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Abstract

Background: Locomotor control is accomplished by a complex integration of neural mechanisms including a
central pattern generator, spinal reflexes and supraspinal control centres. Patterns of muscle activation during
walking exhibit an underlying structure in which groups of muscles seem to activate in united bursts. Presented
here is a statistical approach for analyzing Surface Electromyography (SEMG) data with the goal of classifying
rhythmic “burst” patterns that are consistent with a central pattern generator model of locomotor control.

Methods: A fuzzy model of rhythmic locomotor patterns was optimized and evaluated using SEMG data from a
convenience sample of four able-bodied individuals. As well, two subjects with pathological gait participated: one
with Parkinson’s Disease, and one with incomplete spinal cord injury. Subjects walked overground and on a
treadmill while SEMG was recorded from major muscles of the lower extremities. The model was fit to half of the
recorded data using non-linear optimization and validated against the other half of the data. The coefficient of
determination, R2, was used to interpret the model’s goodness of fit.

Results: Using four fuzzy burst patterns, the model was able to explain approximately 70-83% of the variance in
muscle activation during treadmill gait and 74% during overground gait. When five burst functions were used, one
function was found to be redundant. The model explained 81-83% of the variance in the Parkinsonian gait, and
only 46-59% of the variance in spinal cord injured gait.

Conclusions: The analytical approach proposed in this article is a novel way to interpret multichannel SEMG
signals by reducing the data into basic rhythmic patterns. This can help us better understand the role of rhythmic
patterns in locomotor control.

Keywords: Surface electromyography, gait, central pattern generator, fuzzy analysis

Background
During gait, the Central Nervous System (CNS) activates
the muscles of the lower extremities in rhythmic pat-
terns that can be measured by surface electromyography
(SEMG). These signals are not precisely periodic; they
naturally vary from stride to stride due to responses to
environmental stimuli and a number of complex
mechanisms in the CNS that are not well understood.
SEMG is often used in the study of the motor control
of normal and pathological gait, because it contains
important information about the timing and intensity of
muscle commands that originate in the CNS [1]. There

have been several attempts to statistically classify loco-
motor patterns from SEMG data, however the majority
of these approaches are a posteriori and identify patterns
without regard for physiological theory. Here, we pro-
pose a new a priori analytical method involving fuzzy
systems that is designed to classify rhythmic locomotor
patterns in SEMG waveforms that fit a rudimentary
model of open-loop Central Pattern Generator (CPG)
control.
Interpretation of SEMG during gait is particularly

challenging due to the complexity of the myoelectric
signals, which are stochastic in nature and represent an
interference pattern from multiple motor units. Further-
more, SEMG data are usually multi-dimensional and
involve significant measurement error (noise) that can
only be partially discriminated from true signal using
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filtering techniques [2]. A number of statistical techni-
ques have been proposed to deal with the high dimen-
sionality and uncertainty that is inherent to SEMG data
[3,4]. Jansen et al. [5] used a hierarchical clustering pro-
cedure to classify different muscle patterns observed in
gait, from which they were able to draw inferences
about different walking strategies. Intra-class correlation
coefficients have been used to identify characteristics of
different patient populations [6]. Factor analysis has
been used to capture the underlying correlations
between muscles, which has led to a deeper understand-
ing of how locomotor patterns are organized [7]. These
advanced analytical approaches can contribute to a bet-
ter understanding of the underlying neural mechanisms
that control muscle activity during gait. However, these
approaches are a posteriori and lead to identification of
patterns independent of physiological theory. The
method proposed here is built upon the specific theory
of a CPG that open-loop control of locomotion using
simplified, pre-programmed muscle commands.
The idea that human locomotion is driven by oscillat-

ing neural circuits located in the spinal cord has been
advanced for decades [8]. These circuits, known as the
CPG, provide rhythmic “bursts” of muscle activation sig-
nals that form the basis of locomotor control [9-11]. By
analyzing the basic pattern of SEMG signals as well as
the variability that occurs over multiple strides, we can
gain valuable insight into the function of the CPG and
its role in human locomotor control.
One of the most important challenges in gait analysis

is to determine if a set of recorded signals represents
normal gait or if it contains particular signatures of
pathological gait. It is often desirable to compare one
set of SEMG waveforms to another in order to deter-
mine if a subject’s gait exhibits abnormal behavior, if an
intervention was successful, or if walking under different
conditions involves different muscle activation patterns.
Some researchers have developed mathematical indices
that quantify certain features of dynamic EMG wave-
forms for the purpose of quantifying impairment [12,13]
or to evaluate stride-to-stride variability [14].
Many neurological disorders are associated with

increased variability of gait [1,5,9,15]. This is due to
errors in locomotor control caused by dysfunction of
specific areas in the CNS. It is conceivable that some
CNS disorders may actually reduce the amount of varia-
bility, due to a decrease in anticipatory control (suprasp-
inal), a decrease in environmental interaction (spinal
reflexes) and a relative increase in self-generated oscilla-
tory commands form the spinal CPG. For example,
Miller et al. [14] observed reduced timing variability of
the gastrocnemius muscle in Parkinsonian gait. This is
an interesting finding that suggests there may be other

characteristics of pathological gait that produce abnor-
mally invariant muscle activation signals.
This article describes a combined fuzzy and statistical

approach that first classifies basic muscle activation pat-
terns during different phases of the gait cycle, and then
evaluates the degree to which recorded muscle signals
are consistent with a rudimentary CPG model of loco-
motor control. This approach is unique in that it
enables an estimate of how much of the variability in
muscle activity in gait is due to recurring basic patterns
and how much is due to error and non-rhythmic
sources of control (i.e., anticipatory adjustments, aber-
rant reflexes, measurement error, etc.).

