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Abstract 

Background Neurodegenerative diseases, such as Parkinson’s disease (PD), necessitate frequent clinical visits 
and monitoring to identify changes in motor symptoms and provide appropriate care. By applying machine learning 
techniques to video data, automated video analysis has emerged as a promising approach to track and analyze motor 
symptoms, which could facilitate more timely intervention. However, existing solutions often rely on specialized 
equipment and recording procedures, which limits their usability in unstructured settings like the home. In this study, 
we developed a method to detect PD symptoms from unstructured videos of clinical assessments, without the need 
for specialized equipment or recording procedures.

Methods Twenty-eight individuals with Parkinson’s disease completed a video-recorded motor examination 
that included the finger-to-nose and hand pronation-supination tasks. Clinical staff provided ground truth scores 
for the level of Parkinsonian symptoms present. For each video, we used a pre-existing model called PIXIE to meas-
ure the location of several joints on the person’s body and quantify how they were moving. Features derived 
from the joint angles and trajectories, designed to be robust to recording angle, were then used to train two 
types of machine-learning classifiers (random forests and support vector machines) to detect the presence of PD 
symptoms.

Results The support vector machine trained on the finger-to-nose task had an F1 score of 0.93 while the random 
forest trained on the same task yielded an F1 score of 0.85. The support vector machine and random forest trained 
on the hand pronation-supination task had F1 scores of 0.20 and 0.33, respectively.

Conclusion These results demonstrate the feasibility of developing video analysis tools to track motor symp-
toms across variable perspectives. These tools do not work equally well for all tasks, however. This technology 
has the potential to overcome barriers to access for many individuals with degenerative neurological diseases like PD, 
providing them with a more convenient and timely method to monitor symptom progression, without requiring 
a structured video recording procedure. Ultimately, more frequent and objective home assessments of motor func-
tion could enable more precise telehealth optimization of interventions to improve clinical outcomes inside and out-
side of the clinic.

Introduction
Markerless human pose estimation (HPE) is a powerful 
technique that has the potential to advance the fields 
of physical medicine and rehabilitation [1]. The aim of 
HPE technology is to measure human body kinematics 
by tracking anatomical keypoints in video data, elimi-
nating the need for traditional motion capture systems 
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[2]. The availability of intuitive and quantitative data 
through HPE algorithms, combined with expert clinical 
insight and labeling, opens the door to training super-
vised machine learning (ML) algorithms. These ML 
algorithms can then make perceptive inferences about a 
person’s current medical condition directly from video 
data. This combination of technologies, referred to as 
automated video analysis, holds promise across vari-
ous stages of healthcare, including child developmental 
tracking [3, 4], adult injury prevention [5], and clinical 
examinations [6].

Despite its potential, the adoption of automated video 
analysis technology remains limited among end users 
[1]. This is partly due to certain limitations in HPE that 
hinder its practicality, especially for home use in clinical 
populations. HPE may struggle to accurately track fast 
and complex movements where there is motion blur or 
for clinical populations not included in the algorithm’s 
training dataset [2, 7]. Additionally, HPE algorithms may 
face challenges in identifying and tracking keypoints for 
multiple individuals, which is a common scenario in clin-
ical settings involving caregivers and clinicians [8]. Fur-
thermore, the spatial accuracy of HPE algorithms might 
be insufficient to capture the subtle movements crucial 
for clinical assessments [9]. Moreover, many existing 
automated video analysis approaches require a certain 
level of expertise, which acts as a barrier to entry for both 
patients and clinicians [10].

In recent years, automated video analysis for symp-
tom tracking in Parkinson’s disease (PD) has gained sig-
nificant attention [11]. Motor symptoms, such as tremor, 
bradykinesia, and stiffness, are often the initial indicators 
of PD onset [12]. Since PD is a progressive neurological 
disease, regular tracking of symptom progression is cru-
cial to provide optimal treatment. This is also necessary 
as symptoms can fluctutate throughout the day, such as 
in response to medication timing. Traditionally, disease 
progression is monitored through journaling and peri-
odic motor examinations conducted by trained neurolo-
gists. However, studies have revealed inaccuracies in 
journaling, and access to frequent neurologist visits can 
be challenging for many individuals [13].

Unfortunately, despite the interest in automated video 
analysis for PD symptoms, most of this technology 
remains confined to laboratory settings [11]. One reason 
for this is that certain methods for automated rating of 
Parkinson’s symptoms require specialized equipment 
like an RGB-depth camera [14] or wearable sensors [13]. 
Even methods utilizing only video data often necessi-
tate specific camera setups, including restrictions like 
multiple camera views with unobstructed backgrounds 
[15] or consistent camera angles throughout recordings 
[16, 17]. These constraints impede the translation of this 

technology to community-level applications where data 
collection naturally varies in perspective and background.

In this paper, we present an automated video analysis 
method specifically designed to classify PD symptoms 
using realistic and varied video data. The objective is to 
evaluate how well state-of-the-art computer vision tech-
niques can handle unstructured video data and compare 
the performance to PD detection models built from more 
structured and controlled data.

