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Abstract

analyzed.

maximal Lyapunov exponents of acceleration signals.

important to consider in each protocol design.

Background: Motorized treadmills are widely used in research or in clinical therapy. Small kinematics, kinetics and
energetics changes induced by Treadmill Walking (TW) as compared to Overground Walking (OW) have been
reported in literature. The purpose of the present study was to characterize the differences between OW and TW
in terms of stride-to-stride variability. Classical (Standard Deviation, SD) and non-linear (fractal dynamics, local
dynamic stability) methods were used. In addition, the correlations between the different variability indexes were

Methods: Twenty healthy subjects performed 10 min TW and OW in a random sequence. A triaxial accelerometer
recorded trunk accelerations. Kinematic variability was computed as the average SD (MeanSD) of acceleration
patterns among standardized strides. Fractal dynamics (scaling exponent a) was assessed by Detrended Fluctuation
Analysis (DFA) of stride intervals. Short-term and long-term dynamic stability were estimated by computing the

Results: TW did not modify kinematic gait variability as compared to OW (multivariate T2, p = 0.87). Conversely,
TW significantly modified fractal dynamics (t-test, p = 0.01), and both short and long term local dynamic stability
(T? p = 0.0002). No relationship was observed between variability indexes with the exception of significant
negative correlation between MeanSD and dynamic stability in TW (3 X 6 canonical correlation, r = 0.94).

Conclusions: Treadmill induced a less correlated pattern in the stride intervals and increased gait stability, but did
not modify kinematic variability in healthy subjects. This could be due to changes in perceptual information
induced by treadmill walking that would affect locomotor control of the gait and hence specifically alter non-linear
dependencies among consecutive strides. Consequently, the type of walking (i.e. treadmill or overground) is

Introduction

Wealking is a repetitive movement which is characterized
by a low variability [1]. This motor skill requires not
only conscious neuromotor tasks but also complex auto-
mated regulation, both interacting to produce steady
gait pattern. Classically, gait variability (i.a. kinematic
variability) has been assessed from the differences
among the strides (Standard Deviation SD, coefficient of
variation CV), i.e. each stride considered as an indepen-
dent event resulting from a random process. However,
this approach fails to account for the presence of feed-
back loops in the motor control of walking: the walking
pattern at a given gait cycle may have consequences on
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subsequent strides. As a result, correlations between
consecutive gait cycles and non-linear dependencies are
expected.

During the last decades, various new mathematical
tools have been used to better characterise the non-
linear features of gait variability. With the Detrended
Fluctuation Analysis (DFA [2-4]) it has been observed
that the stride interval (i.e. time to complete a gait
cycle) at any time was related (in a statistical sense) to
intervals at relatively remote times (persistent pattern
over more than 100 strides). This dependence (memory
effect) decayed in a power-law fashion, similar to scale-
free, fractal-like phenomena (fractal dynamics [1,3-5]),
also known as 1/f* noise [6]).

Another non-linear approach was proposed to charac-
terize the dynamic variability in continuous walking.
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The sensitivity of a dynamical system to small perturba-
tions can be quantified by the system maximal Lyapu-
nov exponent, which characterizes the average rate of
divergence in pseudo-periodic processes [7]. This
method allows to evaluate the ability of locomotor sys-
tem to maintain continuous motion by accommodating
infinitesimally small perturbations that occur naturally
during walking [8]. This includes external perturbations
induced by small variations in the walking surface, as
well as internal perturbations resulting from the natural
noise present in the neuromuscular system [8].

Many theoretical questions are still open about the
validity and application of these methods. For instance,
DFA results are difficult to interpret [9], and no defini-
tive conclusion on the presence of long range correla-
tions should be drawn relying only on it. In addition,
the underlying mechanism of long range correlations in
stride interval is not fully understood [3,10]. West &
Latka suggested that the observed scaling in inter-stride
interval data may not be due to long-term memory
alone, but may, in fact, be due partly to the statistics
[11]. It was also suggested that the use of multi-fractal
spectrum could be a better approach than mono-fractal
analysis, such as DFA [12,13]. There are also several
methodological issues to compute consistent and reli-
able stability index [14,15].

In parallel with the ongoing theoretical research on
non-linear analysis of physiological time series, the use
of non-linear bio-markers in applied clinical research
has been already fruitful. In the field of human locomo-
tion, it has been demonstrated that gait variability could
serve as a sensitive and clinically relevant tool in the
evaluation of mobility and the response to therapeutic
interventions. For instance, gait variability (SD and
dynamics) is altered in clinically relevant syndromes,
such as falling and neuro-degenerative disease [16,17].
Gait instability measurement apparently predict falls in
idiopathic elderly fallers [18]. Improvements in muscle
function are associated with enhanced gait stability in
elderly [19].

Motorized treadmills are widely used in biomechanical
studies of human locomotion. They allow the documen-
tation of a large number of successive strides under con-
trolled environment, with a selectable steady-state
locomotion speed. In the rehabilitation field, treadmill
walking is used in locomotor therapy, for instance with
partial body weight support in spinal cord injury or
stroke rehabilitation [20,21]. Since the classical work of
Van Ingen Schenau [22], it is admitted that overground
and treadmill locomotion are similar if treadmill belt
speed is constant. Nevertheless, both walking types pre-
sent small differences in kinematics [23,24], kinetics [25]
and energetics [26]. It was also observed that treadmill
locomotion induced shorter step lengths and higher
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cadences than walking on the floor at the same speed
[26,27]. There is still a matter of debate to interpret
such subtle differences [28,29].

