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Abstract 

Despite its rich history of success in controlling powered prostheses and emerging commercial interests in ubiqui‑
tous computing, myoelectric control continues to suffer from a lack of robustness. In particular, EMG‑based systems 
often degrade over prolonged use resulting in tedious recalibration sessions, user frustration, and device abandon‑
ment. Unsupervised adaptation is one proposed solution that updates a model’s parameters over time based on its 
own predictions during real‑time use to maintain robustness without requiring additional user input or dedicated 
recalibration. However, these strategies can actually accelerate performance deterioration when they begin to classify 
(and thus adapt) incorrectly, defeating their own purpose. To overcome these limitations, we propose a novel adap‑
tive learning strategy, Context‑Informed Incremental Learning (CIIL), that leverages in situ context to better inform 
the prediction of pseudo‑labels. In this work, we evaluate these CIIL strategies in an online target acquisition task 
for two use cases: (1) when there is a lack of training data and (2) when a drastic and enduring alteration in the input 
space has occurred. A total of 32 participants were evaluated across the two experiments. The results show 
that the CIIL strategies significantly outperform the current state‑of‑the‑art unsupervised high‑confidence adaptation 
and outperform models trained with the conventional screen‑guided training approach, even after a 45‑degree elec‑
trode shift (p < 0.05). Consequently, CIIL has substantial implications for the future of myoelectric control, potentially 
reducing the training burden while bolstering model robustness, and leading to improved real‑time control.

Keywords Electromyography, Incremental learning, Active learning, Adaptation, Contextual learning, Myoelectric 
control

Introduction
Following decades of success in controlling powered 
prostheses [1], myoelectric control is becoming an 
increasingly sought-after hands-free input modality for 

human-computer interaction (HCI) [2]. Its convenience, 
subtlety, and intuitiveness make it a particularly attractive 
solution for emerging ubiquitous applications, such as in 
mixed-reality scenarios where camera-based approaches 
are infeasible. Leveraging the electromyogram (EMG) 
signals generated during muscular contractions and 
associating them with gestures enables hands-free, 
always-available input for various potential tasks. For 
example, myoelectric control has been used for human-
robot interaction [3, 4], cursor control [5], sign language 
recognition [6], and more recently mixed reality [7]. Its 
primary use has been, and continues to be, prosthe-
sis control, where it is commercially offered by several 
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vendors (e.g., Coapt,1 Infinite Biomedical,2 and Ottob-
ock3). However, despite its inherent promise, myoelectric 
control continues to suffer from several factors that hin-
der its real-world viability [8, 9].

A major impediment to the widespread viability of 
myoelectric control systems is their inherent susceptibil-
ity to degradation over time, influenced by factors such as 
electrode displacement, user fatigue, and shifts in mus-
cular contractions [8]. Although systems can be recali-
brated by acquiring guided training data, this process 
is tedious, especially for general-purpose applications 
where systems should be as close to “ready to use” as pos-
sible. Furthermore, the data collected during these con-
trolled calibration sessions frequently fails to accurately 
reflect the patterns of contractions elicited during real-
time device usage [10]. An ideal system would be capable 
of learning realistic user behaviours while maintaining 
the model’s robustness by continuously adapting to the 
user in real-time.

Unsupervised adaptation is one proposed solution 
that adapts to user-in-the-loop data without requiring 
direct user input, solving many of the issues associated 
with supervised recalibration [11]. Because it uses the 
classifier’s own outputs as pseudo-labels for adaptation, 
other fields have referred to this type of adaptation as 
semi-supervised [12]. This reliance on the classifier that 
is being adapted, however, leads to inherent limitations. 
For example, these approaches excel when preserving 
models that already perform well, producing pseudo-
labels that are correct and confident. However, when 
faced with challenges such as a significant change in the 
input space—leading to reduced model accuracy—these 
unsupervised adaptation approaches may fail. As such, 
a crucial research objective is to combine the ground 
truth labels of supervised methods with the convenience 
offered by unsupervised methods.

To achieve the combined benefits of both methods, 
we introduce a novel approach called Context-Informed 
Incremental Learning (CIIL). This approach draws moti-
vation from the demonstrated benefits of reinforcement 
learning in myoelectric control [13], while overcoming 
the user training burden introduced by the sample inef-
ficiency of reinforcement learning approaches. Inspired 
by reinforcement learning paradigms, but remaining 
an unsupervised learning method, CIIL operates effec-
tively in contexts where the user’s true intentions can 
be inferred. CIIL monitors the consequences of actions 
within an instrumented environment to assess their 

appropriateness, categorizing actions as positive or nega-
tive. Before adapting the model, the categories of actions 
provide an opportunity to reassign more appropriate 
labels if the classifier-assigned actions do not align with 
the inferred goal of the environment. Further, the con-
text-informed labels can be used to isolate samples the 
model assigned an incorrect label (negative) or correct 
label (positive). This method overcomes the limitations 
of unsupervised adaptation strategies that often rely on 
the classifier’s confidence predictions being correct, as it 
focuses on the action’s suitability based on environmental 
context.

We evaluate the use of several CIIL strategies in two 
separate scenarios that could benefit from adaptation: 
(1) when limited training data is available and (2) when 
a drastic shift in the input space has occurred (i.e., after 
a 45-degree electrode shift). By extracting environmental 
context in a simple target acquisition game, we show how 
this additional context can not only maintain model per-
formance over time but improve the underlying model 
behaviour compared to dedicated screen-guided training 
approaches. In a departure from conventional methods, 
our innovative CIIL training approach not only outper-
forms current standards but also holds substantial prom-
ise for advancing the effectiveness of next-generation 
myoelectric control systems.