Methods
Subjects
SEMG recordings were collected from four able-bodied
(AB) individuals with no neurological conditions, as well
as one individual with Parkinson’s Disease (PD) and one
individual with incomplete Spinal Cord Injury (SCI).
Descriptive data of the six subjects is provided in Table
1. PD subjects were classified according to the Hoehn &
Yahr scale [16], and SCI subjects were classified accord-
ing to the American Spinal Injury Association (ASIA)
Impairment Scale [17]. PD is a neurological disorder in
which the supraspinal centers are believed to generate
erroneous signals for locomotion [18]. SCI was included
as a case in which the pathways between supraspinal
centers and spinal circuits are impaired. We expected to
find abnormal features in the SEMG of both pathologi-
cal subjects.

Instrumentation and protocol
Each subject was instrumented with an 8-channel
SEMG system (Biometrics DataLOG, Biometrics Ltd,
Ladysmith, VA, USA). Eight electrodes were carefully
placed over the muscle belly of the following muscles
bilaterally: vastus lateralis (VL), long head of biceps
femoris (BF), tibialis anterior (TA) and gastrocnemius
lateralis (LG). These particular muscles were selected as
a representative set of the major actuators during gait
[5]. The skin was cleaned and lightly abraded before the
electrodes were attached with double-sided adhesive
tape. SEMG signals were amplified, filtered (bandpass:
15 - 450 Hz), and recorded at 2000 Hz. A foot switch
was placed in the right shoe directly under the heel to
detect initial foot contact, which was used to mark the
beginning and end of each gait cycle.
Each subject performed two trials of overground

walking (OG) for a distance of 10 m. Then each sub-
ject performed two trials of treadmill walking (TM) for
a duration of 30 s. TM speed was set to the average
walking speed of the subject’s OG trials. The first trial
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of each set was used as training data for optimizing the
model. The second trial was used to validate the
model.
After recording, SEMG signals were rectified and fil-

tered using a low-pass Butterworth filter with a cut-off
frequency of 10 Hz, which is considered sufficient for
noise removal without loss of signal [2]. All signals were
then separated into individual gait cycles marked by
right foot contact and time-normalized relative to the
gait cycle using cubic spline interpolation of 100 evenly
spaced points in time (0 to 99% of the gait cycle). All
data processing was performed using Matlab software
(The Mathworks, Inc., Natick, MA, USA).

Algorithm
The rectified and filtered SEMG signals were coded
according to fuzzy sets [3,19]. A set of n Gaussian mem-
bership functions were used to represent specific bursts
of muscle activity during the gait cycle. These are
described by Equation 1. Gaussian functions represent a
basic “burst” pattern and have been used previously to
decompose SEMG data [20].

bi(t) =
1

σi
√
2π

e−(t−τi)
2/(2σi

2) (1)

Where bi(t) is the ith burst function, τi is the time of
maximum value, and si is the standard deviation. The
values of τi and si were initially selected a priori to pro-
vide good coverage of the gait cycle. τi were equally
spaced throughout the gait cycle, and si were all equal
to 10% of the gait cycle. Figure 1A illustrates the burst
functions for n = 4, and the initial model parameters
can be expressed as the following vectors.

τ =

⎧⎪⎪⎨
⎪⎪⎩

12.5
37.5
62.5
87.5

⎫⎪⎪⎬
⎪⎪⎭
andσ =

⎧⎪⎪⎨
⎪⎪⎩

10
10
10
10

⎫⎪⎪⎬
⎪⎪⎭

Each SEMG signal was treated as a weighted sum of
the burst functions. Our model is described in Equation
(2).