It is obvious that treadmill walking (TW) induces spe-
cific kinaesthetic and perceptual information. Previous
studies confirmed that vision plays a central role in the
control of locomotion [30,31]. These differences in
visual afferences between TW and Overground Walking
(OW) may induce a modification in motor control, and
consequently in gait variability.

In 2000, Dingwell et al. analyzed TW local dynamic
stability (maximal Lyapunov exponent) in 10 healthy
subjects [8,32]. They highlighted significant differences
between TW and OW by evaluating local dynamic sta-
bility of lower limbs kinematics [8]. The effect was low
in upper body accelerations. Later [32], they calculated
more specifically short term stability and found a strong
effect of TW in trunk accelerations. On the other hand,
they found a greater kinematic variability at the lower
limb level in OW as compared to TW, but no signifi-
cant difference in trunk kinematics.

In 2005, Terrier et al. [1], by using high accuracy GPS,
described low stride-to-stride variability of speed, step
length and step duration in free walking. They observed
that the constraint of rhythmical auditory signal
("metronome walking”) did not alter kinematic variabil-
ity, but modify the fractal dynamics (DFA) of the stride
interval (anti-persistent pattern).

Based on these previous works, the working hypoth-
esis of the present article is 1) that the constraint of
TW (constant speed, narrow pathway) may induce a less
persistent pattern in the stride interval, by analogy to
the constraint induced by a metronome; 2) that TW
may increase the local dynamic stability of walking, due
to the diminution of degrees of freedom in the more
constrained artificial environment [32,33], 3) that, for
the same reasons, TW may slightly reduce kinematic
variability [32,33] 4) that no correlation exist between
the 3 variability indexes, because they are related to dif-
ferent aspects of the locomotion process.

The purpose of the present study was to analyze, by
using trunk accelerometry, differences between TW and
OW in terms of stride-to-stride kinematic variability
(SD), fractal dynamics (by DFA) and local dynamic sta-
bility (maximal Lyapunov exponent). In addition, we
assessed the strength of the relationships between these
variables (canonical correlation analysis).

Methods

Participants

Twenty healthy male subjects, with no neurological defi-
cit or orthopaedic impairment, participated to the study.
Most of them were recruited among participants of a
previous “treadmill” study implying only males subjects
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[34]. Their characteristics were (mean + SD): age 35 +
7 yr, body mass 79 + 10 kg, and height 1.80 + 0.06 m.
All subjects were well trained to walk on a treadmill
before the beginning of the study. The experimental
protocol was approved by the local ethics committee
(commission d’éthique du Valais).

Apparatus

The motion sensor (Physilog system, BioAGM, Switzerland
[35]) was a triaxial accelerometer connected to a data log-
ger recording body accelerations in medio-lateral (ML),
vertical (V) and antero-posterior (AP) directions. The
dimensions of the logger were 130 x 68 x 30 mm and the
weight was 285 g. The accelerometers are piezoresistive
sensors coupled with amplifiers (+ 5 g, 500 mV/g) and
mounted on a belt. The signals were sampled at 200 Hz
with 12-bit resolution. After each experiment, the data
were downloaded to a PC computer and converted in
earth acceleration units (g) according to a previous calibra-
tion. Data analysis was then performed by using Matlab
(Mathworks, Natick MA, USA) and Stata 11.0 (StataCorp
LP, TX, USA)

Procedures

The subjects performed 10 min. treadmill walking (T'W)
and 10 min. overground walking (OW) in a random
order. A rest period of five minutes (sitting still) was
imposed between the two trials. The motor-driven
treadmill was a Technogym, (Runrace, Italy). The
imposed speed was 1.25 m/s (4.5 km/h) for all subjects:
in the context of a previous study [34], we assessed
average running and walking preferred speed on the
same treadmill in 88 male subjects; an average of 1.26 +
0.13 m/s was observed. A thirty second warm-up was
performed before the beginning of the measurement.
For the OW test, the subjects walked along a standar-
dized 800 m indoor circuit along hospital corridors and
halls. The circuit exhibited only 90° turns. A large part
(about 400 m) of the circuit was constituted by a long
corridor. Other people working in the hospital were pre-
sent in the halls. Hence, the OW trials mimicked actual
condition of walking. Subects were asked to walk at
their Preferred Walking Speed (PWS) with a regular
pace. Under both conditions, the accelerometer was
attached to the low back (L4-L5 region) with an elastic
belt, and the logger was worn on the side of the body.
Subjects wore their own low-rise comfortable walking
shoes.

Stride intervals and kinematic variability

Five seconds were removed at the beginning and at the
end of the 10 min. acceleration measurements in order
to avoid non-stationary periods. Heel strike was detected
in the raw acceleration AP signal with a peak detection
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method designed to minimize the risk of false step
detection: first, we generated a low-pass filtered version
of the signal (4 order Butterworth, 3 Hz, zero-phase fil-
tering). The time of each local minimum was detected.
By superimposing the Filtered Signal (FS) to the original,
Unfiltered Signal (US), we tracked the nearest peak in
US of each local minimum in FS. US peak time was
then chosen as the limit between two steps (Figure 1A).
The strides were defined as two consecutive steps. On
average, the number of strides was 543 per trial.

