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Abstract

Background: One of the current challenges in brain-machine interfacing is to characterize and decode upper limb
kinematics from brain signals, e.g. to control a prosthetic device. Recent research work states that it is possible to do
so based on low frequency EEG components. However, the validity of these results is still a matter of discussion. In this
paper, we assess the feasibility of decoding upper limb kinematics from EEG signals in center-out reaching tasks
during passive and active movements.

Methods: The decoding of arm movement was performed using a multidimensional linear regression. Passive
movements were analyzed using the same methodology to study the influence of proprioceptive sensory feedback in
the decoding. Finally, we evaluated the possible advantages of classifying reaching targets, instead of continuous
trajectories.

Results: The results showed that arm movement decoding was significantly above chance levels. The results also
indicated that EEG slow cortical potentials carry significant information to decode active center-out movements. The
classification of reached targets allowed obtaining the same conclusions with a very high accuracy. Additionally, the
low decoding performance obtained from passive movements suggests that discriminant modulations of
low-frequency neural activity are mainly related to the execution of movement while proprioceptive feedback is not
sufficient to decode upper limb kinematics.

Conclusions: This paper contributes to the assessment of feasibility of using linear regression methods to decode
upper limb kinematics from EEG signals. From our findings, it can be concluded that low frequency bands
concentrate most of the information extracted from upper limb kinematics decoding and that decoding performance
of active movements is above chance levels and mainly related to the activation of cortical motor areas. We also show
that the classification of reached targets from decoding approaches may be a more suitable real-time methodology
than a direct decoding of hand position.

Keywords: Brain-computer interface, Electroencephalography, Linear decoding, Upper limb movements, Center-out
reaching tasks
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Background
The possibility of bypassing neuromuscular control or,
in other words, activating an alternative pathway for the
brain to act upon the environment, has triggered a fasci-
nating field of research. Brain-Machine Interfaces (BMIs)
are devices aimed at translating subjects’ brain activity
into commands [1, 2]. They enable people with motor dis-
abilities to interact with their environment in a completely
newway [3]. They have been used alone or in combination
with other systems, such as Functional Electrical Stimu-
lation (FES), prosthetic arms or hand orthoses, to restore
grasping functionalities in subjects with Spinal Cord
Injury (SCI), where the loss of motor function is perma-
nent [4]. Moreover, BMIs have become a promising tool in
rehabilitation procedures where patients have movement
limitations or difficulties to control their limb function
[5–7]. Particularly, motor impairment after stroke is one
of the main causes of permanent disability. This section
of the population usually suffers from upper limb move-
ment limitations and the recovery of the arm movement
is often variable and incomplete [8]. This recovery is cru-
cial in order to perform activities of the daily life, so the
use of BMIs during the rehabilitation may be a key factor
of improvement [3].
Currently, one of the main challenges of BMIs is to char-

acterize and decode upper limb kinematics from brain
signals. Up to now, decoding approaches were mainly cen-
tered on intracortical recordings, usually performed in
non-human primates, where arrays of microelectrodes are
implanted directly in the motor cortex. In some studies,
the motor cortical activity of monkeys was used to per-
form reaching and grasping activities with a robot arm [9],
or to perform three dimensional movements that included
force grasping for self-feeding using a mechanical device
[10]. Invasive approaches have been successfully used in
people with motor disabilities to perform reaching and
grasping tasks [11, 12]. Less invasive procedures such
as electrocorticography (ECoG) have also been used to
decode two-dimensional arm trajectories [13] and differ-
ent types of grasping [14]. Despite their potential, invasive
approaches require surgery, which limits their use. In this
respect, non-invasive methods can compensate the draw-
backs of intracortical recordings. Some studies have used
magnetoencephalographic (MEG) signals to predict hand
movements to perform 2D trajectories [15]. MEG sig-
nals have also been used in combination with electroen-
cephalographic (EEG) signals to discriminate between
different center-out movements [16]. However, the low
signal-to-noise ratio of EEG signals makes it difficult to
decode hand movement trajectory.
Recent works suggest that it is possible to decode

hand or arm kinematics (position and velocity) from slow
cortical potentials (SCPs), i.e., EEG signals oscillations
below 2 Hz [17–20]. To that end, multidimensional linear