Methods
Data source
The video data analyzed in this study was obtained as 
part of the “Clinician Input Study on Parkinson Dis-
ease,” [18, 19] a larger research project supported by the 
Michael J. Fox Foundation. Written informed consent 
was obtained from all participants for the procedures and 
sub-analyses conducted. The Institutional Review Board 
of Northwestern University (Chicago, IL, USA) approved 
all aspects of this study.

For this protocol, 28 individuals diagnosed with 
Parkinson’s disease were recruited to participate in 
a multi-center study. The study sites were located at 
Northwestern Memorial Hospital (Chicago, IL), Strong 
Memorial Hospital (Rochester, NY), University of Ala-
bama Hospital (Birmingham, AL), and the University of 
Cincinnati Medical Center (Cincinnati, OH). The demo-
graphic information of the participants is provided in 
Table 1.

Prior to the experimental protocol, all participants 
underwent a 12-h period without taking their PD medi-
cation, known as the OFF-medication state. Once in 
the OFF-medication state, participants were asked to 

Table 1 Demographic characteristics of participants (n=28)

Metric Mean ± SD
N (%)

Age (y) Mean 63.36 ± 9.53

Gender Male 21 (75%)

Female 7 (25%)

Race White 24 (86%)

Black 1 (3%)

Asian 1 (3%)

Not reported 2 (7%)

Ethnicity Not Hispanic 27 (96%)

Not reported 1 (3%)

Site Birmingham 4 (18%)

Chicago 19 (68%)

Cincinnati 3 (11%)

Rochester 1 (3%)
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perform a Standard Motor Assessment (SMA), which 
included finger-to-nose, hand pronation-supination, and 
other motor tasks [20]. As participants performed each 
task, clinicians observed the severity of tremor, bradyki-
nesia, and dyskinesia to provide a rating of overall dis-
ease severity (SMA Overall score). The SMA rating scale 
ranged from zero to four, with zero indicating no symp-
toms and four indicating severe symptoms. Following 
the initial assessment, participants took their medication 
and subsequently repeated the SMA five more times at 
30-min intervals, resulting in a total of six assessments. 
These time points were chosen to capture motor symp-
toms at different levels of impairment as the medication 
took effect.

Video recordings were captured during each assess-
ment using commercially available handheld smart-
phones. Since video recording was not the primary focus 
of the original study, videographers were asked to “film 
the assessment”, without specific instructions regarding 
distance, angle, orientation, etc. As a result, videos were 
captured manually, without the use of a tripod, and from 
various perspectives (see Fig. 1). Further, the experiment 
did not mandate or specify a standardized video camera 
for recording. The frame rate of all videos was consistent 
at 30 fps, but the video resolution varied among the fol-
lowing: 854 × 480, 960 × 540, 1280 × 720, and 1920 × 1080. 
These recording conditions realistically replicate scenar-
ios encountered by a digital screening tool or tracking-at-
home application

Two tasks from the SMA, namely the finger-to-nose 
(FTN) and the hand pronation-supination (HPS) tasks, 
were selected for analysis in this study (see Fig. 2). These 
tasks were chosen because they can easily be performed 
and filmed at home. Both tasks require minimal space 

and can be performed from a seated postion. These 
advantages lend potential scalability and accessibility to 
digital screening tools and tracking-at-home applications 
derived from our approach. During the FTN task, partic-
ipants were instructed to repeatedly extend one arm at a 
time to full extension, reaching a target, and then retract 
their arm to touch their own nose. For the HPS task, par-
ticipants were asked to extend one hand at a time in front 
of their body, palm down, and alternately rotate their 
hand up and down.

Data processing
Figure 3 provides a high-level overview of the processing 
steps involved in analyzing the video data and prepar-
ing inputs for our machine learning models. To aid with 
this process, we used PosePipe [21], an open-source tool 
developed to facilitate markerless HPE pipelines. Pose-
Pipe can help with many steps of the analysis pipeline, 
including video management, manual subject labeling, 
and data visualization. Initially, we manually segmented 
the videos obtained during each assessment to isolate 
the specific task of interest. This resulted in a set of 266 
FTN videos and 266 HPS videos collected from 28 indi-
viduals. Within all videos, the first step of the analysis 
pipeline was tracking and manually annotating the per-
son of interest to separate them from other people in the 
view, such as the assessing clinician. After identifying the 
patient in each video, we used an HPE algorithm to find 
the keypoints for only the patient.