Time series of the stride intervals were used to com-
pute a traditional variability index (Coefficient of Varia-
tion of the stride time, CV = SD/Mean*100, Figure 1B).
Moreover, the variability of the acceleration pattern
among strides was evaluated as follows (Figure 2): each
stride was normalized to 200 sample points by using a
polyphase filter implementation (Matlab command
Resample); the average stride-to-stride Standard Devia-
tion across all data points ((SD(i) V i e [1 ...200])) was
evaluated (MeanSD = (SD(i))).

Detrended Fluctuation Analysis

The presence of long range correlations in the time ser-
ies of stride intervals (fractal dynamics) was assessed by
the use of the non-linear DFA method. Strictly speaking,

Peak detection DFA: F(n) ~ n* with o.= 0.84
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Figure 1 Method: Step detection, stride intervals and
Detrended Fluctuation Analysis. One subject performed 10 min
of free walking. A: 2.5s sample of the antero-posterior acceleration
signal; red dotted line is a low pass filtered (<3 Hz) version of the
raw signal (black continuous line). Cross and black circle indicate
how the algorithm specifically detect the heel strike (see method
section for further explanation). The duration of two consecutive
steps is defined as stride interval. B: Time series of stride intervals
during the 10 min walking test. Average stride time (mean) and CV
(SD/mean * 100) is also presented. C: Detredend Fluctuation
Analysis (DFA). The fractal dynamics of the time series (B) is
characterized by the scaling exponent a,, computed by comparing
the fluctuation (F(n)) at different scales (n) in a log-log plot.
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Figure 2 Method: variability, MeanSD. One subject (same as in
Figure 1) performed 10 min of free walking. Each stride (see Figure
1A) was normalized to 200 samples (0% to 100% gait cycle). Top:
Average acceleration pattern of the normalized strides (N = 513).
Bottom: Standard Deviation (SD) of the normalized strides

(N = 513). MeanSD is the average SD of the 200 samples.

this non-linear method should be used in addition to
other statistical tools to definitively conclude that a pro-
cess is a true 1/f° noise with power-law decrease of long
range auto-correlations [6,9]. However, DFA has been
successfully used as relevant biomarker in numerous
studies [1,16,17,36,37]. Detrended Fluctuation Analysis
is based on a classic root-mean square analysis of a ran-
dom walk, but is specifically designed to be less likely
affected by nonstationarities. Full details of the metho-
dology are published elsewhere [1-4]. In short, the inte-
grated time series of length N is divided into boxes of
equal length, #. In each box of length #, a least squares
line is fit to the data (representing the trend in that
box). The y coordinate of the straight line segments is
denoted by y, (k). Next, the integrated time series, y(k),
was detrended, by subtracting the local trend, y,(k), in
each box. The root-mean-square fluctuation of this inte-
grated and detrended time series is calculated by

F) = [ 3 -y, (1 W

This computation is repeated over all box sizes (from
4 to 200) to characterize the relationship between F(n),
the average fluctuation, and the box size, n. The fluctua-
tions can be characterized by the scaling exponent ¢,
which is the slope of the line relating log F(#) to log(n)
(F(n) ~ n®), Figure 1C). Long range correlations are pre-
sent in the original time series when « lies between 0.5
and 1 [3,4].

In a finite length time series, an uncorrelated process
could exhibit “by chance” a scaling exponent different
from the theoretical 0.5 value. To statistically differenti-
ate the stride time series from a random uncorrelated
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process, we applied the surrogate data method [1,3]. This
method increases the confidence that the analyzed series
exhibits long-range correlation. Twenty different surro-
gate data sets were generated by shuffling the original
time series in a random order. On each data set, DFA
analysis was performed to calculate & value. The standard
deviation and mean of this sample was calculated and
compared to o exponent of the original series. The result
is considered significant if the original ¢ is 2 standard
deviation away from the mean of the surrogate data set.

Local dynamic stability

The method for quantifying the local dynamical stability
of the gait by using largest Lyapunov exponent has been
extensively described in literature [8]. It examines struc-
tural characteristics of a time series that is embedded in
an appropriately constructed state space. A valid state
space contains a sufficient number of independent coor-
dinates to define the state of the system unequivocally
[38]. According to the Takens’ theorem, an appropriate
state space can be reconstructed from a single time ser-
ies using the original data and its time delayed copies
(figure 3A) [38].

X(t) =[x(t), x(t + T), x(t + 2T),..., x(t + (dg —1)T] (2)