Related works
Incremental learning in myoelectric control
The practice of collecting offline data (i.e., where con-
tractions are elicited with no active control or feedback 
provided to the user) to train a classifier is arguably an 
incomplete solution when optimizing for online, user-
in-the-loop interactions. Correspondingly, there is often 
weak association between offline classification perfor-
mance and usability during later online use [10]. While 
other offline metrics may provide better predictive power 
[14], the best indicator of online usability is evaluat-
ing classifiers in more realistic intermediate tasks, such 
as a simple virtual environment [15]. This is, at least in 
part, because the performance of myoelectric control is 
dependent not only on the model’s fit but how well under-
stood the user’s behaviour is under all circumstances (i.e., 
when a user’s mental bandwidth is split between adher-
ing to consistent patterns as produced during training 
and performing their control task). As such, conventional 
guided calibration approaches, wherein a user mimics a 
sequence of prompted gestures used as labels for super-
vised learning (such as screen-guided, or prosthesis-
guided, training [16]), prioritize the ability of the classifier 
to distinguish motion classes within the capacity of the 
controlled training dataset; but not necessarily for a more 
variable user-in-the-loop setting. Given the importance 

1 https:// coapt engin eering. com.
2 https:// www.i- biomed. com/.
3 https:// www. ottob ock. com/.
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of capturing these user-in-the-loop behaviours for model 
performance, the online adaptation of model parameters 
during real-time user interaction is an appealing alterna-
tive to guided calibration techniques.

Traditionally, online adaptation has been explored as 
a mechanism to combat a decline in performance due 
to gradual physical and behavioural changes [17–19]. In 
the work done by Zhang et  al. it was shown that unsu-
pervised adaptation could improve model resilience to 
simulated random noise that was added to offline test-
ing data [17]. More recently, it has been demonstrated 
that serious games provide an avenue for online adapta-
tion to improve classifiers trained with screen-guided 
prompts [18, 20]. For example, Woodward et  al. found 
that users elicited greater limb position variability dur-
ing online use which, when accounted for through online 
adaptation, yielded significantly higher scores during 
functional tests for both intact-limbed and amputee 
populations. Furthermore, researchers have addressed 
performance decline in myoelectric control across days 
by developing recalibration strategies, such as the self-
calibrating asynchronous domain adversarial neural 
network (SCADANN) introduced by Côté-Allard et  al.. 
This approach effectively combines established myoelec-
tric domain adversarial methods [21, 22] with stability-
focused heuristics and, notably, demonstrated superior 
robustness through gradual refinement of its representa-
tion using minimal unlabeled data [19].

Nevertheless, most unsupervised adaptation research 
has assumed the availability of a reasonably robust ini-
tial model. Comparatively little work has explored its 
performance in light of a catastrophic concept shift 
(such as doffing/donning of the EMG recording device), 
when the previously trained classifier may yield ineffec-
tive pseudo-labels, or with little-to-no initial training. 
In such situations, the classifier’s predictions may result 
in incremental learning updates, reinforcing the same 
flawed representation or, worse, driving the model in 
unknown and irreproducible directions. Although auxil-
iary information, such as informativeness [23], has been 
used alongside classifier confidence to determine valid 
samples to reincorporate, this may prevent further degra-
dation of a flawed model but does not enable recovery or 
improvement. Correspondingly, there is a need for adap-
tive techniques that are less susceptible to such factors.

Reinforcement learning
Unlike traditional supervised strategies that utilize pairs 
of inputs and labels, reinforcement learning uses a reward 
signal derived from the advantageous or disadvantageous 
outcomes of an agent’s interactions. This reward signal 
serves as a direct measure of the agent’s functional abil-
ity and can guide model updates independent of the 

classifier’s accuracy in predicting the user’s intent. Rein-
forcement learning has been explored in the myoelec-
tric literature, although primarily for offline supervised 
strategies. Wu et al. demonstrated the effective learning 
of wrist and finger joint angles using proximal policy 
optimization, circumventing the drift typically encoun-
tered with supervised regression and forward dynamical 
simulations [24]. They defined the discrepancy between 
predicted and measured joint trajectories as a continu-
ous-valued reward signal. Similarly, Vasconez et  al. uti-
lized deep Q-learning for gesture recognition, employing 
positive rewards for correct predictions and negative 
rewards for incorrect predictions based on data collected 
from screen-guided training [25]. Likewise, Edwards 
et al. used generalized value functions with EMG signals 
to elicit a switch command that changed the degree of 
freedom being controlled, a mechanism typically used 
alongside direct sequentially controlled prostheses [26]. 
Although these approaches showcase the application 
of reinforcement learning in myoelectric control, the 
reward signals utilized were not direct measurements of 
performance in functional tasks.

There are relatively few studies that explore reinforce-
ment learning for myoelectric control with a reward sig-
nal that directly quantifies functional performance from a 
user-in-the-loop setting. Pilarski et al. has demonstrated 
that actor critic reinforcement learning can optimize the 
control of a robotic arm from reward signals that quan-
tify functional performance in two ways [13]. The first 
method uses a binary success metric, issuing a reward of 
+1 when within a region around the target trajectory and 
a reward of −0.5 when outside this region. The second 
method was making the user directly assign the rewards 
using arrow keys during use, as was pioneered by the 
TAMER approach [27]. Using both approaches, the user 
could precisely control two joints of the robotic limb to 
the desired target after sufficient training (<25  min and 
<10 min for the binary and human-assigned reward sig-
nals, respectively). Despite the success of this approach, 
reinforcement learning approaches are notoriously sam-
ple inefficient [28]. This relatively rapid training time 
was achieved by first developing an efficient EMG input 
representation and further tile coding the inputs of the 
continuous values into discrete bins. This compressed 
representation may not extend to more rich myoelectric 
control tasks when greater spatial and temporal resolu-
tion are needed to decipher user intent. As such, there is 
motivation to learn how to harness such contextual infor-
mation, but to leverage it in a more sample efficient way.

Context
As characterized in human-computer interaction 
research, context is “any information that can be used to 
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characterize a situation or entity” [29, 30]. By leveraging 
this often simple additional information, naive computer 
systems can become contextually aware, significantly 
improving the potential bandwidth of the particular 
human-computer input [31, 32]. For example, systems 
that leverage past input history as context can provide 
improved and tailored recommendations to users [33]. 
Alternatively, a user’s location could be used as context 
to improve search results on the web [34]. In turn, these 
contextually aware systems have become an expecta-
tion for many users, reducing the need for user input to 
enhance the user experience.