Pose estimation
We obtained pose estimates from an open-source tool 
called PIXIE [22] to track the body position of the par-
ticipant in each video frame. PIXIE estimates the joint 

Fig. 1 Left: videos were recorded from five perspectives capturing different views of the participant. These perspectives capture the frontal plane, 
the sagittal plane, and views in between. Perspective did not change for a participant across assessment tasks. Right: the distribution of video 
perspectives in the data set
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angles of the Skinned Multiperson Linear Expressive 
Model (SMPL-X) model from images [23]. SMPL-X is 
a widely-used 3D model of the human body (including 
the hands and face), which was trained using thousands 
of 3D body scans. Specifically, PIXIE takes every still 
2D image in a video as input, and uses a trained neural 
network to output the parameters of the 3D SMPL-X 
model that would best describe the image of the per-
son in the frame. These parameters include both the 3D 
body pose, and a mesh describing the body shape. After 
the body pose and shape were estimated by PIXIE, we 
used the forward kinematic model to estimate the loca-
tion of several 3D keypoints on the human body. The 
keypoints used for this study are shown in Fig. 2. Each 
keypoint was transformed into an egocentric frame of 
defining the ipsalateral (same-side) hip location as the 
origin of each keypoint’s frame of reference.

Kinematic calculations
Multiple joint kinematic signals were derived from the 
keypoint estimates. For instance, the elbow angle was 
computed using 3D keypoints from the wrist, elbow, 
and shoulder joints. All joint angles were determined in 
3D space using the positions of three adjacent joint key-
points: the vertex (joint center) and the two neighboring 
keypoints.

To represent the limb segments around the joint of 
interest, we created vectors by subtracting the location of 
the vertex landmark. The angle between these vectors ( θ ) 
was then calculated using the formula:

where (A) is one neighboring keypoint, (B) is the vertex, 
and (C) is the other neighboring keypoint.

(1)cos θ =
�AB · �CB

| �AB|| �CB|
,

Fig. 2 An illustration of the HPS (left) and FTN (right) tasks with labeled keypoints and joint angles. The keypoints tracked during each task are 
named after the corresponding anatomical landmarks, and θs , θe , θw and θt the are the angles of the shoulder, elbow, wrist, and thumb joint, 
respectively

Fig. 3 Our data processing procedure has four main steps: A manual segmentation of full-length clinical assessment videos into individual tasks; B 
participant keypoints detection using PosePipe and PIXIE to generate timeseries data; C calculation of joint kinematics and other timeseries signals 
from the detected keypoint timeseries; and D extraction of advanced features of functional motor performance from the joint kinematics data



Page 5 of 14Mifsud et al. Journal of NeuroEngineering and Rehabilitation           (2024) 21:72  

For the FTN data, we calculated three joint angles: the 
shoulder, elbow, and wrist ( θs, θe, and θw , respectively). 
The HPS data included one additional keypoint (thumb 
position) and one additional joint angle: thumb angle 
( θt ). This gives us 8 positional signals for the FTN task 
(5 keypoints and 3 joint angles), and 10 for the HPS task 
(6 keypoints and 4 joint angles). Next, we calculated the 
velocity and acceleration of each keypoint and joint angle 
using the first and second forward difference numerical 
derivatives, respectively. This led to 24 kinematics signals 
for the FTN (8 position, 8 velocity, and 8 acceleration), 
and 30 kinematic signals for the HPS task (10 position, 10 
velocity, and 10 acceleration).

Lastly, we created different filtered versions of each 
position, velocity, and acceleration signal. We used two 
different Gaussian filters, with widths of 0.1 s and 0.2 s, 
to attenuate high-frequency noise from the pose estima-
tion and numerical derivatives. This resulted in a total of 
72 signals for the FTN task (24 unfiltered, 24 with filter 
width 0.1 s, and 24 with filter width 0.2 s), and 90 for the 
HPS (30 unfiltered, 30 with filter width 0.1 s, and 30 with 
filter width 0.2  s). Finally, each signal was scaled by its 
maximum absolute value to obtain a relative signal.

Feature calculations
Using the kinematic signals, we developed features 
for our machine learning algorithm. One common 
characteristic observed in individuals with bradykin-
esia, a symptom of Parkinson’s disease, is a reduction 
in movement speed after multiple repetitions, known 

as the sequence effect [24, 25]. To measure this effect, 
we applied a sliding window with a duration of 6.6 s to 
each kinematic signal and calculated the Fourier trans-
form within each window. Manual observation of the 
slowest participant showed this value captured at least 
one repetition of each movement. From the Fourier 
transform, we were able to extract the most prominent 
frequency for each window and plot it against time. We 
then applied a linear regression to the transformed fre-
quency vs. time plot. The coefficients from this regres-
sion were utilized as features to train our machine 
learning models.

Another characteristic commonly observed in indi-
viduals with Parkinson’s disease is a decrement of move-
ment amplitude after multiple repetitions [26]. To 
quantify changes in movement amplitude, we calculated 
the peak prominence, or how much a maximum value 
stands out from the surrounding values, for each peak 
in a kinematic signal. Similar to the frequency analysis, 
we performed a linear regression and used the regression 
coefficients as inputs to our models. Figure  4 illustrates 
how we extracted the features to measure sequence effect 
and amplitude regression from a sample kinematic signal.