Where X(t) is the dr-dimensional state vector, x(t) are
the original data, T is the time delay, and df is the
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Figure 3 Method: dynamic stability, maximal Lyapunov
exponent. A: Two dimensional state space of the antero-posterior
acceleration signal (5s) reconstructed from the original data set and
its time delayed copy (At = 11 samples). B: Magnification of the
state space. An initial local perturbation at dj(0) diverge across i
time steps as measured by dj(i). C: Short term (As*) and long term
(A %) finite-time maximal Lyapunov exponent computed from

average logarithmic divergence.
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embedding dimension. The time delays (7) were calcu-
lated individually for each of the 120 acceleration data
set (3-axis, 2 conditions, and 20 individuals) from the
first minimum of the Average Mutual Information
(AMI) function [8,39]. Embedding dimensions (dg) were
computed from a Global False Nearest Neighbors
(GENN) analysis [8,40]. Because the result was similar
for all acceleration time series, we use a constant dimen-
sion (dg = 6) [8,32]]. The Lyapunov exponent is the
mean exponential rate of divergence of initially nearby
points in the reconstructed space (Figure 3B). Because
the determination of the maximal Lypunov exponent
requires intensive computing power, 7 min of the
10 min walking test (from 1.5 to 8.5 min.) was selected
and the raw data were down-sampled to 100 Hz. The
determination of the Lyapunov exponent was then
achieved by using the algorithm introduced by Rosen-
stein and colleagues [7], which provided dedicated soft-
ware to compute divergence as a function of time in
finite-time series [41] (Figure 3B). The maximum finite-
time Lyapunov exponents (A*) were estimated from
the slopes of linear fits in the divergence diagrams
(Figure 3C). Strictly speaking, because divergence dia-
grams (Figure 3C) are non-linear, multiple slopes could
be defined and so no true single maximum Lyapunov
exponent exists. The slopes (exponents) quantify local
divergence (and hence stability) of the observed dynamics
at different time scale, and should not be interpreted as a
classical maximal Lyapunov exponent in chaos theory.
Since each subject exhibited a different average step
frequency, the time was normalized by average stride
time for each subject and each condition (Figure 3C).
As suggested by Dingwell and colleagues [32], we use
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two different time scales for assessing short-term and
long-term dynamic stability: short term exponents (As*)
was computed over the first stride (0 to 1), and
long term exponents (Ap*) between 4 and 10 strides
(Figure 3C).

Statistical analysis

Mean and Standard Deviation (SD) were computed to
describe the data (table 1). Ninety-five percent Confi-
dence Intervals (CI) were calculated as + 1.96 times the
Standard Error of the Mean (SEM, N = 20).

The effect size of TW as compared to OW was
expressed in both absolute (mean difference) and stan-
dardized (mean difference divided by SD) terms. The
standardized effect size was the Hedge’s g, which is a
modified version of the Cohen’s d for inferential mea-
sure [42]. Paired t-tests between OW and TW were per-
formed, and the p-values are shown in the last column
of table 1. The precision of the effect sizes was esti-
mated with CI (Figure 4). CI were + 1.96 times the
asymptotic estimates of the standard error (SE) of g
[42]. The arbitrary limit of 0.5 was uses to delineate
small effect size, as defined by Cohen [42]. The extent
of the data (quartiles and median) and individual differ-
ences between conditions are shown in Figure 5 for 1*.
In order to facilitate results interpretation by reducing
the risk of type I statistical error, a Hotelling T test was
used. This is a multivariate generalization of paired
t-test [43]. The null hypothesis is that a vector of p dif-
ferences is equal to a vector of zeros. Two multivariate
sets were tested: meanSD (p = 3) and A* (p = 6).

Canonical correlation analyses (CCA, table 2 & 3)
were performed in order to assess the strength of the

Table 1 Comparison between Overground and Treadmill Walking

Overground Walking Treadmill Walking Effect Size T-test T>-test
N =20 Mean + SD  Confidence interval Mean + SD  Confidence interval Abs. Norm. p p
ML 008 + 003 0.07 - 0.09 0.07 = 0.03 0.06 - 0.09 0.00 -0.12 0.59
Mean variability (SD, g) V 0.08 + 0.03 0.07 - 0.09 0.08 + 0.03 0.06 - 0.09 -0.01 -0.16 048 087
AP 008 + 003 0.07 - 0.09 0.08 £ 003 0.07 - 0.09 0.00 -0.01 0.96
Stride time (mean, s)  1.06 + 0.06 1.04 - 1.09 1.10 £ 0.07 107 -1.13 0.03 0.53 0.01
Stride time variability (CV, %) 274 + 0.87 236 -3.12 303+ 144 240 - 3.66 029 0.24 043
Scaling exponent o (DFA)  0.81 + 0.09 0.78 - 0.85 0.72 £ 0.13 0.67 - 0.78 -0.09 -0.80 0.01
ML 0.75 + 0.1 0.70 - 0.79 068 £ 0.15 061 -0.74 -0.07 -0.53 0.01
Short term stability (A*) V 0.75 £ 0.14 0.69 - 0.82 068 + 0.16 061 -0.75 -0.07 -048 0.01
AP 0.72 £ 0.10 0.68 - 0.76 066 + 0.13 0.60 - 0.71 -0.06 -0.57 0.02 0.00
ML 0.022 + 0.007 0.019 - 0.025 0.018 + 0.008 0.015 - 0.021 -0.004 -0.60 0.02
Long term stability A*) V0048 £ 0.014 0.042 - 0.054 0.040 + 0.015 0.034 - 0.046 -0.008 -0.54 0.00
AP 0.041 + 0.008 0.038 - 0.044 0.039 + 0013 0.033 - 0.045 -0.002 -0.15 048

