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Feature selection for elderly faller
classification based on wearable sensors
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Abstract

Background: Wearable sensors can be used to derive numerous gait pattern features for elderly fall risk and faller
classification; however, an appropriate feature set is required to avoid high computational costs and the inclusion
of irrelevant features. The objectives of this study were to identify and evaluate smaller feature sets for faller
classification from large feature sets derived from wearable accelerometer and pressure-sensing insole gait data.

Methods: A convenience sample of 100 older adults (75.5 ± 6.7 years; 76 non-fallers, 24 fallers based on 6 month
retrospective fall occurrence) walked 7.62 m while wearing pressure-sensing insoles and tri-axial accelerometers at
the head, pelvis, left and right shanks. Feature selection was performed using correlation-based feature selection
(CFS), fast correlation based filter (FCBF), and Relief-F algorithms. Faller classification was performed using multi-layer
perceptron neural network, naïve Bayesian, and support vector machine classifiers, with 75:25 single stratified
holdout and repeated random sampling.

Results: The best performing model was a support vector machine with 78% accuracy, 26% sensitivity, 95%
specificity, 0.36 F1 score, and 0.31 MCC and one posterior pelvis accelerometer input feature (left acceleration
standard deviation). The second best model achieved better sensitivity (44%) and used a support vector machine
with 74% accuracy, 83% specificity, 0.44 F1 score, and 0.29 MCC. This model had ten input features: maximum,
mean and standard deviation posterior acceleration; maximum, mean and standard deviation anterior acceleration;
mean superior acceleration; and three impulse features. The best multi-sensor model sensitivity (56%) was achieved
using posterior pelvis and both shank accelerometers and a naïve Bayesian classifier. The best single-sensor model
sensitivity (41%) was achieved using the posterior pelvis accelerometer and a naïve Bayesian classifier.

Conclusions: Feature selection provided models with smaller feature sets and improved faller classification
compared to faller classification without feature selection. CFS and FCBF provided the best feature subset (one
posterior pelvis accelerometer feature) for faller classification. However, better sensitivity was achieved by the
second best model based on a Relief-F feature subset with three pressure-sensing insole features and seven head
accelerometer features. Feature selection should be considered as an important step in faller classification using
wearable sensors.
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Background
Wearable sensors can be used to assess gait and predict
elderly fall risk, with varying degrees of success [1].
Numerous gait pattern features can be derived from a
wearable sensor; however, an appropriate feature set is
required to avoid high computational costs, “curse of
dimensionality”, and irrelevant features [2, 3]. Reducing
feature-space size reduces the risk of prediction-model
overfitting and may improve classification performance
[3, 4]. Even with these benefits, few fall - risk models in
the literature employ feature-space size reduction tech-
niques to improve classification performance.
Various techniques have been used to reduce the

feature-space size before faller classification for wearable-
sensor-based elderly fall risk applications. Factor analysis
uses a statistical technique to examine variability between
correlated features, and represents that variability as fewer
factor variables; for example, Riva et al. [5] used this
method to represent 24 features as seven factors. Principal
component analysis (PCA) is similar to factor analysis but
uses orthogonal transformation to represent features as
linearly uncorrelated variables called principal compo-
nents. PCA was used to represent 24 dynamic stability
features with three principal components representing
global gait pattern kinetics, global gait regularity, and
stride time [6]. Sequential forward floating search algo-
rithms start with an empty set (i.e., no features) and add
features, starting with the best feature, until classification
accuracy is maximized. Liu et al. [7] used this method to
reduce feature-space size from 123 features to as few as
three features. Forward wrapper feature selection tech-
niques can take many forms. The technique used by
Caby et al. [8] was similar to a sequential forward float-
ing search algorithm, starting with an empty set and
adding features to maximize classification performance.
This method reduced feature-space size from 67 fea-
tures to as few as one feature [8]. Only these few stud-
ies, which used wearable sensor-derived features for
faller classification, reduced feature-space size before
faller classification [5–8].
To reduce feature-space size, feature selection tech-

niques are preferable to projection techniques (e.g. PCA)
and compression techniques (e.g. information theory) be-
cause the original features are not altered [4]. Three main
feature selection methods can be considered: filter, wrap-
per, and embedded. Filter methods focus on intrinsic data
properties, with features scored on relevance [3, 4]. Wrap-
per methods are developed for a specific classification