Additionally, we developed a feature to measure pauses 
between sequences of movements, another characteris-
tic associated with bradykinesia [27]. To quantify these 
pauses, we introduced a function called the Pause Metric, 
which calculates the distance below a kinematic thresh-
old for each frame and increments for every frame in 
the video that falls below the threshold. A higher Pause 

Fig. 4 Example of a raw time series signal (top) broken down into its frequency (left) and amplitude (right) features. A sliding window was used 
to evaluate trends in frequency while peak prominence was used to evaluate trends in amplitude. The coefficients of linear regression were used 
as features to describe this time series data
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Metric value indicates longer periods of reduced motion. 
The Pause Metric is formally defined as:

where (T) is the kinematic threshold, and xt is the kin-
ematic signal scaled from − 1 to 1. This operation was 
performed on all of the kinematic signals described in 
“Kinematic calculations” section (72 for the FTN data, 
and 90 for HPS). Intuitively, the threshold value T can be 
thought of as a cutoff value, where all scaled kinematic 
signals ( |xt | ) below T will be considered a “pause,” and the 
value of the pause metric will be greater the longer the 
signal remains below T. The minimum value of T is 0, 
and the maximum value is 1. Lastly, b(xt ,T ) is an expres-
sion that determines if the kinematic signal is below the 
threshold, which we can write as:

Equation  2 is evaluated at every threshold 
T ∈ {0.05, 0.1, . . . , 0.95} , and a Pause Metric feature was 
calculated for every video.

To complement our feature set, we combined these 
custom metrics with descriptive statistics and additional 
features calculated using the Python package tsfresh [28]. 
We employed comprehensive extraction settings with the 
default parameters, resulting in the calculation of over 
700 features from each timeseries. Some of these features 
contained missing values because of signal characteristics 
like insufficient length or variance.

Modeling
Since our dataset had less than 13% of SMA Overall 
scores greater than 1 (see Table 6), we binarized the data, 
where a score greater than zero was considered the posi-
tive class and a score equal to zero was the negative class. 
After binarizing the data, the FTN task had 55% in the 
positive class and 45% in the negative class while the HPS 
task had 77% in the positive class and 23% in the negative 
class.

We then utilized the previously described features to 
train two types of binary machine-learning classifiers: 
a Random Forest (RF) and a Support Vector Machine 
(SVM). We trained both classifier types (RF and SVM) 
on both tasks (FTN and HPS), for a total of four clas-
sifier algorithms. These types of classifiers have been 
used for classifying features of Parkinson’s disease in 
past works [29, 30] and were developed using tools pro-
vided by the scikit-learn library in Python [31, 32]. The 

(2)P =
t

(T − |xt |)b(|xt |,T ),

(3)b(xt ,T ) =

{

0 |xt | ≥ T ,

1 otherwise.

objective of all four classifiers was to detect whether a 
participant in the video exhibited symptoms of Parkin-
son’s disease or not. The ground truth labels for each 
video were determined based on the SMA overall score, 
where a score greater than zero indicated the presence 
of symptoms.

All four classifiers were validated using an 80–20 split 
with 80% of participants in the training set and 20% 
of participants in the validation set. We chose to split 
by participant rather than individual videos to ensure 
that no videos from the same participant were present 
in both the training and validation sets. By using this 
approach, the validation results accurately represented 
the classifiers’ ability to detect Parkinsonian symp-
toms in unseen participants. We did not cross-validate 
across sites. The data in the training sets was used for 
both model training and hyperparameter tuning.

To optimize our models, we performed hyperpa-
rameter tuning using a randomized search that varied 
parameters such as thresholds for missing features, 
feature variance, and correlation cutoffs. See Table  2 
for a full list and range of all tuned hyperparameters. 
Once a hyperparameter set was defined by the ran-
dom search, features that did not meet the threshold 
for missing data were removed. The remaining features 
were then transformed by subtracting the mean and 
scaling to achieve unit variance. Scaled features that 
did not meet the minimum variance threshold were 
then removed. For features that were missing data, 
but met the minimum threshold, gaps were imputed 
using a nearest neighbors search. Correlated features 
were then removed and synthetic data was generated 
by oversampling the minority class using the SMOTE 
algorithm [33]. This synthetic data was used to bring 
the minority class up to the approximate sample size 
of the majority class, which aided with model training. 
Before validating the parameter set, a LASSO regressor 
[34] was applied to the features and labels to minimize 

Table 2 Hyperparameter tuning

All parameters not described were assigned default values

Hyperparameter Value range

Maximum percentage of missing values threshold [0.0, 1.0)

Minimum variance threshold [0.0, 0.4)

Maximum correlation coefficient threshold [0.7, 0.90)

Fill missing, k-neighbors [1, 4)

LASSO coefficient threshold [0.01, 0.035)

Synthesize data, k-neighbors [1, 4)

SVM regularization [0, 2.0)

SVM γ [0, 0.1]
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the remaining features without a strong correlation. 
The hyperparameter set was then evaluated using a ten-
fold cross-validation. This process was then repeated a 
total of 80 times (giving 80 different parameter sets) to 
identify which set maximized classifier performance, as 
measured by the F1 score.