regression models are applied to the data. However, it
has been pointed out that this methodology has the risk
of overestimating the decoding performance due to the
mathematical properties of linear regression between sig-
nals in the same frequency range (in this case, slow arm
movements and slow cortical potentials) [21]. Further-
more, this later study states that decoding accuracies
achieved with SCPs are not above chance level. A pre-
vious work also proposed the use of multidimensional
linear regression as the decoding method to control a
cursor [22]. It reports that it is possible to accomplish a
two-dimensional control of this cursor with performance
levels comparable to those of invasive BMI systems. In
their study, the decoding models had to be recalibrated to
include a scaling factor due to the fact that the correlation
metric is invariant to scale. Again, the way of how these
results are assessed is still a matter of discussion [22–24],
so it is necessary to gather further evidence of the real
possibilities of decoding arm trajectories from EEG SCPs.
In this regard, some studies have suggested the introduc-
tion of electromyographic information (EMG) into this
decoding procedure [25] or even the use of muscle syn-
ergies activation coefficients extracted from this EMG
information [26].
In this paper, we compare several results obtained by

applying linear regression techniques to decode upper
limb kinematics from EEG signals using a center-out
reaching approach. We analyze arm movements using
the same decoding approach proposed in previous stud-
ies [17]. The results show that arm movement decoding
was significantly above chance levels. Moreover, we have
analyzed passive arm movements using the same proto-
col to study if the neural information for decoding was
related to the execution of movement, instead of being
linked to proprioceptive feedback. The final decoding per-
formance obtained from our study suggests that, although
neural correlates can be decoded when performing upper
limb movements, the decoding accuracy may not be high
enough to perform a real-time control of a cursor in a 2D
environment and the method is also subject to the scaling
limitations. As a consequence, we also evaluated the clas-
sification of the reached targets which yielded a very high
classification accuracy. From these findings, it appears
that the a classification of reached targets from decoding
approaches may be a more suitable real-time method-
ology for rehabilitation purposes (where movements are
often repetitive) than a direct decoding of hand position.

Methods
Experimental tests
The experimental tests are based on a center-out protocol
in which subjects sat in front of a computer screen where
a cursor moves from a central position to several targets
equally distributed around it (see Fig. 1, top). EEG signals
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Fig. 1 Experimental Environment. Top, experimental setup. The subject performs the center-out movements in front of a screen showing the cursor
and target locations. The subject is asked to reach the highlighted targets with the planar manipulandum. Bottom, different configuration of possible
targets have been analyzed to compare the performance of target decoding. Configuration A covers all the targets shown. For configurations B and C,
4 targets are taken into account in the analysis. Finally, configurations D and E correspond to a discrimination between two opposite target directions

were recorded along with the position and velocity of the
cursor. Two different experiments were performed:

• Active center-out movement: subjects control the
cursor movement using a planar manipulandum (see
Fig. 1, top). The goal is to reach the target that is
randomly highlighted on the screen. The subject
must reach it and then return to the central position.
Targets are distributed around this central position in
a circumference with a radius of 10 cm. Each time a
target is reached or the cursor enters the central
position, a waiting period of 400 ms is introduced.
Each subject executed 10 runs in which 40 targets
were randomly highlighted (around 3 minutes per
run). All reaching positions were equally highlighted
(each of them 5 times per run). 5 able-bodied subjects
(B1-B5)(26.4 ± 3.1 year-old) performed the tests. 16
electrodes were recorded distributed over the central
and parietal cortex, where a higher activity related to
arm movements is expected. The equipment used
was the gUSBamp (g.Tec, GmbH, Austria) with a
sampling frequency of 1200 Hz. The reference was
placed on the right earlobe and ground was placed on
the AFz position.

• Passive center-out movement: subjects are asked to
passively grasp the planar manipulandum while the
researcher operates it. The experimental tests are the
same as with the active center-out movement.
Subjects carried out 5 runs in which 40 targets were
randomly highlighted (around 3 minutes per run). All
reaching positions were equally highlighted (each of
them 5 times per run). 5 able-bodied subjects
(C1-C5)(25.2 ± 2.6 year-old) performed the tests.
Only one subject performed the experiments for both
active (B1) and passive (C1) movements.

EEG human recordings used in this study have
been approved by the ethics committee of the Miguel
Hernández University of Elche, Spain. Written consent
according to the Helsinki declaration was obtained from
each subject.