method and different feature subsets are tested with the
chosen classifier to optimize performance [3, 4]. Wrapper
methods can achieve better performance than filter
methods but are computationally expensive and can result
in overfitting [4]. Embedded methods are similar to wrap-
per methods but feature selection is built into the classifier
construction, which reduces computational complexity
compared to wrapper methods [4]. Caby et al. [8] used a
wrapper feature selection method to reduce a wearable-
sensor-based feature space before using an intelligent clas-
sifier for fall risk prediction. While the wrapper approach
is valid, this method ties feature selection to a specific
classifier, precluding feature subset evaluation across
different classifiers. A classifier-independent, filter ap-
proach is preferred because it permits direct comparisons
between different classifiers and different feature sets,
including a full feature set.
The objectives of this study were to identify smaller

feature sets for faller classification from large feature sets
derived from wearable accelerometer and pressure-
sensing insole gait data, and to evaluate faller classifica-
tion performance of these feature sets with different
classifiers. This study also evaluated whether feature se-
lection would improve faller classification performance
compared to classification without feature selection.
Successful application of feature selection techniques to
faller classification would improve the clinical applicabil-
ity of fall risk prediction models by reducing assessment
and analysis complexity.

Methods
Participants
A convenience sample of 100 people, 65 years or older,
were recruited from the community (Table 1). Participants
were identified as fallers if they reported at least one fall
during the six months prior to study participation. Poten-
tial participants were excluded if they had a cognitive
disorder (self-reported) or were unable to walk for six
minutes without an assistive device. The University of
Waterloo Research Ethics Committee approved the study
and all participants gave informed written consent.

Protocol
Participants reported six month retrospective fall occur-
rence, age, and sex. Body weight and height were
measured.
Pressure-sensing insoles (F-Scan 3000E, Tekscan, Boston,

MA) were equilibrated using multi-point calibration (137.9,

Table 1 Participant characteristics (mean ± standard deviation)

Participants (#) Age (years) Height (cm) Weight (kg) 6MWT (m)

Fallers 13 male, 11 female 76.3 ± 7.0 165.2 ± 10.3 71.9 ± 14.3 446.6 ± 101.4

Non Fallers 31 male, 45 female 75.2 ± 6.6 165.1 ± 9.9 73.1 ± 13.4 455.8 ± 102.4
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275.8, 413.7 kPa), fit to the shoes, and calibrated. Acceler-
ometers (X16-1C, Gulf Coast Data Concepts, Waveland,
MS) were attached to the posterior head with a band, pos-
terior pelvis with a belt, and lateral shank, just above the
ankle, with a band. Plantar pressure data were collected at
120 Hz and accelerometer data at 50 Hz. Completion time
and wearable sensor gait data were collected while partici-
pants completed a 7.62 m (25 ft) walk.

Wearable sensor features
Plantar-pressure derived features were:

� Center of Pressure (CoP) path: Number, length, and
duration of posterior deviations per stance. Number,
lateral length, medial length, and duration of medial-
lateral (ML) deviations. Anterior-posterior (AP) and
ML coefficients of variation (CoV) for the stance
phase CoP path.

� Temporal: Cadence, stride time, stance time, swing
time, percent stance time, percent double support
time, stride time symmetry index [9] between the
left and right limbs, and CoV for stride time, stance
time, and swing time.

� Impulse: Impulse variables were determined from
the total force-time curve and normalized by body
mass (Ns/kg) for: I1 (foot-strike to first peak), I2
(first peak to minimum), I3 (minimum to second
peak), I4 (second peak to foot-off ), I5 (foot-strike to
minimum), I6 (minimum to foot-off ), and I7 (foot-
strike to foot-off ).

All variables were calculated for each stride for the left
and right limbs before calculating means and standard

deviations across both limbs (i.e. left and right limb
combined).
For each accelerometer location, the accelerometer

derived features were:

� Descriptive statistics: Maximum, mean, and standard
deviation of acceleration for the superior, inferior,
anterior, posterior, right, and left axes.

� Temporal: Cadence and stride time.
� Fast Fourier Transform (FFT): Percentage of

acceleration frequencies in the first quartile of an
FFT frequency plot for vertical, AP, and ML axes.

� Ratio of even to odd harmonics (REOH): Proportion
of the acceleration signal in phase with stride
frequency. The harmonic ratio was calculated for
vertical, AP, and ML axes as in [10].

� Maximum Lyapunov exponent (MLE): Average rate
of expansion or contraction of the original trajectory
in response to perturbations [11, 12], calculated for
vertical, AP, and ML accelerations, as in [13].

For descriptive statistics and MLE parameters, acceler-
ation data were filtered using a fifth order, low pass
Butterworth filter with a 12.5 Hz cut-off frequency.
Unfiltered acceleration data were used to calculate the
FFT quartile and REOH.