Yj(t) = wj1 · b1(t) + · · · + wjn · bn(t) (2)

Table 1 Details of subjects

Subject Group Age Gender Disease/injury duration Clinical classification Walking speed (m/s)

1 AB 25 F - - 0.714

2 AB 22 F - - 0.667

3 AB 24 F - - 0.690

4 AB 32 M - - 0.769

5 PD 59 M 8 years HAY 2a 0.625

6 SCI 42 M 3 years T10, AIS Cb 0.143
a Hoehn & Yahr scale [16].
b American Spinal Injury Association (ASIA) Impairment Scale [17].
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Figure 1 Fuzzy models. Burst functions representing four
synergistic patterns of muscle activity during the gait cycle. A)
Arbitrary bursts covering the gait cycle. B) Optimized with respect
to overground walking data. C) Optimized with respect to treadmill
walking data.
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Where Yj(t) is the SEMG signal of the jth muscle and
wji is the weighting coefficient for the jth muscle and
the ith burst function. n is the number of burst func-
tions. The weighting coefficients were determined by fit-
ting the model to the recorded SEMG data using a
least-squares linear regression (Matlab function lscov).
Each muscle was therefore represented by a single n-ele-
ment vector of phase coefficients, resulting in a major
reduction in the information density of each signal.
Each SEMG signal could then be reconstructed using n
coefficients, creating a basic underlying pattern of mus-
cle activation during the gait cycle. These coefficients
can be interpreted as the pre-programmed muscle acti-
vation patterns that are dispensed by the CPG at the dif-
ferent phases of the gait cycle.
The model was optimized by finding the values of τi

and si that produced the best fit. A Nelder-Mead

simplex direct search algorithm (Matlab function fmin-
search) was used to find the burst function parameters
that maximized the goodness of fit, R2, between the
training data and the model output. We interpreted R2

as the proportion of the variance in the SEMG signals
that is explained by the model.

Results
Testing
A 4-burst model was fit to the treadmill walking data
and the overground walking data separately. Four bursts
were initially chosen, because models of the CPG typi-
cally consist of four synergies corresponding to a flexor
pattern and an extensor pattern on each side of the
body [8]. As show in Figure 1, the burst function profile
of these two models differed only slightly. Figure 2
shows the SEMG data from one of the validation trials
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Figure 2 SEMG data. Representative sample of SEMG signals for the 8 muscles observed in this study (AB subject 3 walking overground).
Ensemble average SEMG are shown as dashed lines. Grey area represents the mean plus and minus one standard deviation. The solid line is the
model output.
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of overground walking, and the model estimation of the
SEMG profiles for all eight muscles.
Following optimization of the model, a separate R2

was calculated for each subject under each walking con-
dition (OG and TM) using the validation data. Figure 3
summarizes the R2 values under each walking condition.
This represents to what extent the fuzzy model accounts
for the variance of all SEMG signals of the validation
walking trial.
Initially, the model was designed with n = 4 burst

functions. We tested for improved model performance
by increasing the number of bursts from four to five.
The best fit solution resulted in two functions with
identical parameters values for τ and s. In other words,
the 5-burst model degenerated to a 4-burst model. The
fifth burst was redundant and provided no improvement
to the fit of the model.

Discussion
The approach presented in this article represents a form
of fuzzy coding of muscle activation signals that can be
used to determine an underlying temporal pattern of
SEMG signals during gait. The basic structure of the
predictor model consists of four overlapping Gaussian
membership functions distributed across the gait cycle.
This model is based on general theory of CPG control
of locomotion. The Gaussian membership functions
representing pre-programmed bursts from the CPG
were optimized according to a set of training data and
then tested against a set of validation data. Four burst
functions were sufficient; when a fifth burst was added,
the model degenerated into a four-burst model during
optimization.
The model assumes that the CPG produces periodic

signals that are exactly the same for every stride. From

this we may conclude that all stride-to-stride variability
is due to mechanisms other than the CPG, i.e., anticipa-
tory adjustments from supraspinal centers, reflex
responses to external perturbations, etc. In normal gait,
the model was able to account for 70-84% of the var-
iance in SEMG throughout the gait cycle. Similar results
were found for the subject with Parkinson’s Disease.
The model was not able to account for the SEMG of
the SCI subject very well, likely due to a lack of coordi-
nation and high stride-to-stride variability.
Our statistical approach differs significantly from other

methods of interpreting SEMG data during gait. Many
SEMG analyses focus on the ensemble average of all
strides and do not take into account variability [3,21]. In
our analysis, the stride-to-stride variability was essential
in determining the goodness of fit of the fuzzy CPG
model. Ivanenko et al. [7] used factor analysis to find
common waveforms that were shared by multiple mus-
cles. These waveforms are analogous to the Gaussian
membership functions that we use in our model, how-
ever they are more complex in shape. They were able to
account for roughly 80% of the variance in normal gait,
which is similar to our results [22].
There are some special considerations when using the

analytical method described in this article. First, R2 is
very sensitive to measurement error, so great care
should be taken to ensure that electrodes are placed
correctly and securely. The calculation of R2 is based on
an estimation of variance using sums of squares. Con-
sidering the n-channel SEMG data as a set of points in
n-dimensional space the sums of squares are based on
Euclidean distances, whereby each dependent variable
has equal weight. This may not always be appropriate.
For example, if recordings are taken from the soleus
and both heads of gastrocnemius, the triceps surae will
contribute three times as much to the sum of squares as
other muscle groups that are recorded individually.

Conclusions
The analytical approach proposed in this article is a
novel way to interpret multichannel SEMG signals by
reducing the data into basic rhythmic patterns. This can
help us better understand the role of rhythmic patterns
in locomotor control, and provide insight about certain
forms of pathological gait.
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