Preprocessing
First, cursor kinematics were resampled tomatch EEG sig-
nals. EEG signals were visually inspected to reject blinks,
and frontal channels were discarded to diminish ocular
artifacts. For this reason, the same 16 electrodes were con-
sidered for the analysis of all conditions: FC5, FC1, FC2,
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FC6, C3, Cz, C4, CP5, CP1, CP2, CP6, P3, Pz, P4, PO3
and PO4. According to previous literature, neural corre-
lates of movement kinematics are mainly found in SCPs
above 0.1 Hz [27]. As a consequence, EEG signals were
band-pass filtered with a zero-phase 4th-order Butter-
worth filter between 0.1–2 Hz. For comparison purposes
they were also filtered between 8–12 Hz, 14–30 Hz and
0.1–40 Hz, to estimate the amount of information present
in each frequency band, similar to the study performed by
Antelis et al. [21]. Cursor kinematics (position and speed)
were also low-pass filtered with a zero-phase 4th-order
Butterworth filter below 2 Hz. Finally, for each run, EEG
data from each electrode i were standardized by subtract-
ing, for each time sample (t), the mean (V̄i) of the signal
and dividing the result by the standard deviation (SDVi) as
shown in (1).

EVi[t]= Vi[t]−V̄i
SDVi

(1)

Decoding
A multidimensional linear regression was applied to
decode kinematics from EEG signals,

x (t) = a +
N∑

n=1

L∑

k=0
bnkSn (t − k) (2)

where x[t] is the kinematics state (position and velocity) at
time t and Sn is the signal from channel n. L corresponds
to the number of lags and N to the number of channels.
The decoding parameters, a and b, were estimated using a
cross-fold validation for both the active movement condi-
tion (ten folds) and the passive movement condition (five
folds). The values for the parameters L and N are: L = 10
(around 80ms of signal) andN = 16 (central and occipital
electrodes uniformly distributed).
To simplify the process, the matrix form of (2) has been

used as follows:

X[4 × 1]= B[4 × NF] ∗S[NF × 1]+A[4 × 1] (3)

where X is the kinematic state [PxPyVxVy]′, B is the trans-
formation matrix, S is the features array, A is the scale
matrix and NF is the number of features used which
depends on the time lag L and the number of channels N
(NF = L ∗ N + 1).

Analysis
Movement profiles
We report the speed profiles (mm/second) for each sub-
ject and movement condition (active and passive move-
ments). To that end, the average speed for each point
in the trajectory (from the central position to the corre-
sponding target) has been computed for each reaching

movement, normalized in length and averaged between
all trials for each subject and condition. Speed was con-
sidered negative when the direction of movement was
negative regarding the considered axis. For instance, this
means that when the subject was approaching hori-
zontally to a target on his/her left, his/her speed was
computed as a negative value, and when he/she was mov-
ing to the opposite direction, speed was computed as a
positive value.

Continuous decoding
For the continuous decoding, the matrices B and A in
(3) were obtained using a cross-fold validation (10 folds).
For each fold, the training data was used to compute the
decoding matrices that are then applied to the test data to
obtain the decoded kinematics.We computed the Pearson
correlation coefficient between the real and decoded kine-
matics for each testing fold and reported the performance
in terms of average correlation. The results have been
compared for different ranges of frequencies (0.1–2 Hz,
8–12 Hz, 14–30 Hz and 0.1–40 Hz). Additionally, shuffled
and random data have been used as input to assess if the
decoding accuracy was above chance levels. Shuffled data
was obtained by randomly mixing target labels of real data
and the associated kinematics to keep the temporal struc-
ture of the EEG signals in a way equivalent to [21, 28, 29].
Random data was generated as a standard uniform noise
with the same size of real input data. Both shuffled and
random data were filtered and standardized in the same
way as the actual experimental data. Random and shuf-
fled data decoding coefficients were computed 1000 times
to avoid chance effects due to the stochastic nature of the
process.