Evaluating classifier performance
The performance of each classifier was evaluated with 
the recall, precision, F1 score, and area under the receiver 
operating characteristic curve (AUROC). These metrics 
were calculated from predictions made from videos in 
the validation set. A high recall indicates that the classi-
fier can accurately identify most participants with symp-
toms while a high precision assesses the classifiers’ ability 
to maintain a low false-positive rate. The F1 score bal-
ances the benefits of recall and precision to provide an 
overall assessment of the classifiers’ performance, and 
a value of 1 would indicate perfect performance. The 
AUROC measures the classifiers’ overall ability to dis-
tinguish instances with symptoms from those without. A 
score of 0.5 suggests the classifiers performed no better 
than random guessing, while a score of 1 represents per-
fect classification.

Further, confidence intervals were estimated by evalu-
ating the classifier on 100 bootstrapped validation sets. 

Bootstrapped validation sets, with size identical to the 
validation set, were created by sampling the validation 
set with replacement. The metrics described above were 
calculated from the predictions and labels for every boot-
strapped set.

Results
Model performance
Confusion matrices and ROC curves for all models’ pre-
dictions on the validation set are illustrated in Fig.  5. 
When evaluating with the validation set, the AUROC of 
both the models trained on the FTN task were 0.94, while 
the AUROC for the SVM and RF models trained on the 
HPS task were 0.53 and 0.44, respectively. The confu-
sion matrices, evaluated with an operating point of 0.5, 
also supported the trend of greater performance by mod-
els trained on the FTN task. FTN classifiers were able to 
ability to correctly detect symptoms in 81% (RF) and 91% 
(SVM) of videos and the absence of symptoms in 88% 
(RF) and 89% (SVM). In contrast, models trained on the 
HPS task were only able to correctly detect symptoms 
in 35% (RF) and 25% (SVM) of videos and the absence 
of symptoms in 67% (RF) and 56% (SVM). F1 scores for 
the SVM and RF classifiers evaluated on the validation 
set were 0.93 and 0.85. Correspondingly, the HPS task 
yielded lower F1 scores of 0.20 and 0.33 for the SVM and 
RF, respectively.

Fig. 5 ROC curves with reported AUROC (left) and confusion matrices (right) from the validation set for all combinations of task and model type
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Mean values and 95% confidence intervals for preci-
sion, recall, and F1 score, for all combinations of task 
and model type from the bootstrapped sets are presented 
in Table 3. Among the four models produced, the SVM 
trained to detect Parkinson’s symptoms using the FTN 
task yielded the greatest mean F1 score of 0.92, followed 

by the RF trained on FTN (0.80), RF trained on HPS 
(0.30), and SVM trained on HPS (0.19). This trend is 
also present in both precision and recall. Given the gap 
in performance, all further analysis focuses only on the 
SVM model trained on the FTN task, unless otherwise 
specified.

Table 4 outlines the accuracy of our SVM model trained 
on the FTN task and evaluated on the validation set com-
pared to other binary classifiers focusing on detection 
of Parkinsonian symptoms. These models were chosen 
because, together, they broadly cover the current field of 
automated PD detection. Lonini et  al. [18] had subjects 
complete the SMA, but trained classifiers on data from 
motion sensors instead of video. The remaining studies 
all used video data to train their classifiers, but cameras 
were stationary and activities of interest were finger tap-
ping [35], gait [35, 36], and touching the nose or holding 
hands in pronation and supination [37]. Since accuracy 
can be skewed depending on class distribution, we report 
the positive class for each study as well as a summary of 
experimental setup.

Table 3 Mean, precision, recall, and F1 score with 95% 
confidence intervals from the bootstrapped sets for all 
combinations of task and model type

Task Model Precision Recall F1 Videos in 
test setMean [CI] Mean [CI] Mean [CI]

FTN SVM 0.93 [0.83, 
1.00]

0.92 [0.88, 
0.98]

0.92 [0.85, 
0.96]

54

FTN RF 0.81 [0.54, 
1.00]

0.82 [0.50, 
1.00]

0.80 [0.50, 
0.96]

53

HPS SVM 0.18 [0.00, 
0.39]

0.25 [0.00, 
0.50]

0.19 [0.00, 
0.38]

61

HPS RF 0.32 [0.00, 
0.66]

0.31 [0.00, 
0.40]

0.30 [0.00, 
0.49]

56

Table 4 Accuracy compared with other methods

a This study reported symptom prevalence by individual data-clips, not by participant

Methods Setup Class distribution (% positive) Accuracy

[18] Motion sensors placed on back of hands 48.5% 0.79a

[35] Stationary Kinect camera (with depth) 90.9% 0.87

[36] Stationary camera (type not specified) 53.3% 0.81

[37] Stationary Kinect camera (no depth) 60.0% 0.56

Ours—SVM, FTN Handheld mobile camera (no depth) 55.3% 0.90

Table 5 Features selected for the SVM classifier

After optimizing our models as outlined in “Modeling” section, 13 features were selected for training a binary SVM classifier. The feature type, count, associated joint, 
signal, filter width, and additional details are all presented. Note that a filter width of 0.0 is simply the unfiltered condition.