Despite its history of success within HCI, the concept 
of context has only recently begun to surface in prosthet-
ics. For example, some have used decision stream context 
like majority voting [35] and rejection [36] to improve 
control. Similarly, Sensinger et  al. proposed a form of 
decision stream context during unsupervised adapta-
tion by not adapting to changes in contractions that were 
not physically possible (i.e., they happened too quickly) 
[11]. While both approaches utilize the temporal context 
of the decision stream, they cannot be considered fully 
contextually aware systems. This is because their reli-
ance on a potentially incorrect underlying model may 
result in a context that is isolated from, and possibly in 
disagreement with, the real-world environment. Others 
have sought to improve situational context by including 
additional sensors, such as cameras embedded within 
the prosthesis [37–39]. These are examples of context-
aware myoelectric control systems that incorporate 
environmental information into their classifier inputs 
(see Fig. 1b). Although such systems can greatly improve 
control by providing additional information to the under-
lying classifier [38, 40], they do not attempt to correct 
the model’s behaviour. Moreover, these techniques may 
require the introduction of additional sensors, hardware, 
or environmental constraints and may reduce the user’s 
agency over the system—thus leading to abandonment of 
the device [41].

In this work, we lean on context to better derive pseudo-
labels during unsupervised adaptation. In this novel para-
digm, the context from the environment (i.e., the task’s 
setting) acts as a supervisory layer to inform the active 
learning process and correct the underlying model rather 
than the output. This becomes particularly interesting 
for general-purpose myoelectric settings where context 
becomes more trivial to extract. For example, environmen-
tal context could be a successful or missed button click. 
Alternatively, context could be quick error corrections such 
as quickly opening and closing a menu in mixed reality. By 
leveraging this seemingly simple context to continuously 
refine and enhance a model’s performance, the viability of 
myoelectric control incrementally improves, encompassing 

not only prosthetic control but also extending to mixed 
reality environments where the context might be even 
more immediately perceptible.

Methods
A proxy environment for online adaptation
This work employs a simple target acquisition game to pro-
vide a context-aware environment from which real-time 
adaptation can be performed (see Fig.  1b). In this game, 
participants controlled a crosshair along two independent 
degrees of freedom (Left/Right and Up/Down) with the 
goal of “saving” as many planets as possible in the given 
amount of time. After successfully moving the cursor over 
the top of a planet and hovering within its bounds for three 
seconds, the planet spawned at a different location. This 
cycle continued for the game’s duration. To keep consist-
ency across participants and trials, the sequence of posi-
tions in which the planets were generated remained the 
same for all participants and in each trial. Although con-
trived, this environment serves as a proxy for any myoelec-
tric control setting where context can be inferred.

Control scheme
The Myo Armband, a previously commercially avail-
able dry-electrode EMG cuff that records data at 200 Hz 
across eight channels, was used in this work. To discrimi-
nate between inputs, data were split into windows of 200 
ms with 100 ms increments corresponding to 40 samples 
per window with an increment of 20 samples between win-
dows. Hudgins’ time domain features were extracted from 
each window [42]. A linear discriminant analysis (LDA) 
classifier was then used to differentiate between the five 
gestural commands (Wrist Flexion—Left, Wrist Exten-
sion—Right, Hand Open—Up, Hand Close—Down, Neu-
tral Gesture—No Motion). After training, the LDA model 
was adapted in real-time during the aforementioned target-
acquisition game using ten-second batches of data. This 
interval was chosen empirically through pilot testing and 
was a trade-off between user adaptation to the changing 
control scheme and optimal adaptation performance [43]. 
The mean and covariance of each class were computed 
and combined with the existing LDA parameters using a 
static adaptation rate of 0.1 and a scaling factor reflecting 
the effective sampling rate. The adaptation of the mean and 
covariance matrices is shown below in equations (1) and 
(2):

(1)a =
αNb,c

Nc + αNb,c

(2)µc,i =(1− a)µc,i−1 + aµ̂c
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Fig. 1 Depictions of various myoelectric control system designs. Solid lines indicate an output from a node or an input to a node, and a diamond 
indicates a signal that modifies the weights of a node. a Myoelectric control systems designed using traditional practices (optimized for open‑loop 
control, user perception closes the loop). b Myoelectric control systems that are context‑aware (CA) and modulate the intent relayed 
to the controller subject to environmental information. c Myoelectric control systems optimized via traditional incremental learning (IL) (these 
systems rely on the high confidence predictions of the classifier to incorporate incoming data to the adaptation set). d Myoelectric control systems 
that are supplied contextual feedback based on the suitability of the performed action in the environment and use this information to govern 
incremental learning (CIIL)
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where µc,i is the mean of class c after adaptation, µc,i−1 
is the current mean of class c, µ̂c is the mean of class c of 
the batch, a is the adaptation rate, α is the static adapta-
tion rate, Nb,c is the number of new samples of class c, 
and Nc is the total number of samples in class c collected 
for adaptation thus far.

* Note that this work was built with LibEMG, an open-
source Python library for designing and evaluating real-
time myoelectric control systems [44]. The code and 
data can be found at github.com/ECEEvanCampbell/
CIIL_LDA.

Incremental learning strategies
To improve the usability of myoelectric control systems 
beyond the current status quo, we introduce the concept 
of Context-Informed Incremental Learning (CIIL). In 
the case of myoelectric control, context can be acquired 
through task-specific constraints, knowledge, or addi-
tional sensors. The system then gets feedback based on 
its perceived contextually-defined performance, and 
using this feedback, the model can learn from its actions 
and make improvements (see Fig. 1d). The model is then 
incrementally updated based on the contextual knowl-
edge acquired, leading to more robust control systems 
that are defined by active in  situ user behaviour. This 
work highlights three categories of CIIL systems (Nega-
tive, Positive, and Positive + Negative) and compares 
their performance to the state of the art adaptive sys-
tem (unsupervised high-confidence). An overview of the 
these strategies is presented in Fig. 3.