The Descriptive statistics of variability indexes are expressed as mean, Standard Deviation (SD) and 95% Confidence Interval (mean + 1.96 times the Standard
Error of the Mean). The effect size is given as Absolute (Abs.) and Normalized (Norm.) values, i.e. respectively the difference between Overground (OW) and
Treadmill (TW) conditions (Abs.) and the difference normalized by SD (Hedge’s g). The t-test column shows the p values of paired t-tests between TW and OW
conditions. T>-test is the Hotelling multivariate test by regrouping MeanSD and A*. Significant results (p < 0.05) are printed in bold. ML, V and AP stand for
respectively Medio-Lateral, Vertical and Antero-posterior, i.e. the 3 directions of the triaxial accelerometer.
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Figure 4 Differences between overground and treadmill
walking. Effect size and confidence intervals. Black circles are the

standardized effect size (Hedge's g), as reported in table 1.
Horizontal lines are the 95% confidence intervals. The arbitrary limit
of 0.5 (vertical dotted line) corresponds to a medium effect as

Page 6 of 13

relationships between different sets of variables [43].
This multivariate method allows one to find linear com-
binations (variates) in two sets of variables, which have
maximum correlation (canonical correlation coefficient
or canonical root) with each other. For each condition
(OW and TW), two sets of p variables were analyzed:
kinematic variability (set#1, p = 3) including MeanSD in
ML, V and AP directions, and dynamic stability (set#2,
p = 6), including short term and long term lyapunov
exponent (Ag*, A *) in ML, V and AP directions. In addi-
tion, o scaling exponent was also analyzed with the
same method vs. set#1 and set#2. In this case, CCA is
equivalent to multiple regression analysis. Significance
of the canonical correlations was assessed with the
Wilks’ lambda statistics.

To enhance the interpretation of CCA, different para-
meters were computed: the standardized canonical
weights are the linear coefficients for each set after Z-
transform of the variables; canonical loadings are the
correlation coefficients between each variable and their
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Figure 5 Individual changes of dynamic stability (A*). Lyapunov exponent A * and As* of the 20 subjects are presented for Overground
Walking (OW) and Treadmill Walking (TW). Discontinuous lines join OW and TW results. Boxplots show the quartiles and the median.




Table 2 Correlation matrix

Overground Walking Treadmill Walking
Correlation coefficients: Correlation coefficients:
SDML SDV SDAP A*ML AFXV A*AP M*ML M*V  M*AP SDML SDV SDAP AFML AXV AXAP AM*ML AM*V  AM* AP
SD ML 1.00 SD ML 1.00
Ssb Vv 0.95 1.00 SDV 0.92 1.00
SD AP 0.14 0.24 1.00 SD AP 0.59 0.62 1.00
As* ML 0.05 -0.04 -0.02 1.00 As* ML 0.26 0.20 -0.26 1.00
Ak V -020  -0.17 -0.04 0.47 1.00 As*V -0.17  -0.08 -0.50 0.74 1.00
As* AP 027  -024 -0.37 0.57 0.45 1.00 As* AP -0.01 0.08 -0.32 0.77 0.75 1.00
A ML 0.16 0.17 0.07 -0.13 0.06 -0.27 1.00 A* ML -0.51 -0.50 -0.56 0.34 041 0.30 1.00
M*V -0.31 -037 0.10 -0.23 -0.24 -0.28 041 1.00 M*V -0.76  -0.81 -0.47 -036 -0.14 -0.30 0.53 1.00
M* AP -047 -0.52 0.17 -0.13 -0.01 -0.36 0.55 0.75 1.00 A* AP -0.77 -0.82 -0.57 -0.37 -0.18 -0.21 0.45 0.86 1.00
o (DFA) -0.45 -0.35 -0.39 0.09 0.10 0.51 -0.09 0.08 -0.09 o (DFA) -0.56 -0.56 -0.36 0.12 0.25 0.10 0.28 037 042