Classification of reached targets
We evaluate the possibility of classifying reaching move-
ments towards a particular target by analyzing EEG sig-
nals in the frequency range (0.1–2 Hz). Only SCPs have
been taken into account as the continuous decoding
shows non-significant results in other bands (see section
Results - Continuous Decoding). To that end, EEG sig-
nals and kinematics were manually segmented into blocks
for each center-out movement and labeled with the cor-
responding target. First, the trajectory of the cursor was
decoded for each movement block (from the vectors of
decoded X and Y positions) and, then, a straight line was
fitted using the obtained trajectory and compared to the
angular position to each target to infer the movement
direction. This classification was performed using a cross-
fold validation for 5 different target configurations (see
Fig. 1, bottom). The movement workspace was divided
into sectors depending on the configuration of targets.
For example, for two targets, the workspace was divided
into two sectors and the estimated trajectory orientation
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was assigned to the nearest target. As before, shuffled and
random data were used to estimate chance levels.
We also assessed the performance through the estima-

tion of the classification confusion matrices and the infor-
mation transfer rates. Firstly, confusion matrices have
been computed for each configuration and subject to
show the extent of misclassification. Secondly, Informa-
tion Transfer Rates (ITRs) have been computed for the
average classification rates obtained by each subject for
the different target configurations according to the follow-
ing equation (for further information see [30]):

ITR = log2N + Plog2P + (1 − P)log2
1 − P
N − 1

(4)

where N is the number of classified targets and P is the
accuracy of the classification
ITR values have been plotted over the ITR curves

obtained for 2, 4 and 8 classified targets to better show the
performance of each subject.

Results
Movement profiles
Figure 2a reports the average speed of the reaching move-
ments for the active and passive conditions. It shows com-
parable velocities for both conditions (averaged: 46.49 ±
9.73 mm/s for the active movements and 42.93 ± 6.44
mm/s for the passive movements). For the passive exper-
iments, the same researcher performed the movements

Fig. 2Movement Profiles. Average speed (mm/s) profiles for active and passive movements (a). Average time courses (mean±STD) of the hand X
and Y speed (mm/s) for active (b-c, Subject B1) and passive (d-e, Subject C1) movements. Speed sign is related to the direction of movement
regarding the axis
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for all subjects, which may explain the reduced variabil-
ity with respect to the active condition where subjects
performed the movements by themselves.
Figure 2b–e shows the average time courses of the X

and Y hand speed for an exemplary subject (B1, active
movements, and C1, passive movements) and direction
(bottom-right target) showing the expected initial acceler-
ation and final deceleration for both conditions.

Continuous decoding
The Pearson correlation coefficient has been obtained
after computing a cross-fold validation between all runs
for each subject. Figure 3 shows the Pearson correlation
coefficients obtained while performing center-out move-
ments when decoding signals in the frequency band 0.1–2
Hz. The results show high decoding correlations (Fig. 3).
Particularly, subjects B3 and B5 obtain the best decoding
accuracy with some components reaching a value of 0.5.
Figure 4 shows an example of 30 s of kinematic recon-

struction (2D position and velocity) for one of the subjects
performing active movements. In this particular example,
decoding coefficients above 0.5 show an accurate recon-
struction of the performed trajectories (X Position and
Y Position). When the decoding correlation decreases (X
Velocity, Y Velocity), the reconstructed signal preserves its
tendency but reduces its accuracy.
Previous studies have claimed that upper limb kine-

matics are better reconstructed from low frequency EEG
signals [17, 19, 21]. We tested this hypothesis by analyz-
ing the decoding performance using the signal in four

Fig. 3 Continuous decoding performance. Decoding performance of
center-out trajectories for the frequency band 0.1–2 Hz. The boxplot
represents the Pearson correlation coefficient obtained after
computing a cross-fold validation between all runs (n = 10). On each
box, the central mark is the median, the edges of the box are the 25th
and 75th percentiles, the whiskers extend to the most extreme
datapoints which are considered not outliers, and the outliers are
plotted individually. For each subject (1–5) the graph shows results
for position (Px and Py) and velocity (Vx and Vy)

different frequency bands: 0.1–2 Hz (SCPs), 8–12 Hz
(alpha band), 14–30Hz (beta band) and 0.1–40Hz (Fig. 5).
In agreement with these studies, our analysis showed that
decoding correlations of higher frequency bands were
close to zero and that the low frequency band (0.1–2
Hz) yielded the best decoding accuracies (Fig. 5). Decod-
ing performance using SCPs was slightly but not signif-
icantly above results obtained with a broader frequency
band (0.1–40 Hz) that includes the irrelevant higher
frequencies.
To estimate the significance of our findings, the decod-

ing approach was tested with random and shuffled data
and compared with the results for active movement
(Fig. 6). Activemovement was decoded significantly above
chance level for all kinematic components (p < 0.001,
Wilcoxon Sum-Rank Test)(Fig. 6). Also, the decoding per-
formance of error and shuffle conditions was not sig-
nificant (p > 0.05, Wilcoxon Signed-Rank Test). These
findings differ from a previous study [21], where the corre-
lations and normalized errors of the results of real models
were not statistically different from shuffled and random
models, but are similar to what is obtained in several
works related to the topic [20, 28, 29]. This discrepancy
could be due to the nature of the experimental data or
the way EEG data were processed. However, the results
obtained in most of the previous works suggest that
decoding performance is significant when linear decoders
are applied to slow cortical potentials.

