscle contractions, as shown in Table I. More-
over, significant improvement of force prediction was 
shown in our results, illustrating the effectiveness of 
the double-thread-parallel algorithm. This is due to 

the fact that long-term muscle contraction can lead to 
a negative effect on the muscle force prediction based 
on SEMG signals, which has been discussed in a previ-
ous study [22]. The prediction performance degradation 
can be explained by the decrease of the decomposition 
accuracy during prolonged contractions [31]. Due to the 
fact that MU discharges determine the time of the cor-
responding twitch force, it is essential to precisely extract 
MUSTs in the MU-driven force prediction method. If 
the errors of the MUST extraction accumulate over time, 
it can strongly compromise the force estimation. This 
limitation has not been effectively overcome in previous 
studies [22]. In this study, we combined a double-thread-
parallel algorithm in the proposed method. Through 
the update procedure in the backend thread, the valid-
ity of separation vectors was maintained using the con-
strained FastICA algorithm, thus benefiting the process 
of force estimation. It is worth mentioning that the FR 
method could also benefit from the update procedures, 
because it is also highly dependent on the precise MU 
firing information. The results demonstrated the poten-
tial of our method to improve the performance of neu-
ral-machine interface systems that use MU discharge 
information. Furthermore, the time delay of our method 
kept in an acceptable range, and the complexity met the 

Fig. 6 Force estimation results of a representative subject at 20% and 30% MVC using the proposed method with update and with no update, respectively
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Fig. 8 Figure 8. Force estimation performance evaluated by RMSD (left) and R2 (right) using the proposed method, the FR method and the RMS method. 
The effect of the update procedure is also shown with different colors (red and blue). * represents p < 0.05, ** represents p < 0.01, *** represents p < 0.001.

 

Fig. 7 Force estimation results of a representative subject at 30% MVC using three common methods: the proposed method, the FR method and the 
RMS method
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requirements for real-time performance, which also 
benefited from the double-thread parallel computation 
strategy.

In our previous study, a module was made for cross-
trial MU identification and tracking in the offline frame-
work of force estimation due to inconsistency of the 
offline SEMG decomposition across different trails [29]. 
Such inconsistency means that it cannot satisfy the pre-
requisites for introducing advanced deep neural networks 
in processing MU activities, so that it is necessary to sort 
the MUs into fixed categories with an MU tracking mod-
ule [29]. In comparison, this module for MU clustering 
was not included in our proposed method. This can be 
explained that the MU separation vector used in the 
online stage has the capability of continuously tracking 
the same MU, which is the basic assumption of the two-
stage approach for online SEMG decomposition [20–24]. 
In other words, the application of the two-stage approach 
into muscle force prediction can effectively overcome 
the cross-trial inconsistency of the offline MU-driven 
method. This is critical because the precise tracing of 
the same MU during long-term recordings significantly 
affects the force prediction performance and the update 
procedure in the proposed method helps maintain the 
validity of the separation vectors to make the proposed 
method more suitable for prolonged muscle contrac-
tions. In addition, the results fully demonstrated that the 
transfer of MU separation vectors enables the general-
ization of knowledge from the offline stage to the online 
stage using a deep neural network. Our study illustrated 
the unique advantage and significance of online SEMG 
decomposition applied into myoelectric control.

Comparison with conventional methods
Compared with the microscopic neural drive informa-
tion, global features such as the EMG amplitude are more 
accessible and it is straightforward to use these features 
for estimating muscle force. In our results, the neural-
drive methods yielded the lowest RMSD and highest R2 
and its performance was better than that of RMS-based 
method, which is consistent with the literatures [28–30]. 
Essentially, the correlation between SEMG signals and 
muscle force can be seemed as a ‘black box’ consisting 
of the activities of activated MUs, and the amplitude-
based method is just an oversimplified description of the 
‘black box’ [43]. In contrast, the neural drive information 
derived from the MU activities makes the force estima-
tion process more analytical and transparent, by follow-
ing the physiology of muscle movement. In addition, the 
results demonstrated the superiority of the proposed 
method over a common neural-drive method based on 
MU discharges, which has been extensively investigated 
both offline [34]-[36] and online [22, 28]. Although the 
processing time cost of the proposed method caused by 

the online SEMG decomposition was higher than the 
comparison methods, it significantly improved the per-
formance of force prediction, which makes it a promis-
ing and worthwhile trade-off. The outperformance of our 
method can be explained by the reason that the differ-
ent contributions of MUs were effectively distinguished 
by the means of mining their MUAP spatial information 
using deep learning in our proposed method. In contrast, 
the FR method only uses the firing rate of the compos-
ite MUSTs without any waveform information. Through 
periodical updates in the backend thread, the precise 
MU firing information can be provided to fully exploit 
the advantages of distinguishing MU, outperforming the 
other online MU-driven applications that only inves-
tigated the MU discharge information with a simplified 
machine learning algorithm [22, 28].

Limitations
There were some limitations in the current study that 
need to be clarified. First, with the consideration of the 
update period, the peel-off procedure in the offline APFP 
method did not transfer into the online version due to 
the long processing time. The peel-off procedure can 
make full use of already identified MUs and help Fas-
tICA to find more MU source signals, which could pro-
vide a more comprehensive description of the activated 
MUs. Second, the SEMG signals were collected from 
only isometric contractions of APB muscles. More com-
plex experimental paradigms including different muscles 
(such as the biceps brachii) and non-isometric conditions 
need to be validated. Third, the robustness of the method 
against electrode shift or other interferences needs to be 
improved for the practical neural interfaces. This prob-
lem also remains in research on online SEMG decom-
position. Further research will be devoted to addressing 
these limitations.

Conclusion
A novel method for predicting muscle force in real-time 
based on neural drive information from individual motor 
unit activities was presented in this paper. The MU sepa-
ration vectors were obtained in the training stage and 
the waveforms of the decomposed MUs were transferred 
into twitch force trains. A neural network was established 
and trained to predict muscle force. During the online 
testing stage, the SEMG signals were decomposed in 
real time and the extracted MUSTs were utilized in the 
trained model to estimate muscle force. Moreover, a dou-
ble-thread-parallel algorithm was integrated to periodi-
cally update the MU separation vectors to alleviate the 
performance degradation during prolonged contractions. 
Full validation was performed with experimental SEMG 
data, and the proposed method significantly improved 
the force estimation precision and outperformed the two 
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common methods. This study offers a promising tool for 
predicting muscle force in real time, with a variety of 
applications in the neural interface techniques based on 
SEMG signals.

Abbreviations
MU  motor unit
SEMG  surface electromyogram
RMSD  root mean square deviation
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MUAP  motor unit action potential
RMS  root mean square
HD-SEMG  high-density SEMG
MUST  MU spike train
APB  abductor pollicis brevis
MVC  maximum voluntary contraction
GUI  graphic user interface
LSTM  long short-term memory
PFP  progressive FastICA peel-off
APFP  automatic progressive FastICA peel-off
MR  matching rates
RoA  rate of agreement
FR  firing rate
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