Pearson'’s r correlation coefficients between the variables. SD = Mean Standard Deviation (MeanSD). As* = maximal Lyapunov exponent, short term dynamic stability. A, * = maximal Lyapunov exponent, long term
dynamic stability. o = scaling exponent (Detrended Fluctuation Analysis), fractal dynamics. ML, V and AP stand for respectively Medio-Lateral, Vertical and Antero-posterior. Significant correlation are bold printed
(p < 0.05).
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Table 3 Canonical Correlation Analysis (CCA)
Overground Walking Treadmill Walking
Standardized weights Loadings Standardized weights Loadings
Set #1 1 2 3 Set #1 1 2 3 Set #1 1 2 3 Set #1 1 2 3
SDML -006 276 1.70 SDML -095 030 007 SDML -130 229 004 SDML -094 -010 033
SDV 098 -272 -162 sV -098 009 -0.18 SDV 063 -239 1.07 SDV -080 -046 038
SD AP 0.20 079  -0.70 SD AP -004 052 -085 SD AP 038 -031 -1.18 SDAP -076 -042 -049
Set #2 1 2 3 Set #2 1 2 3 Set #2 1 2 3 Set #2 1 2 3
As¥ ML -026 1.02 0.65 As* ML 0.04 0.34 0.65 AsF ML -078 1.77 042 A ML -0.13 0.27 0.85
As* V 012 -007 -068 As* V 019 -016 -0.14 As*V 079  -039 0.63 AsFV 039 -0.08 0.81
As* AP 052  -1.04 0.66 As* AP 020  -053 0.69 As* AP 025 -079 023 As* AP 020  -015 0.74
M*ML 073 -022 011 M*ML -018 005 -019  M*ML 020 -052 006 M*ML 059 024 017
M*¥V  -005 034 028 M*¥Vo 045 031 -001 M*V o -007 039 -099 M*V 069 042 -055
A* AP 123 -002 -021 AM* AP 0.63 035 -025 A* AP 0.57 0.77 0.67 A* AP 0.75 045 -038
Can. correlations Redundancy Can. correlations Redundancy
089 073 028 Set #1 050 007 002 094 079 062 Set #1 062 008 006
p 0.01 0.30 0.89 Set #2 0.09 0.06 0.01 p 0.00 0.03 0.15 Set #2 0.24 0.06 0.15
Standardized weights Loadings Standardized weights Loadings
1 1 1 1
o (DFA) 1.00 o (DFA) 1.00 o (DFA) 1.00 o (DFA) 1.00
Set #2 1 Set #2 1 Set #2 1 Set #2 1
A* ML -040 A*ML 015 A* ML 064 A* ML 021
A*V  -0.10 A*V 016 A*V 065 A*V 043
As* AP 1.20 As* AP 0.84 A AP -039 As* AP 0.18
AM*ML 001 M*ML -0.14 M*ML -046 M*ML 049
MV 042 M*V 013 MFV 022 M*V 065
M* AP -0.09 M* AP -0.15 M*AP 101 M*AP 073
Can. correlations Redundancy Can. correlations Redundancy
0.61 o (DFA) 0.38 0.58 o (DFA) 0.34
p 0.32 Set #2 0.05 p 042 Set #2 0.08
Standardized weights Loadings Standardized weights Loadings
1 1 1 1
o (DFA) 1.00 o (DFA) 1.00 o (DFA) 1.00 o (DFA) 1.00
Set #1 1 Set #1 1 Set #1 1 Set #1 1
SDML -232 SD ML -067 SDML  -051 SDML -098
SDV 185 SDV  -052 SDV -050 SDV  -098
SD AP -0.70 SD AP -058 SD AP -0.02 SD AP -063
Can. correlations Redundancy Can. correlations Redundancy
0.67 o (DFA) 045 0.58 o (DFA) 033
p 0.02 Set #1 0.16 p 0.09 Set #1 0.26

Canonical correlation analysis between 6 sets of variables. SD = Mean Standard Deviation. As* = maximal Lyapunov exponent, short term dynamic stability. 1.* =

maximal Lyapunov exponent, long term dynamic stability. a. = scaling exponent (Detrended Fluctuation Analysis), fractal dynamics. ML, V and AP stand for

respectively Medio-Lateral, Vertical and Antero-posterior.

respective linear composites; redundancy expresses the
amount of variance in one set explained by a linear
composite of the other set.

Results

Treadmill effect

As presented in table 1, TW did not modify the stride-to-
stride kinematic variability of normalized acceleration

pattern, either considering multivariate T? statistics (p =
0.87) or individual results for each direction. TW was on
average performed at slightly lower cadence than Over-
ground Walking (OW, 3% relative difference). The varia-
bility of stride interval was similar under both conditions.
DFA of stride intervals revealed that TW changed the
fractal dynamics of walking (-11% relative difference).
Globally, multivariate analysis showed that the data are
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compatible with the assumption that TW modified
dynamic stability of the gait (T (6, 20) p = 0.0002). Five
from six particular A* exponents exhibited significant
differences.

Figure 4 shows the accuracy of the effect size estima-
tion. Non-linear estimators of gait variability (o, A*)
exhibit mostly medium effect size.

Figure 5 shows the individual results of the local
dynamic stability (A*). Stability was clearly increased
(lower 1*) for a majority of subjects except for long-
range Antero-Posterior stability A;*.

Figure 6 presents the individual results of surrogate
testing of fractal dynamics. The response to TW was
not homogenous among subjects. Four subjects (20%)
exhibited a significant turn of long range correlations to
uncorrelated pattern. For ten more subjects (50%), a
reduction was observed (more than 0.05), but outside
the significant limits.

Correlations
Table 2 shows the correlation matrix (Perason’s r) of the
variables under both conditions. It can be observed that
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correlations exist between the same variables measured
along different axes (for instance MeanSD ML vs.
MeanSD V, r = 0.92), what makes difficult the global
interpretation of potential correlation among the differ-
ent variability indexes.

In table 3, the results of 6 CCA are shown in details
in order to explore global correlation hypotheses. The
data seem compatible with the hypothesis that a nega-
tive correlation exists between kinematic variability
(MeanSD) and local dynamic stability (A*) under TW
condition. Namely, two significant canonical roots (R* =
0.88 and 0.62) indicates that the canonical variates share
an important variance. In addition, the canonical load-
ings show that the canonical model extract a substantial
portion of the variance from the variables (70% from the
set#1 and 27% from the set#2). Finally, the redundancy
analysis reveals that at least 70% of the variance of the
set#2 (stability) can be explained by the set#1 (kinematic
variability). The five other CCA did not produce clear
evidence for significant relationship between the ana-
lyzed sets of variables. Three CCA showed low and non
significant canonical roots. Two CCA exhibited barely

DFA: surrogate data test

T T T T T T T T
ow — —- ™ ® OW o T™W
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Figure 6 Detrended Fluctuation Analysis: surrogate data tests. The time series of stride intervals (Figure 1B) of each subject (#1 to #20) were
analyzed by DFA (figure 10) to determine the scaling exponent a. indicating the presence of a long range correlation pattern in stride intervals.
Black and white circles are respectively the scaling exponent for Overground Walking (OW) and Treadmill Walking (TW). Each time series was
randomly shuffled twenty times to produce 20 surrogate time series. The average of these series is near 0.5 (random process with no
correlation). The vertical bars show the extent of 2 times the SD of the 20 surrogate time series. Scaling exponent larger than this value can be
considered significantly different from a random uncorrelated series.
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significant correlation, but the analysis of loadings
showed that the canonical model did not explain a large
part of the variances in the sets.