Negative context‑informed incremental learning (N‑CIIL)
Attempts to correct incorrect (i.e., negative) model 
behaviour by updating the predicted label with the 
assumed “correct” one. In the target-acquisition environ-
ment, incorrect actions were flagged when the cursor 
moved away from the target, indicating a disagreement 
between the task objectives and user behaviour. As the 
cursor could only be controlled along one axis at a time, 
two directions could usually be deemed correct (i.e., the 
diagonal between the cursor and the target). The training 
cluster whose mean was closest in Euclidean distance to 
the newly elicited contraction was selected to differenti-
ate between the two potentially correct labels. Note that 
all positive actions were ignored and not used to adapt 
the system.

Positive context‑informed incremental learning (P‑CIIL)
Reinforces positive model behaviour by adapting the 
model with predictions that lead to positive within-task 
results. In the target-acquisition environment, positive 
actions were flagged when the cursor moved toward the 
target, indicating that the user was accomplishing the 

task objectives. Correspondingly, the assumption was 
that the model made a correct decision that should be 
reinforced. All negative actions were ignored and not 
used to adapt the system.

Positive + negative context‑informed incremental learning 
(P+N‑CIIL)
A combination of positive and negative CIIL where all 
of the model’s predictions are leveraged for adaptation. 
Positive outcomes are adapted using P-CIIL, and negative 
outcomes are adapted using N-CIIL.

Unsupervised high‑confidence (UHC)
A popular extension of unsupervised adaptation where a 
model is updated with all decisions that have a confidence 
value above some predefined threshold [11]. Although 
this strategy uses the additional context of the classifier’s 
confidence profile, it is not considered a CIIL strategy as 
it does not leverage context beyond the knowledge of the 
underlying model.

Outcome measures
Offline metrics
Three offline performance metrics were leveraged to 
assess the performance of each model: classification 
accuracy, active error, and instability [45]. Accuracy is 
a common metric that captures the number of correct 
predictions as a percentage of the total predictions. In 
contrast, active error is a specialized metric that focuses 
only on misclassifications that resulted in unwanted 
movement, and does not penalize misclassifications that 
were predicted as no motion. Instability is a metric that 
captures the number of class transitions seen in the deci-
sion stream. If analyzing data obtained through screen-
guided-training, which typically does not record class 
transitions, the observed instability should ideally be 
zero. These metrics were computed on the screen guided 
training data acquired during each experiment.

Online metrics
To evaluate the online performance of each adapted 
model, an ISO 9241-9 inspired Fitts’ Law test evalua-
tion (see Fig. 2c) was used. Fitts’ Law is broadly used for 
human-computer interaction studies and provides an 
avenue for testing pointing and selection tasks [46]. Dur-
ing this online usability test, participants were required 
to capture a set of eight targets arranged in a circle. 
Although similar to the target acquisition game, no 
model adaptation occurred during this task. Additionally, 
participants were told they could give up at any time if 
they felt they did not have the control required to com-
plete the test. Three commonly used online metrics were 
assessed during this task: throughput, path efficiency, 
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and overshoots [47]. Path efficiency is the ratio of the 
shortest possible path from the cursor to the target to 
the actual path taken. The overshoot metric—the num-
ber of times the cursor enters and leaves a target before 

acquisition—is particularly important for measuring the 
stability of the control scheme during target acquisition. 
Finally, the throughput of the system is a measurement of 

Fig. 2 Experimental setup used throughout the study. a The Thalmic Labs Myo. b The calibration screen used in Scenario 1 collects one second 
of EMG data per motion class. c The screen‑guided training interface for collecting offline data. d The gamified proxy environment, Myoshoot, 
where adaptation occurred. The user’s position was represented by a crosshair and the goal was represented by a planet. e The Fitts’ law 
environment where online usability was ultimately tested

Fig. 3 A representation of a hypothetical sequence of cursor movements in the control task. The crosshair indicated the cursor position at each 
timestep with arrows indicating the direction of travel for the next timestep. An interpretation of the steps along the trajectory is given in the right 
table, where the decision (class and probability) and context suitability (was the performed action correct (P or N for positive or negative) and what 
were the correct options under the context) served as inputs to the inclusion criteria of different algorithms. The effects of the different algorithms 
are given by checkmarks (include with classifier’s prediction), hyphens (override the decision using context), and x’s (discard the sample)



Page 8 of 17Campbell et al. Journal of NeuroEngineering and Rehabilitation           (2024) 21:70 

the overall performance and is computed by the follow-
ing equations:

where T is the number of trials, ID is the index of dif-
ficulty, MT is the movement time, D is the distance to 
the target, W is the width of the target, and i is the trial 
number.

Experimental design
In this work, we evaluated the CIIL strategies during two 
situations that could benefit from adaptation: (1) when 
there is minimal training data (e.g., when adapting to a 
new user) and (2) when the input space has catastrophi-
cally shifted (e.g., after a 45 degree electrode shift). A 
total of 32 participants took part in these online, user-
in-the-loop experiments, as described in the following 
sections. At the start of the session, participants were 
asked to place the EMG cuff in a comfortable position 
on their right forearm. After giving the armband time to 
adjust to the participants’ skin and humidity (approxi-
mately 5 min), the initial model (i.e., the baseline for all 
the adaptation trials) was trained. The participants then 
went through a progression of in-game adaptation on 
the baseline classifier, proceeded by an ISO Fitts’ evalu-
ation of the adapted model. Additionally, two repetitions 
of steady-state, open-loop (no feedback) contractions 
were collected through screen guided training after each 
cycle to acquire a representative testing sample. This pro-
ceeded until all the adaptation strategies had been tested. 
All participants gave written informed consent prior to 
beginning, as approved by the University of New Brun-
swick’s Research Ethics Board and are on file as REB 
(2022-122).