Classification of reached targets
Figure 7 shows the success rate of targets correctly clas-
sified after computing a cross-fold validation between all
runs recorded for center-out movements. For each subject
the graph shows the five different target configurations
proposed (Fig. 1, bottom). The results yield a high perfor-
mance for all the configurations (averaged: 29.0%±11.8%
for configuration A, 51.3%±19.2% for configuration B,
52.3%±20.5% for configuration C, 79.6%±15.9% for con-
figuration D and 75.6%±17.0% for configuration E). As
expected, the performance of each subject in the decod-
ing is consistent with the results in the continuous case.
Unsurprisingly, subjects B3 and B5, who obtained the best
decoding accuracies in the continuous approach, also had
the highest success rates. The success rate obtained in
the classification of two targets (configurations D and E)
is particularly remarkable (subject B3, 93.0%±6.7% and
subject B5, 89.0%±11.0% for configuration D; and sub-
ject B3, 88.0%±11.3% and subject B5, 87.0%±9.4% for
configuration E).
Theoretically, chance level for configuration A (8 tar-

gets) should be 12.5%, for configurations B and C
(4 targets) 25%, and for configurations D and E (2 tar-
gets) 50%. However, as the number of trials is small, these
levels may not be representative. As a consequence, the
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Fig. 4 Example of decoded kinematics. Continuous decoding of kinematics using the linear regression decoding method (Subject 3 - Active Center-
out Movement). The grey dotted line represents the real performed movement. The continuous black line represents the decoded kinematics (a X
Position, b Y Position, c X Velocity, d Y Velocity). The correlation coefficient (CC) obtained from the correlation of both signals is also shown

classification of targets was computed for shuffled data
and random data in the same way as for the continu-
ous decoding and compared with active movement results
(Fig. 8). The results show that the decoding of active
movements was significantly above chance level for all
configurations (p<0.001, Wilcoxon Sum-Rank Test).
Confusion matrices show that misclassification is

mainly focused on the targets closest to the classified tar-
get (Fig. 9), suggesting that the classification method is
quite robust. This is particularly visible in subjects B3 and
B5, who obtained the best decoding accuracies. Consis-
tently, when analyzing information transfer rates (ITRs),
subjects B3 and B5 obtain the highest ITRs (Fig. 10). Rates
are remarkably high (over 0.5 bits/trial) for configurations
B to E. For the remaining subjects and, in general, for
configuration A (8 targets), ITR is usually lower.

Decoding passive movement
The results obtained from the decoding of active center-
out movement were significantly above chance level. One
possible explanation for these results is that decoding is

driven by the influence of proprioceptive sensory feed-
back while reaching each of the targets instead of reflect-
ing neural correlates of motor intention. To study the
influence of afferent feedback in the decoding, we per-
formed a second experiment using passive movements.
This new data set was then analyzed the same way as
the previous data (decoding of low frequency components
0.1–2 Hz).
Figure 11a shows the Pearson correlation coefficient

obtained while performing passive center-out movements
(continuous approach) and Fig. 11b shows the success rate
of targets correctly classified (classification approach). In
both cases, performance was not above chance level (p >

0.05, Wilcoxon Sum-Rank Test), supporting the hypothe-
sis that EEG slow cortical potentials do carry significant
information related to the execution of active center-out
movements and proprioceptive feedback is not enough to
decode upper limb kinematics. The significance of neural
activity during active center-out movements is illustrated
in Fig. 12 showing that the decoding accuracy was always
significantly higher than for passive movements for all the
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Fig. 5 Frequency analysis. Comparison between different frequency bands: 0.1–2 Hz (low frequencies), 8–12 Hz (alpha band), 14–30 Hz (beta band)
and 0.1–40 Hz. The boxplot represents the Pearson correlation coefficient obtained after computing a cross-fold validation between all runs
(n = 10) for each subject and then averaged between subjects (n = 5). On each box, the central mark is the median, the edges of the box are the
25th and 75th percentiles, the whiskers extend to the most extreme datapoints which are considered not outliers, and the outliers are plotted
individually. Position (Px and Py) and velocity (Vx and Vy) are shown for different experimental data: center-out movements (a), shuffled data (b) and
random data (c)

kinematic components (X Position, Y Position, X Veloc-
ity and Y Velocity)(p < 0.001, Wilcoxon Sum-Rank Test,
Fig. 12a) and the success rate was significantly above the
levels of passive movements for all configurations (p <