Type Joint Signal Filter width Additional detail

Fourier coefficient Shoulder Position 0.0 0.47–0.52 Hz

Shoulder Position 0.0 3.93–3.97 Hz

Shoulder Position 0.0 4.19–4.23 Hz

Shoulder Velocity 0.0 0.15–0.21 Hz

Pause metric Shoulder Velocity 0.1 T = 0.60

Elbow Angular acceleration 0.1 T = 0.65

Regression coefficent Elbow Angle 0.1 Slope of amplitude vs. time

Finger Position 0.1 Intercept of frequency vs. time

tsfresh Wrist Position 0.0 Mean

Elbow Velocity 0.0 Longest strike above mean

Shoulder Acceleration 0.0 Aggregate linear trend

Shoulder Velocity 0.0 First position of maximum

Elbow Velocity 0.0 Sum of reccurring values
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Selected features
Feature types
A total of 13 features were selected to train the SVM 
model. Table 5 provides details of these features such as 
the body keypoint and signal each feature was derived 
from as well as the type of feature (i.e., Fourier coeffi-
cient, Pause Metric, regression coefficient, etc.). Of the 
custom features calculated in “Feature calculations” sec-
tion, Fourier transform coefficients emerged as the most 
frequently selected feature type, constituting 4/13 (31%) 
of the chosen features. Given a median video duration of 
19 s, all selected coefficients would fall within the [0.15–
0.52) Hz and [3.93–4.23) Hz frequency bands.

The next most common feature types selected were the 
Pause Metric and regression coefficients, each compris-
ing another 15% of the selected features. The two Pause 
Metric features were: (1) pauses in the shoulder veloc-
ity with a threshold, in dimensionless units, of T = 0.60 , 
and (2) pauses in the elbow’s angular acceleration with 
a threshold of T = 0.65 . The two regression coefficient 
features were: (1) the slope of amplitude vs. time for the 
elbow angle, and (2) the intercept of frequency vs. time 
for the finger position. The remaining features were cal-
culated from the tsfresh package.

Feature locations
As seen in Table 5, 7/13 (54%) of selected features were 
derived from the kinematic signals of the shoulder joint. 
This includes all of the Fourier coefficients as well as one 
of the Pause Metric features. Features derived from the 
elbow were the next most common with 4/13 (31%), fol-
lowed by the wrist and finger with 1/13 (8%) each. Addi-
tionally, the elbow angle and its angular acceleration were 
the only angle-related features to be selected. All others 
were based on the body keypoint’s position, velocity, or 
acceleration. Each selected feature was associated with 
one, distinct, filtered signal. When performing a similar 
analysis on features selected by the RF model, we found 
the trends in feature location held, including the fact 
that the only angle-related features selected were derived 
from the elbow angle (see Fig. 6).

Discussion
Performance
Four different machine learning models were evaluated 
for their ability to detect the presence of Parkinson’s 
symptoms when trained on kinematics estimated from 
consumer-grade videos of upper body tasks commonly 
found in PD clinical assessments. Of these models, the 
SVM and RF classifiers trained on videos of participants 

completing an FTN task performed better than their 
counterparts trained on videos of participants complet-
ing an HPS task. All four models were trained on differ-
ent groupings of participants, which indicates that this 
discrepancy in performance is likely due to the activity 
they were trained on. While many of our engineered fea-
tures (e.g., Pause Metric, frequency features, and peak 
prominence) were intended to capture symptoms clini-
cians look for in the HPS task (e.g., halts in movement, 
sequence effect, decreased movement amplitude), it is 
possible that these features were more descriptive for the 
FTN task than the HPS task. Additionally, manual obser-
vation of the keypoints revealed that our HPE algorithm 
(PIXIE, [38]) seemed to track the larger movements 
of the FTN task more accurately than the smaller hand 
motions of the HPS task, which may have contributed to 
the difference in performance. In particular, we observed 
that individual frames of the hand during HPS were very 
blurred, making it harder for the HPE tool to consistently 
identify relevant anatomical landmarks. It is also worth 
noting that before using the SMOTE algorithm, the FTN 
dataset had a more equal ratio of symptom presentation 
(55/45 instead of 77/23). This could also contribute to the 
relatively lower performance of the HPS algorithm. In the 
future, further development of descriptive features and 
deblurring methods [39] may help to improve the accu-
racy of these models.