Discussion

The purpose of the present study was to analyze three gait

variability indexes under two walking conditions in order

to highlight modifications induced by motorized treadmill

and to analyze the relationship between the indexes.
According to the working hypothesis, the results are

summarized as follows:

1) As compared to Overground Walking (OW),
Treadmill Walking (TW) significantly reduced the
average scaling exponent (lower o), but did not
reverse the correlated pattern to a random or anti-
persistent pattern in a majority of subjects.

2) TW significantly increased local dynamic stability
(lower A*).

3) TW did not significantly modify the kinematic
variability (MeanSD).

4) No evident relationship was observed between
variability indexes during OW at preferred walking
speed, but in TW significant negative correlation
was found between kinematic variability (MeanSD)
and stability (A*).

Overall, Conventional variability analysis (MeanSD)
failed to report differences between OW and TW,
whereas non-linear approaches were able to show signif-
icant changes. The variability indexes were poorly corre-
lated together (with one exception), which might signify
that each index was related to a different aspect of
motor control.

Technical issues

For the present study, portable trunk accelerometry was
chosen because it offers the possibility to record long-
term free walking. Hence, the results concern the gait
stability measured from accelerations of the low-back.
Comparisons with other results should take into account
that that the different gait stability studies use different
kinematic variables (acceleration [7,10], positions [44],
angle [8]) and different body location (thorax, head,
knee, and ankle) to assess A*. We found A* similar to
those measured by others [8,32], suggesting that the
results are rather independent on the measurements
methods.

In fractal dynamics studies, the first step is the detec-
tion of the periodic pattern of the gait in order to com-
pute time series of stride intervals. Several methodologies
have been used to measure long-term time series of
stride intervals, such as foot switches [3,5], goniometer
[45], video analysis [46], or high accuracy GPS [1].
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Because the same variable is used (i.e. time duration of
the gait cycle) for DFA analyses, data from different stu-
dies are probably comparable.

In order to increase the likelihood to point out signifi-
cant correlations among variability indexes, we designed
the experiment to obtain a substantial degree of standar-
dization: we imposed the same speed (1.25 m/s, 4.5 km/
h) for all subjects on the treadmill. This speed was cho-
sen on the basis of a previous experiment (partially pub-
lished yet [34]), which showed that the preferred speed
in the same experimental conditions (same room, same
treadmill) was 1.26 + 0.13 m/s (n = 88). Similar values
are found in the literature: 1.25 m/s (n = 8) [47], 1.19
m/s (n = 26) [48].

Walking speed was not standardized between TW and
OW, as in other studies [32]. However, by selecting
treadmill speed at the same speed of overground pre-
ferred speed, the results would be that subjects walk at
higher speed than their preferred speed on the treadmill.
Several studies showed a substantial difference between
both conditions: Dal et al. [48] demonstrated that pre-
ferred walking speed determined on a treadmill is slower
than overground (21% relative difference); Marsh et al.
[49]showed that, when older adults were allowed to
choose a preferred walking pace, they walked faster
(+61%), used longer strides, and had a faster rate walk-
ing overground than when they walked on a treadmill.
As a result, speed normalization could introduce
unwanted bias. Our experimental design was therefore a
compromise, which standardized speed among subjects
in TW condition, but also which selected walking speed
close to preferred speed, making both OW and TW
conditions comparable.

In addition, Indirect clues seem to indicate that TW
and OW conditions were quite similar: 1) stride time
(which is related to walking speed) were close (3% dif-
ference, small effect size), 2) stride time variability (CV)
was the same (no significant differences), 3) no correla-
tion was observed between stride time and other para-
meters (results not shown),

Differences between treadmill and overground walking

Kinematic variability, fractal dynamics (DFA) and local
dynamic stability (Lyapunov exponents) quantify differ-
ent aspects of locomotor control [32]. Kinematic varia-
bility describes the range in which the locomotor system
operates. DFA quantify temporal dynamics of discrete
events (i.e stride interval) over hundreds of consecutives
strides; it assesses the presence of long-range correla-
tions between strides, and hence analyzes the character-
istics of feedbacks in locomotor control. Lyapunov
exponents quantify the temporal dynamics in continu-
ous time based on the theory of deterministic chaos; it
evaluates the degree of divergence in the signal, and
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hence the resilience of the locomotor system to small
perturbations. Therefore, it can be expected that these
variability indexes did not react in the same way under
various conditions.

These assumptions were experimentally verified in
various studies that observed changes of A* and kine-
matic variability between different experimental condi-
tions or between different populations. For instance it
was observed that patients with peripheral neuropathy
present altered dynamic stability but normal kinematic
variability [33,50]. Other investigators have shown that
an exercise training intervention in elderly people could
improve dynamic stability but not decrease kinematic
variability [19].