0.001, Wilcoxon Sum-Rank Test, Fig. 12b).

Discussion
This paper contributes to the assessment of the use of lin-
ear regression methods to decode upper limb kinematics
from EEG signals. Previous work states that it is possible
to decode hand or arm kinematics (position and velocity)
from slow cortical potentials, i.e., EEG signals below 2 Hz
[17–20]. However, these results may have been misinter-
preted due to the inherent properties of linear regression

methods, particulary, when comparing EEG signals with
the same frequency range as the decoded kinematics [21].
To confirm or reject this conclusion, we have applied a
similar methodology to experimental data during the per-
formance of active and passive center-out movements in a
two dimensional space.
As previously reported [17, 21, 22], low frequency bands

(0.1-2 Hz) concentrate most of the information extracted
from upper limb kinematics decoding. According to [21],
as slow cortical potentials and the decoded kinematics are
sinusoid-like, the correlation of this kind of signals with
equal amplitudes and small time-shifts is higher at these
low frequencies [21]. This can lead to an overstimation
of the decoding performance not related to discriminant
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Fig. 6 Continuous decoding significance. Decoding performance of center-out trajectories comparing different experimental data: active
center-out movement, shuffled data and random data. The Pearson correlation coefficient (mean ± STD) is obtained after computing a cross-fold
validation between all runs (n = 10) and then averaged between subjects (n = 5). The graph shows results for position (Px and Py) and velocity (Vx
and Vy) and reflects differences of active center-out movement versus random and shuffled data. The stars represent significant differences with
respect to random and shuffle conditions

Fig. 7 Classification performance. Classification performance of center-out trajectories for active center-out movements. The barplot represents the
success rate (mean±STD) of targets correctly classified obtained after computing a cross-fold validation between all runs (n = 10). For each subject
(1-5) the graph shows results for all the different target configurations (as shown in Fig. 1)
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Fig. 8 Classification significance. Classification of center-out trajectories comparing different experimental data: center-out movement, shuffled data
and random data. The success rate of targets correctly classified (mean±STD) is obtained after computing a cross-fold validation between all runs
(n=10) and then averaged between subjects (n = 5). Each graph shows results for all the different target configurations: A-E (see Fig. 1) and reflects
differences of center-out movement versus random and shuffled data

modulations of neural activity. Our results and the exper-
imental protocols we have explored do shed light on the
nature of the SCPs if interpreted rigorously. On the one
hand, compared to the active movements, passive move-
ments differ in that the CNS does not need to compute the
detailed trajectory of the arm. However, neural correlates
of proprioceptive sensory feedback are still present. Nev-
ertheless, our results show that passivemovements cannot
be decoded from SCPs suggesting that there is little influ-
ence of proprioceptive feedback in the decoding. The
velocity profiles of the movements performed for both
conditions are similar suggesting this should not influ-
ence the final decoding performance. Shuffle and random
conditions show residual correlations which do not yield
appropiate trajectory reconstruction and could be again
a consequence of the correlation metrics. However, with
this small sample size, cautionmust be applied and further
evaluation should be performed using larger datasets.
The decoding accuracies are lower than those reported

in a recent work [22], where the authors state that it is pos-
sible to accomplish a two-dimensional real time control of
a cursor with performance levels comparable to those of
invasive BMI systems. In this case, decoding performance
is also subject to scaling limitations. For these reasons,
we have proposed a simplification of the method by com-
puting a classification of reached targets (discretization of