Of the models trained on videos of the FTN task, the 
SVM had greater precision (0.94), recall (0.91), and F1 
score (0.93) than the RF (0.88, 0.81, 0.85) while both had 
the same AUROC (0.94). The performance of the SVM 
model demonstrates the classifier’s ability to accurately 
assess the presence or absence of PD symptoms in vid-
eos from previously unseen participants. It also meets or 
exceeds the performance of comparable works that use 
wearable sensors [18] or video [35–37]. This is promis-
ing because, unlike the video-based work we could find, 
the videos in this dataset were collected from non-stand-
ardized perspectives with handheld cameras rather than 
with a static tripod or other fixed method.

Further, these results are significant because we 
focused on stationary tasks which can be easily per-
formed in the home and in the absence of the open space 
typically required for gait analysis which would be use-
ful in the deployment of digital screening tools or track-
ing-at-home applications. The ability to use common 
tools in a restricted space lowers the barrier to entry for 
individuals to easily take these videos at home. Not only 
that, many of the features we extracted are interpretable, 
which helps with clinical translation.



Page 10 of 14Mifsud et al. Journal of NeuroEngineering and Rehabilitation           (2024) 21:72 

Interpretable features
Healthcare systems are in need of machine learning mod-
els that are interpretable [40]. To address this need, we 
identified and extracted 13 features of functional motor 
performance which enabled our SVM classifier to yield 
an F1 score of 0.93. These features included known math-
ematical calculations such as Fourier transform coeffi-
cients as well as custom features engineered to quantify 
different movement patterns (e.g., sequence effect and 
pauses in movement). Although the mathematics behind 
these features may be complicated, the results can pro-
vide an intuitive understanding of movement typically 
associated with symptoms of Parkinson’s disease.

For example, the Fourier coefficients selected by the 
SVM classifier are on the lower and upper ends of move-
ment frequency of participants’ FTN task in our dataset. 
These coefficients approximate the amount time spent 
in the frequency bands from [0.15 to − 0.52) Hz and 
[3.93–4.23) Hz. Our results showed that these features 
are predictive of the presence of Parkinsonian symp-
toms, as scored by the SMA. The consistent framerate 
cameras onboard consumer-grade smartphones enables 
precise measurement of the frequency of movements in 
the frame. Since Fourier coefficients were selected only 
for the raw signal, and not a filtered signal, it’s probable 
the Fourier coefficient features from the filtered signals 
were removed during the pipeline step where correlated 
features are dropped.

Additionally, the Pause Metric described in Eq. (2) was 
designed to quantitatively describe a specific symptom 
of PD: pauses between movements, a characteristic of 
bradykinesia. The SVM classifier described above took 
advantage of two Pause Metric features located at the 
shoulder and elbow. It was determined that the amount 
of time spent below 60% of a participant’s maximum 
shoulder speed and the amount of time spent below 65% 
of a participant’s maximum elbow angular acceleration 
were useful in determining the presence of symptoms of 
PD. Unlike black-box techniques, the Pause Metric can 
be used by clinicians to quantify periods of slower move-
ment, which could lead to a quantitative measure for 
bradykinesia.

Finally, the sequence effect is a well-known charac-
teristic of movement patterns observed in individuals 
with PD. Our results confirm that it is both measurable 
and useful in classifying symptomatic expression, as our 
model found that changes in frequency of the finger posi-
tion were helpful in correctly detecting the presence of 
Parkinson’s symptoms. Just as the Pause Metric can be 
extracted and tracked over time, changes in movement 

associated with the sequence effect may also be tracked. 
This analysis enables quantitative measures of the symp-
toms of PD and highlights the potential of automated 
video analysis to bridge the gap from ordinal measures of 
PD to true continuous measures. Further, these analyses 
could illuminate new ways to quantify motor symptoms 
of PD.

Beyond the types of features selected, the locations 
that selected features were derived from were also intui-
tive. Both our SVM and RF models relied on features 
related to the elbow and the shoulder more than other 
body keypoints. Additionally, both models also used fea-
tures derived from the kinematics of the elbow angle, but 
no other joint angle. This result is to be expected as the 
articulation of this joint is the central component of an 
FTN task.

An unexpected result, however, was the large num-
ber of features selected from shoulder kinematic time 
series. This may be due to our feature selection process. 
In an effort to reduce redundant input to our models, we 
removed features that were highly correlated. It is pos-
sible that the predictive information from the shoulder 
is also present in the elbow, but was removed as the two 
were highly correlated. Another potential reason for this 
is that participants may be showing greater compensa-
tory movement at the shoulder to counter decreased 
(or decreasing) mobility of the elbow. Currently, these 
compensatory motions may only be identifiable to the 
highly trained eye of a neurologist. This analysis shows 
that automated video has the potential to not only reveal 
these same motions and patterns to an untrained eye, 
such as a caregiver, but can also provide information 
about whether or not Parkinson’s symptoms are present. 
This technique provides the clinician-desired interpret-
ability [41] to any screening tools or tracking-at-home 
applications derived from it.