Experiment scenario 1: minimal training data
Experiment one consisted of a pilot study to evaluate 
the efficacy of the CIIL strategies on a sparse yet reason-
ably accurate starting classifier. The preliminary results 
of this study were described in [48]. Eleven participants 
were recruited for this initial work (4 female, 7 male; 
ages 20–56). To train the starting model, one second of 
training data for each of the five classes using the built-
in data collection screen (see Fig. 1A) were acquired. The 
goal was to train a model whose feature space was cor-
rect but sparsely populated, possibly leading to unstable 
classifier behaviour. Although this limited amount of data 
is known to be suboptimal, commercial EMG systems 

(3)TP =
1

T

T
∑

i=1

IDi

MTi

(4)ID =log2
D

W
+ 1

have promoted the use of single repetition calibration 
protocols (e.g. Myo) to prioritize an expedited setup at 
the expense of performance. We also acquired five rep-
etitions of steady-state contractions through screen 
guided training to evaluate the performance of a classifier 
trained on offline data (i.e., the optimal baseline). Corre-
spondingly, the goal of the first experiment was an initial 
analysis of the newly proposed CIIL adaptation strategies 
for a relatively simple problem. The unique design con-
straints of the first experiment are as follows:

Velocity
To simplify the control system, we opted for simple con-
stant-velocity control mapping meaning that the cross-
hair moved at a constant speed regardless of contraction 
intensity.

UHC confidence threshold
The confidence threshold was empirically tuned during 
pilot studies to give the best outcome for UHC. Because 
the concept drift between training and testing is small 
and the confidence distribution of LDA is skewed high 
[49], the threshold was set to 100%. This conservative 
confidence threshold of 100% was chosen to adapt the 
model in the most cautious way possible. Even at this 
threshold, approximately 50% of within-game decisions 
were used to adapt the model.

Negative CIIL
In addition to the mechanisms of N-CIIL described 
above, we assumed any movement within the acquired 
target to be unwarranted and thus used it as negative 
context.

Order
The trial order was randomized across participants in this 
within-participant study. The six unique trials included 
the use of the screen guided training model (SGT), the 
initial one second model (initial), and the four unsuper-
vised strategies (UHC, P, N, P+N).

Gameplay time
The baseline model was adapted during a two-minute 
gameplay session—the approximate equivalent of acquir-
ing five repetitions of offline SGT data.

Experiment scenario 2: electrode shift
In a second, separate, phase of the study, the efficacy of 
the CIIL strategies was evaluated when a model’s input 
space had been catastrophically shifted. An additional 
21 participants were recruited for this experiment (8 
female, 13 male; ages 18–41). Participants trained an ini-
tial model using five repetitions of ramp contractions, 
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increasing from rest to their desired activation level over 
three seconds, for each input class. Then, after acquiring 
the baseline performance of the model in an ISO Fitts’ 
test, participants were asked to take off and rotate the 
EMG cuff by 45 degrees clockwise from their perspective 
( ∼ one electrode). This simulated doffing and donning of 
the EMG cuff in a different location with the amount of 
shift likely being even more extreme than what might be 
reasonably expected in a prosthetic socket. While dealing 
with electrode shift through automatic approaches is an 
ongoing area of research [50], its role in this experiment 
was intended as a proxy for any time the input space has 
drastically shifted, such as after doffing and donning a 
device, between-day control, or even after cross-user 
adaptation [22]. The unique design constraints of the sec-
ond experiment were as follows:

Velocity
A proportional control mapping was used, meaning 
harder contractions resulted in faster speeds. Subject’s 
class-specific mean absolute value was used to determine 
20% and 70% thresholds that formed a linear mapping for 
0% to 100% of the available cursor speed, as per [51].

UHC confidence threshold
Given that the concept drift introduced by the electrode 
shift was large, a lower confidence threshold of 99% was 
found to be best for UHC from pilot studies. This selec-
tion allowed UHC to include some incoming samples to 
attempt to improve; whereas too few samples would have 
been gathered with a threshold of 100%.

Negative CIIL
The negative adaptation from the first experiment was 
modified so that only within-target movement that 
drifted away from the center was considered as negative 
context.

Order
The order of the trials (P, N, P+N, UHC) was balanced 
across participants using a Latin square. Each user 
started with the pre-shifted SGT model.

Gameplay time
To observe a plateau in the adapted model that wasn’t 
seen with the two minutes of adaptation from experiment 
one, an adaptation time of five minutes was selected.

Questionnaire
Participants completed a NASA TLX survey after the 
ISO Fitts’ test to better gauge the perceived workload 
of controlling the cursor with each adapted model. The 
questionnaire queried the quality of the models after 

adaptation had occurred, and does not reflect the user’s 
perception of the model during the gameplay session.

Statistical analyses
Statistical analyses were conducted using the Statisti-
cal Tests for Algorithms Comparison (STAC) platform 
[52]. Analyses were performed independently for each 
experiment to determine differences between learning 
strategies from observed offline metrics (classification 
accuracy, active error, instability) and online metrics 
(overshoots, path efficiency, throughput). For each met-
ric, normality and homogeneity of variance were tested 
and Friedman ranking tests were determined to be 
appropriate.

Following a significant outcome, post-hoc multiple 
comparison tests were conducted using Finner correc-
tion [53] with a confidence level of 0.05. The resulting 
multiple comparison tests were visualized with critical 
difference diagrams. Within these diagrams, the mean 
normalized rank of the pipelines were determined and 
plotted on a number line. The lowest ranked pipeline is 
indicative of the lowest values among the pipelines for 
the metric being analyzed, whereas the highest rank is 
indicative of the highest values among the pipelines for 
the metric being analyzed. As such, the most desirable 
(best performing) rank for the metrics analyzed in the 
study were highest for accuracy, lowest for active error, 
lowest for instability, lowest for overshoots, highest for 
efficiency, and highest for throughput. Finally, these dia-
grams also illustrate when pipelines are not significantly 
different by grouping them together with a horizontal 
bar.