Despite differences in the method of measurement
(low-back vs. thorax acceleration) and in the experimen-
tal design (speed normalization), our results are gener-
ally in accordance with the results of Dingwell et al [32].
They analyzed only 10 healthy individuals, therefore sta-
tistical significance for small effects was more difficult
to reach than in the present study. They showed a sig-
nificant treadmill effect in short-term stability (lower
As*). A slight but not significant effect for long-term
vertical stability (lower A;*) was found. They observed
that kinematic variability (MeanSD) for upper body
accelerations was generally greater for OW than TW,
but this trend was only significant for antero-posterior
accelerations. They explained that underlying causes of
differences between TW and OW were unclear: on one
hand, the motorized treadmill imposed a constant nom-
inal speed on the subjects and constrained them to walk
along a much narrower and straighter path than during
OW; but on the other hand, differences may have been
induced by intra-stride fluctuations in treadmill belt
speed, differences in mechanical compliance between
the walking surfaces, and changes in visual and vestibu-
lar perceptual information. In light of the results of the
present study, we hypothesize that motor control is able
to maintain the same range of kinematic variability in
both TW and OW conditions (same kinematic variabil-
ity), probably because of compensating effects: in TW,
destabilizing factors (intra-stride belt speed fluctuations,
disturbing mechanical compliance, alteration of percep-
tual information) are balanced by stabilizing factors
(constant speed, narrow and straight path). Conversely,
motor control strategy adapting the gait to TW seems
to specifically alter non-linear dependencies among con-
secutive strides: the stabilizing factors override the
destabilizing ones.

In a subsequent study, Dingwell & Marin [51] ana-
lyzed speed effect on dynamical stability (As* and A.*)
and kinematic variability (MeanSD). Walking speed was
normalized by individual PWS on a treadmill. Speed
range was 0.6PW to 1.4PWS by steps of 0.2. They found
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significant speed effect for both A* and MeanSD: how-
ever the effect was small for 0.8-1.2 PWS. Under our
experimental conditions [34], we observed that inter-
indivudual variability of PWS on the treadmill was low:
90% of individuals walked in the range of 0.87-1.13
mean PWS. As a result, the speed effect among indivi-
duals in the present study was probably low. This is also
indirectly confirmed by the low inter-individual variabil-
ity of stride duration (CV = 6%).

Fractal dynamics of stride intervals has been exten-
sively studied by Hausdorff et al. [36]. Them and other
[1,3,52] have observed that constrained walking (paced
cadence with a metronome), deeply modified the scaling
exponent. By analogy, because treadmill also constraints
the gait by imposing a constant speed, a similar effect
could be expected. The results of the present study
showed, in a majority of subjects, a lowering of scaling
exponent to a less correlated pattern. The effect was not
as strong as with paced walking [1]. The explanation
could be that treadmill constrained walking speed, while
metronome constrained walking pace; it could be
hypothesized that the adaptation of locomotor control
to external cues specifically modify correlation pattern
of the constrained walking parameter, as suggested by
the results of Terrier et al. [1], but this remains to be
investigated.

Correlations between variability indicators

While fractal dynamics, local dynamic stability and kine-
matic variability characterize different features of gait
variability, it is not excluded that relationships exists
between them.

Jordan et al. [46] recently analyzed fractal dynamics
and stability in walking/running transition on treadmill.
They observed a positive correlation between Ap* and o
(r* = 0.65, N = 12). They also observed that scaling
exponent is minimal close to PWS [53] and suggested
that “reduced strength of long range correlations at pre-
ferred locomotion speeds is reflective of enhanced stabi-
lity and adaptability at theses speeds”. Our results, using
CCA, did not confirm this suggestion. No evident corre-
lation between scaling exponent and dynamic stability
was found. Several differences in the measurement
method (trunk accelerometry vs 3D video analysis) and
in the experimental design (high speed vs. moderate
speed) may explain this divergence.

Previous studies have analyzed the relationships
between variability (meanSD) and local dynamic stability
(As* and A *). Dingwell et al. pointed out “the general
lack of correlation between the standard deviation and
A* exponents” [32]. In contrast, other investigators
recently observed significant positive correlation
between Ag* and MeanSD [54]. The results of the pre-
sent study showed a counterintuitive negative
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correlation between A* and MeanSD: during treadmill
walking (but not in OW), higher kinematic variability
seemed to be related to higher local stability (i.e. low
1*). As explained above, the use of different methodolo-
gies is a potential source of divergence between studies
concerning dynamic stability. It is not excluded that a
confounding factor, not measured yet, related to both
MeanSD and A* could indirectly explain this correlation.
Further investigations are needed to better understand
the relationship between these two variability indexes.

Conclusions

Scaling exponent (o) and maximal Lypunov exponent
(A*) have been advocated as a relevant indicator of neu-
romuscular control of stability during human locomo-
tion [8,32,36,55]. The results of the present study
showed that treadmill modified fractal dynamics (o) and
local dynamic stability (A*) of the gait, but not kinematic
variability (MeanSD). This should be kept in mind when
using motorized treadmill either for fundamental
research or in locomotor therapies.

Whereas both scaling exponent (o) and maximal
Lypunov exponent (A*) are sensitive enough to identify
differences between OW and TW, they seem not corre-
lated together. This suggests that both indexes deserve
to be used in conjunction when analyzing long term gait
variability, because they describe different locomotor
characteristics.
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