Limitations
The classifiers developed in this work were able to accu-
rately detect the symptoms of PD for many users, but 
they were not without limitations. The difference in 
model varied primarily across assessment task. We 
think this may have been a result of the HPE algorithm 
selected. Currently, full-body HPE techniques are typi-
cally better at tracking gross body movements, like those 
in the FTN, compared to smaller motions at extremities 
like the hand [42]. Our results support this statement as 
tracking a participant’s digits during an HPS task was a 
challenge for our algorithms.
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Prior work has shown that PIXIE is capable of very 
accurate joint tracking, particularly of the hands. From 
Table 1 in [38], PIXIE’s error of 11.2/11.0 mm for tracking 
joints of the left/right hand was lower compared to popu-
lar alternatives (12.8/12.4 mm error for left/right hand). 
This study did not record ground truth keypoint meas-
urements to compare our estimates to, but we believe 
the blurring we observed during some frames of our vid-
eos may have been detrimental to our keypoint tracking 
accuracy. Computer vision algorithms for video interpo-
lation and deblurring has proven effective for video-based 
gait analysis [39]. These, combined with approaches that 
fuse estimates of hand keypoints and SMPL-X parame-
ters [43], could improve performance on this task in the 
future. However, we feel that the high performance of 
our PD-symptom detection algorithm is strong evidence 
that HPE algorithms like PIXIE are able to take accurate 
enough body measurements to answer clinically-relevant 
questions, even in the presence of hand blurring. In addi-
tion, scaling each signal by its maximum value may fur-
ther reduce the capability to extract meaningful features 
from abnormally small movements, which may be impor-
tant in detecting tremor. Future HPE algorithms can only 
be expected to improve in performance.

Another limitation is that our current method is not 
scalable as described. Often, multiple people were in 
frame during assessments, including: clinicians, the par-
ticipant, and other researchers. Although the HPE was 
able to identify the number of people in frame, manual 
annotation was needed to identify which person was the 
participant. Deploying a screening tool or tracking-at-
home application would require a systematic method to 
identify people of interest (i.e., patients) to increase usa-
bility in a home setting.

Additionally, the supervised learning labels were 
extracted from the SMA, which is not a widely recognized 
clinical assessment. All clinicians in the original data col-
lection stage were movement disorder neurologists [19], 
but few other studies have implemented the SMA. No 
inter-rater variability study was conducted among our 
clinical raters, meaning that there may be some unknown 
biases that vary from rater to rater. Though the two activ-
ities chosen for this study are taken from Part III of the 
MDS-UPDRS, the scoring criteria were not the same and 
therefore are not directly translatable.

Our results support that the methods described 
can accurately distinguish between the presence and 
absence of PD symptoms. In the future, we would like 

to investigate if this algorithm would also perform well 
at detecting the onset of new symptoms or progression 
of existing symptoms over time. This would require a 
prospective study, in which subjects would be evaluated 
over a long period of time with both the SMA and our 
video analysis pipeline, to evaluate if the video method 
detected the same symptom onset as clinicians.

Conclusion
Prior work has shown that the ability to detect movement 
disorders, specifically Parkinson’s disease, would benefit 
from the development of computer-vision based digi-
tal screening tools [11]. In this study, we demonstrated 
the use of non-standardized video from consumer-
grade mobile cameras to detect symptoms of Parkin-
son’s disease. These videos were recorded from a variety 
of perspectives on different handheld devices, which at 
times included camera movement in addition to subject 
movement. Despite these challenges, which are com-
mon occurrences outside of a laboratory setting, this 
work trained both an SVM and RF classifier to detect 
symptoms of Parkinson’s disease during an FTN task, 
which yielded performance that met or exceeded similar 
methods.

The techniques employed in this study have poten-
tial applications in many fields. Any movement disor-
der characterized by the ability of a person to perform a 
repetitive movement can be captured by video recorded 
with consumer-grade cameras. The novel features devel-
oped for this study to quantify pauses in movement and 
the sequence effect could have significant explanatory 
power for detecting motor symptoms similar to tremor 
or bradykinesia. Similar digital screening tools or track-
ing-at-home applications developed with HPE technol-
ogy may be deployed in the clinical or even the home 
setting. The outputs they provide can empower both 
patients and providers with more easily interpretable 
information to make better decisions when developing a 
care plan. In the future, HPE techniques and the capabili-
ties of consumer-grade cameras will only advance. These 
improvements, along with the growing synergy of HPE 
and ML, will provide the potential to unlock even more 
digital screening tools for movement disorders.

Appendix 1: Selected features for FTN models
See Fig. 6.
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Appendix 2: Distribution of SMA overall scores 
for FTN and HPS
See Table 6.
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Fig. 6 Number of features selected for training SVM model, organized by body keypoint location. Location features from almost all joints were 
selected while elbow angle was the only joint angle feature selected

Table 6 Standard motor assessment: overall score distribution

Task 0 1 2 3

FTN 119 115 25 7

HPS 61 127 70 8
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