Results
The quantitative outcomes of scenario 1 were com-
piled into the first column of Fig.  4.For offline metrics, 
the SGT model was found to have significantly higher 
classification accuracy than the initial model, N-CIIL, 
and UHC adaptation (91.28% vs. 65.75%, 72.47%, and 
79.05%, respectively; p < 0.05 ), but not P+N-CIIL or 
P-CIIL (85.26% and 86.01%). For active error, the P+N-
CIIL and SGT models significantly lower than the initial 
model, N-CIIL, and UHC (10.53% and 6.22% vs. 32.62%, 
18.97%, and 18.23%, respectively; p < 0.05 ), but not 
P-CIIL (11.53%). Likewise, instability was significantly 
lower for SGT, P-CIIL, and P+N-CIIL compared to the 
initial model, N-CIIL, and UHC (5.00%, 7.77%, and 8.13% 
vs. 19.92%, 16.12%, and 12.08%, respectively; p < 0.05 ). 
For the online metrics, N-CIIL had significantly lower 
overshoots compared to the initial model (2.27 vs. 13.55; 
p < 0.05 ), but not P-CIIL, P+N-CIIL, SGT, and UHC 
(3.00, 3.64, 4.45, and 6.09, respectively). Path efficiency 
of SGT, N-CIIL, P-CIIL, and P+N-CIIL was significantly 
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higher than the initial model (68.45%, 67.66%, 70.77%, 
and 70.14% vs. 42.55%, respectively; p < 0.05 ). Finally, 
the throughput of P-CIIL was significantly higher than 
the initial model, UHC, and N-CIIL (0.43 bit/s vs. 0.24 
bit/s, 0.35 bit/s, and 0.35 bit/s, respectively; p < 0.05 ), 
but not SGT or P+N-CIIL (0.41 bit/s and 0.40 bit/s).

The quantitative outcomes for scenario 2 were com-
piled into the second column of Figure  4. For offline 
metrics, the pre-shift scenario had significantly higher 
classification accuracy than the shifted scenario with no 
adaptation, UHC, P-CIIL, and N-CIIL (87.78% vs. 48.32%, 
45.17%, 62.54%, and 73.23%, respectively; p < 0.05 ), 
but no difference was found with P+N-CIIL (79.53%). 
The active error multiple comparison had similar out-
comes, with the pre-shifted setting significantly outper-
forming the shifted scenario with no adaptation, UHC, 
P-CIIL, and N-CIIL (10.00% vs. 61.54%, 65.13%, 44.78%, 
and 26.29%, respectively; p < 0.05 ), but not P+N-CIIL 
(21.01%). As a consequence of not recovering all gestures 
during adaptation for most subjects, UHC had the lowest 

instability (manifested by failing to elicit all classes); how-
ever, no significant differences were found between UHC, 
P-CIIL, P+N-CIIL, and the pre-shifted setting (6.48%, 
6.59%, 7.28%, and 7.84%, respectively)—of which P+N-
CIIL and the pre-shifted setting could elicit all classes 
for all subjects. For the online metrics, UHC had sig-
nificantly more overshoots than the pre-shifted set-
ting, P-CIIL, N-CIIL, and P+N-CIIL (9.60 vs. 7.90, 5.71, 
4.86, and 5.00, respectively; p < 0.05 ). Path efficiency of 
P+N-CIIL was significantly better than P-CIIL and UHC 
(66.01% vs. 40.07% and 11.65%, respectively; p < 0.05 ), 
and was marginally better than the pre-shifted setting 
and N-CIIL (61.60% and 61.20%, respectively). Finally 
and most importantly, the throughput of P+N-CIIL was 
significantly higher than all other methods including the 
pre-shifted setting (0.61 bit/s vs. 0.50 bit/s; p < 0.05 ), but 
was only marginally higher than N-CIIL (0.57 bit/s).

The qualitative outcomes for scenario 2, which were 
extracted from the NASA TLX survey, are shown 
in Fig.  5. Reported frustration levels were lowest for 

Fig. 4 Box plots, summary statistics, and critical difference diagrams for offline metrics (accuracy, active error, instability), and online metrics 
(overshoots, efficiency, throughput) in both evaluated scenarios (minimal training data, electrode shift). Ideal trends for values and normalized 
ranks of these metrics are high accuracy, low active error, low instability, low overshoots, high efficiency, and high throughput. Blue bars linking 
groups in the critical difference diagrams signifies a non‑significant difference within the multiple comparison tests. Note: when subjects did 
not recover from the introduced electrode shift and could not complete the online assessment, their data was removed for the overshoots metric 
as a placeholder value was not appropriate
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P+N-CIIL, N-CIIL, and the pre-shift model with the 
P-CIIL and UHC models being significantly higher 
(23.81, 24.29, and 25.24 vs. 47.38 and 69.76, respectively; 
p < 0.05 ). In addition to P+N-CIIL having the highest 
throughput (objective performance measure), P+N-CIIL 
was also reported to be the significantly best-performing 
model (subjectively perceived performance measure, 
82.62). The pre-shifted SGT, P+N-CIIL, and N-CIIL 
models had significantly lower physical demand than 
the P-CIIL and UHC models (23.81, 25.00, and 27.14 vs. 
44.52 and 59.05, respectively; p < 0.05 ). Likewise, P+N-
CIIL and the pre-screening SGT model had significantly 
lower overall effort compared to P-CIIL and UHC (32.62 
and 34.52 vs. 52.86 and 70.00, respectively; p < 0.05 ), but 
not N-CIIL (38.57).

Discussion
Adaptation dynamics
In evaluating the various myoelectric control adaptation 
strategies across the two experiments of the study, clear 
differences between approaches emerged.

Unsupervised high-confidence adaptation—the cur-
rent standard for unsupervised learning—was beneficial 
when the system was already performing well, as dem-
onstrated in the minimal training data experiment (i.e., 

Experiment 1). Because the class distributions were suf-
ficiently informed, the UHC approach was able to con-
tinue to refine them appropriately. However, it does not 
yield any measurable benefits when the initial model 
is underperforming and would benefit the most from 
adaptation. Within the second experiment, only 5 of 21 
subjects had sufficient recovery after the electrode shift 
to complete the usability test, and even in these cases 
throughput after UHC adaptation was drastically lower 
than the CIIL approaches. The failure of UHC to recover 
after catastrophic shift is a crucial drawback for its viabil-
ity to maintain system robustness for myoelectric control 
where these perturbations are common. Nevertheless, 
UHC does not have the same contextual reliance as the 
other approaches, highlighting its usefulness and poten-
tial practicality for maintaining already robust models 
with minimal overhead when contextual information in 
unavailable.