the continuous decoding). This kind of approach has been
also explored in several works [16, 31, 32]. In our case,
the results have shown high success rates for different
target configurations, presenting a clear consistency with
the previously obtained decoding performance for con-
tinuous movements. These results are quite encouraging
and suggest that an online application of this method-
ology may provide an accurate identification of upper
limb movement intention. By reducing the dimensional-
ity of the classification output, this classification approach
presents promising advantages in future neurorehabilita-
tion procedures, where EEG slow cortical potentials could
be exploited to classify arm movement directions [33]
and even detect movement onset [34]. This again corrob-
orates the trajectory-encoding features of the SCPs for
the active condition. Regarding rehabilitation assistance,
a classification of reached targets may be more suit-
able as rehabilitation therapy is often based on repetitive
movements [35].
In future studies it would be interesting to also assess

the role of high-frequency modulations, for instance, by
correlating the envelopes of those higher frequency bands
to the cursor signal. Recent works by Farina and col-
leagues have suggested that force generation is mainly
due to low-frequency neuromuscular inputs as the neural
drive acts as a linear filter that removes any component
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Fig. 9Misclassification rates. Confussion matrices showing classification performance of center-out trajectories for active center-out movements
taking into account neighboring classification rates. For each subject (B1–B5), confusion matrices are shown for all five different target configurations
(a–e). Values are color coded from green to blue (0 to 100%, respectively)
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Fig. 10 Information Transfer Rates (ITRs). ITRs were computed from average classification rates for all subjects (B1-B5) and number of targets. Base
curves represent the whole range of ITR for 2, 4 and 8 classes (targets)

over 10 Hz [36]. Contrary to this, most of the stud-
ies that deal with corticomuscular coherence show that
EEG signals are generally coupled with EMG at higher
rates (beta and gamma bands), which, apparently, has no
functional meaning [37, 38]. One interesting point would
be to assess if high-frequency oscillations are modulated
at a slower rate and, thus, carry information of func-
tional motor cortical inputs, which could explain those

findings in corticomuscular coherence. This behavior of
high-frequency cortical components could also explain
functional modulations of alpha (8-12 Hz) and beta (16-30
Hz) bands, widely used in classical BCI-based protocols,
such as motor imagery. Another interesting point would
be the evaluation of which bands provide more informa-
tion before the movement (planification) and during the
movement (execution).

Fig. 11 Passive movements decoding. Continuous decoding of center-out trajectories (a) and classification of reached targets (b) for passive
center-out movement. a represents the Pearson correlation coefficient (mean±STD) obtained after computing a cross-fold validation between all
runs (n = 5). On each box, the central mark is the median, the edges of the box are the 25th and 75th percentiles, the whiskers extend to the most
extreme datapoints which are considered not outliers, and the outliers are plotted individually. For each subject (1-5) the graph shows results for
position (Px and Py) and velocity (Vx and Vy). b represents the success rate of targets correctly classified (mean±STD) obtained after computing a
cross-fold validation between all runs (n = 5). For each subject (1-5) the graph shows results of five different target configurations (see Fig. 1)
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Fig. 12 Passive vs active decoding. Continuous decoding of center-out trajectories (a) and classification of reached targets (b) comparing active
center-out movement and passive center-out movement. For the continuous decoding, the Pearson correlation coefficient (mean±STD) is
obtained after computing a cross-fold validation between all runs (n = 10 for active and n = 5 por passive) and then averaged between subjects
(n = 5). The results for position (Px and Py) and velocity (Vx and Vy) are displayed. For the classification of reached targets, the success rate of targets
correctly classified (mean±STD) is obtained after computing a cross-fold validation between all runs (n = 10 for active and n = 5 por passive) and
then averaged between subjects (n = 5). The results of five different target configurations (see Fig. 1) are displayed

Conclusion
The main goal of this study was to shed light to the con-
troversy of current decoding procedures. For this reason,
we have replicated the same core methodologies of pre-
vious studies [17, 21, 22], i. e., multidimensional lineal
regression applied to center-out reaching tasks. We have
found significant decoding performance when applying
these linear decoders to slow cortical potentials (0.1-2
Hz). However, decoding performance is subject to scal-
ing limitations and there is also variability on the decoded
trajectory. For this reason, we have proposed a more
reliable way of decoding subject’s motor execution from
the continuous decoding of trajectories (classification of
reached targets) aiming at a future application in a rehabil-
itation context. Additional control experiments (passive
reaching tasks) have been assessed to show that proprio-
ceptive feedback has little influence in the decoding, sug-
gesting that discriminant modulations of low-frequency
neural activity are mainly related to the execution of
movement.
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