P-CIIL demonstrated similarities with UHC, allowing 
the model to enhance its performance following success-
ful actions. However, P adaptation solely focuses on posi-
tive outcomes, ignoring negative actions which are most 
commonly the result of misclassifications. It achieved 
significantly higher throughput than UHC when the ini-
tial model was reasonable (Experiment 1), and was more 
reliable than UHC when the initial model was perform-
ing poorly (Experiment 2). Its shortcomings primarily 
emerge when the classifier aligns with a ‘correct’ contex-
tual direction that was not intended by the user. In the 
environment used in this study, this could arise when 
the planet is diagonal from the crosshair (up and left), 
the user tries to go left but the classifier went up. In this 
scenario, P-CIIL ends up reinforcing this inadvertent 
direction, albeit less frequently than UHC thanks to the 
reliance of contextual suitability of the direction. P-CIIL 
also runs into difficulties when the user was completely 
unable to evoke any positive context (for example when 
they get stuck in a certain mode). Consequently, only 14 
of 21 subjects were able to recover after the electrode 
shift to a high throughput model when relying on posi-
tive context alone.

N-CIIL offers a contrasting approach to P-CIIL 
by enabling model recovery in the presence of mis-
takes, regardless of classifier performance. Even when 
employing a simplistic tie-breaking system dependent 
on the classifier’s best guess among the valid options, 
N-CIIL consistently demonstrated recovery capabili-
ties, as evident in the electrode shift experiment. This 
holds true, even though the adaptation process had to 
choose between two potential behaviors during adapta-
tion, inevitably leading to erroneous information being 
provided at times. Consequently, every subject was able 
to recover after the electrode shift to a usable state (i.e., 

Fig. 5 Box plots, summary statistics, and critical difference 
diagrams for subjective ratings of the different adaptation methods 
(frustrating, performance, physical effort, and overall effort ). Ideal 
ratings and normalized ranks for these categories are low frustration, 
high performance, low physical demand, and low overall effort. 
Blue bars linking groups in the critical difference diagrams signifies 
a non‑significant difference between linked strategies
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they could complete the online Fitts’ law task). How-
ever, in longer adaptation scenarios, its performance 
may plateau as errors decrease in frequency, leading to 
a weakened adaptation signal.

A hybrid approach, combining positive and negative 
adaptation (P+N-CIIL), capitalizes on mistakes in the 
early stages and leverages positive interactions as they 
emerge. Generally, N-CIIL can recover a completely 
flawed model to the point where it can then benefit 
from P-CIIL. In doing so, this strategy harnesses the 
strengths of both adaptation approaches and exhibits 
the highest throughput in both experiments. This shift 
from negative to positive context for the P+N-CIIL 
pipeline is shown in Fig. 6, where P+N-CIIL began by 
using more negative context to accommodate the chal-
lenging setting, before transitioning to predominantly 
positive context after initial improvements. P+N-CIIL 
not only recovered to a usable level for every subject, 
but achieved a significantly higher throughput to 
the pre-shift screen guided training model. These 
findings underscore the significance of selecting an 
appropriate adaptation strategy based on the specific 
performance context and objectives in myoelectric con-
trol systems

Qualitative feedback
In addition to quantitative measures of performance 
(throughput) being better post-shift post-adaptation in 
Scenario 2, self-reported qualitative measures of perfor-
mance (extracted from the NASA TLX) showed users 
preferred the P+N-CIIL adapted model over the pre-
shift SGT model. From the reported performance metric, 
P+N-CIIL was significantly better than all other models. 
Further, P+N-CIIL marginally outperformed the pre-
shift SGT model in regards to having lower perceived 
effort and lower frustration. Overall, these qualitative 
measures corroborate the quantitative results, further 
supporting P+N-CIIL as the superior option.

Offline vs. online performance
Offline accuracy is often used as an indicator for antici-
pated model performance during user-in-the-loop set-
tings, however, the associative relationship between these 
two metrics is often debated. As highlighted in "Incre-
mental Learning in Myoelectric Control" section, offline 
accuracy has a weak associative relationship to through-
put and therefore should not be used to decide what 
algorithm would result in the best online control [10]. 
Recently, Hinson et al. demonstrated that offline metrics 

Fig. 6 Representation of the number of context windows used by the CIIL pipelines the electrode shift scenario. Standard error across subjects 
is shown by a shaded region. Each point represents a three second time frame
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do correlate, albeit on a granular level, with online per-
formance by training EMG to kinematics models to dif-
ferent levels of described variances ( R2 =0.8, 0.6, 0.4) and 
performing Fitts’ law tests [54]. Hinson suggests the rea-
son for the stronger relationship was due to experimental 
challenges in other works (altered outputs from control-
ler gain [55], inadequate task duration and feedback [56]).

Despite having intentionally introduced minimal data 
and electrode shift as experimental challenges in this 
study, we still observed “strong” correlations between 
offline accuracy and online throughput for both scenarios 
(global correlations of 0.74 and 0.62 for Scenarios 1 and 

2, respectively, as shown in Fig. 7). Nevertheless, for the 
electrode shift scenario, the model with the highest accu-
racy differed from that with the highest throughput. In 
fact, although SGT produced the highest accuracy, P+N-
CIIL significantly outperformed it in terms of through-
put ( p < 0.05 ). This discrepancy is justified given the 
behavioural differences a user exhibits while in-the-loop, 
but it illustrates that subtle differences in offline classifi-
cation accuracy cannot be used naively to justify model 
rankings.

Moreover, classification accuracy computed on steady-
state or ramp contractions may become irrelevant when it 

Fig. 7 Scatterplot of associative relationships between offline accuracy and online throughput from a Scenario 1 (Minimal Training Data) and b 
Scenario 2 (Electrode Shift). Grouped Spearman’s correlation coefficients are presented in the legend. Global correlations, as calculated using all 
data irrespective of model, were ρ = 0.74, 0.62 , for Scenario 1 and 2, respectively
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comes to incremental learning approaches such as those 
proposed in this work. For example, there were multiple 
cases where users unintentionally combined the hand 
open and closed contractions with radial and ulnar devia-
tion, respectively, as they found this more intuitive to 
control the up and down directions of the cursor. While 
this could lead to improved within-task outcomes (i.e., 
increased throughput), it may also degrade the classifi-
cation accuracy. Correspondingly, this tradeoff between 
these two metrics must be considered as we continue to 
move toward adaptive systems, and a particular emphasis 
should be placed on how to best evaluate these systems.

Practicality of CIIL
While this study offers an important initial demonstra-
tion and validation of CIIL, the evaluation environment 
was relatively simple compared to the diverse settings 
where myoelectric control might be applied, such as dex-
terous manipulations of prosthetic limbs or mixed real-
ity scenarios. Nevertheless, it is worth emphasizing that 
the potential benefits of CIIL may be most pronounced in 
these more complex and dynamic settings, if situational 
context can be appropriately measured or inferred.

In prosthetics, determining the suitability of control 
actions would require knowledge of appropriate gestures 
given the task being conducted. For example, near field 
communication tags could be used in the home to notify 
the device of an appropriate gesture when reaching for 
certain objects. Alternatively, additional sensors (e.g., 
cameras and force sensors) could be added to a prosthe-
sis to provide context about the successful grasp or acci-
dental release of an object.

For general human-computer interaction using myoe-
lectric control, the greater availability of contextual infor-
mation in digital environments could help to develop 
rich and intuitive control. Each successful click of a but-
ton, or the detection of a click when no button is avail-
able, could provide context with which to inform model 
adaptation. Quick corrective actions, such as playing and 
immediately pausing a music application or passing over 
then quickly returning to a selection menu, could provide 
the context of an inadvertent command. By assigning 
appropriate labels, the system could iteratively adapt and 
reduce similar classification errors from arising for simi-
lar user inputs.

Recognizing that the quality of context engineering 
impacts the effectiveness of CIIL, the instrumentation 
does not need to be ubiquitous. Even when only partial 
access to contextual information is available, such as 
within a user’s home or during the introduction of new 
control actions as part of a curriculum, substantial ben-
efits can still be gained. For example, a prosthesis could 
be trained using CIIL in a rehabilitation environment 

where context is easy to extract (e.g. using instrumented 
environments or tests). Furthermore, while CIIL assumes 
consistent goal-driven behavior from users, it acknowl-
edges the real-world complexity where users may not 
always adhere to this paradigm. For instance, naturally-
limbed individuals gesticulate while talking; however, the 
context for this scenario is foreseeably unobtainable and 
as a result CIIL would likely adapt the underlying activity 
to no motion. As such, there is future work in exploring 
how to benefit from partial contextual feedback and how 
to not altogether remove creative expression.

Future work
This work provides a foundational basis for CIIL 
approaches that maintain the accuracy of a classifier 
given a contextual environment; however, there still 
remain numerous avenues of research to explore and 
improve the capabilities of this approach.

Future work should investigate the efficacy of CIIL 
within more realistic, physical environments. Although 
the instrumentation of these settings is not trivial (vision 
based, NFC tags, etc.), integrating within existing smart 
home technologies or commonly used items could prove 
valuable for all populations that use myoelectric control 
(general HCI, stroke, spinal cord injury, muscular distro-
phy, amputees, etc.).

Although this work demonstrated robustness to two 
confounding factors (minimal training data and elec-
trode shift), there are many other sources of variability 
that could be minimized with this incremental learning 
approach (limb position variability, contraction inten-
sity variability, hands-busy interference, between-session 
differences, cross-subject differences). Electrode shift 
degradation is typically addressed with recalibration or 
by making representations of multiple electrode con-
figurations [57]. However, this work demonstrated that 
an online incremental learning approach could offer a 
viable solution, adapting to the current electrode position 
rather than attempting to describe multiple positions.

Within this experiment, a virtual environment was 
used that had perfect situational context available for 
every myoelectric decision; however, this may not be the 
case for real-world systems, such as one relying on object 
detection for contextual information. In such a scenario, 
it would be vital to understand the relationship between 
the accuracy of contextual information and the trajectory 
of the CIIL training process. Future work should evaluate 
this relationship to understand the lower-bounds of con-
text accuracy and frequency required for CIIL systems to 
reliably improve myoelectric usability.

CIIL demonstrated it could improve the classifier’s 
predictions over time given contextual suitability; how-
ever, it could be beneficial to adopt this approach within 
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regression problems—as these are also prevalent in veloc-
ity-based myoelectric control applications. Similarly, CIIL 
should be extended beyond 2-DOF problems to determine 
if ambiguity among the potential options greatly increases 
the time required to reach a usable model. While this work 
demonstrated that CIIL is an effective framework for clas-
sification-based online learning that is invariant to initial 
model performance, future work could leverage structured 
Bayesian models [58], auto-regressive or nonlinear regres-
sion approaches [59, 60], or deep learning to extend its 
benefits to other tasks such as regression.

Perhaps most importantly, we hope to reduce the com-
plexity involved in implementing CIIL approaches to 
facilitate the uptake of these methods. This work required 
constant communication between different processes per-
forming user-in-the-loop classification, collecting the asso-
ciated context, and periodically performing adaptation. We 
aim to provide the supporting infrastructure for this style 
of experiment in LibEMG in the future [44].

Conclusion
In this paper we presented Context-Informed Incremental 
Learning (CIIL), a new incremental learning framework for 
myoelectric control. In two online studies, CIIL was shown 
to significantly outperform the state-of-the-art approach 
(unsupervised high-confidence adaptation) when begin-
ning with a sparsely defined classifier trained with minimal 
data and when recovering from a catastrophic change in 
the input space due to electrode shift. Additionally, through 
the adoption of CIIL strategies, myoelectric control sys-
tems better incorporate user-in-the-loop behaviours which 
will in turn improve the ability of models to decipher user 
intent, resulting in better overall control.
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