Feature selection
Filter feature selection methods were selected because fea-
ture subsets from each filter method could be evaluated
using three different classifiers, which would not be pos-
sible with wrapper or embedded methods. Furthermore,
filter methods reduce the computational cost and reduce
the risk of overfitting [4]. Three filter feature selection

Fig. 1 Flowchart of feature selection and model development process
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methods were used: correlation-based feature selection
(CFS), fast correlation based filter (FCBF), and Relief-F.
CFS and FCBF both provide a minimum subset of features
whereas Relief-F provides a ranking of features.
CFS is a supervised method that identifies a subset of

features that are correlated with the class label (i.e. faller
or non-faller) and uncorrelated with other parameters,
and eliminates irrelevant and redundant features [3]. To
identify the feature subset, CFS computes the subset’s
heuristic measure of ‘merit’ based on pairwise correla-
tions [14, 15].
FCBF is a supervised method that identifies predomin-

ant features for classification and eliminates redundant
features. This method avoids pairwise correlation analysis
between all relevant features, reducing computational
complexity compared to CFS [16]. The feature subset is
selected based on the symmetrical uncertainty [14].
Relief-F is a supervised method that weights the param-

eter’s relative strength, and eliminates less relevant fea-
tures without eliminating redundant features [2, 14].
Relief-F is useful when evaluating parameters with inter-
dependencies and noisy data sets [15]. The number of
features to include in the Relief-F feature subset was
determined using the runExperiment algorithm within the
Arizona State University Feature Selection Repository
(ASUFSR) [14], which evaluates increasingly larger feature
subsets, by five-feature increments, until the entire feature
set is included in the subset. For the runExperiment algo-
rithm, naïve Bayes (NB) and Support Vector Machine
(SVM) were used as classifiers and a 75:25 stratified hold-
out was used for training and testing data division, which
was also used for model development. The smallest fea-
ture subset that did not decrease overall accuracy, or at
worst resulted in no more than a 5% decrease in accuracy
from the full-feature set, was selected.
Feature selection was performed (Fig. 1) on the entire

dataset for all features for each of the 31 sensor combi-
nations (Table 2) in Matlab R2010a using ASUFSR algo-
rithms [14]. Because the entire dataset was used for
feature selection, feature selection was not performed
for each iteration of the prediction stability analysis.
Identical feature subsets were used as inputs for both
the single stratified holdout (model development) and all
10,000 randomized holdouts (prediction stability). Pelvis
accelerometer data were missing for two non-fallers and
left shank accelerometer data were missing for one non-
faller due to sensor power failure.

Model development
Following feature selection, three classifier models were
used to assess each feature set: multi-layer perceptron
neural network (NN) with 5 to 25 nodes in a single hid-
den layer, linear and quadratic discriminant NB, and
SVM with one to seven degree polynomial kernels [17].

Table 2 Sensor combinations and total number of input
parameters (from [17], with permission from the publisher)

Sensor
Combination

Sensor Description Total
parameters

I pressure insole 30

H accelerometer (head) 29

P accelerometer (pelvis) 29

LS accelerometer (left shank) 29

RS accelerometer (right shank) 29

H-P accelerometer (head, pelvis) 58

H-LS accelerometer (head, left shank) 58

H-RS accelerometer (head, right shank) 58

P-LS accelerometer (pelvis, left shank) 58

P-RS accelerometer (pelvis, right shank) 58

LS-RS accelerometer (left shank, right shank) 58

H-P-LS accelerometer (head, pelvis, left shank) 87

H-P-RS accelerometer (head, pelvis, right shank) 87

H-LS-RS accelerometer (head, left shank, right
shank)

87

P-LS-RS accelerometer (pelvis, left shank, right
shank)

87

H-P-LS-RS accelerometer (head, pelvis, left shank,
right shank)

116

I-H pressure insole; accelerometer (head) 59

I-P pressure insole; accelerometer (pelvis) 59

I-LS pressure insole; accelerometer (left shank) 59

I-RS pressure insole; accelerometer (right shank) 59

I-H-P pressure insole; accelerometer (head, pelvis) 88

I-H-LS pressure insole; accelerometer (head, left
shank)

88

I-H-RS pressure insole; accelerometer (head, right
shank)

88

I-P-LS pressure insole; accelerometer (pelvis, left
shank)

88

I-P-RS pressure insole; accelerometer (pelvis, right
shank)

88

I-LS-RS pressure insole; accelerometer (left shank,
right shank)

88

I-H-P-LS pressure insole; accelerometer (head, pelvis,
left shank)

117

I-H-P-RS pressure insole; accelerometer (head, pelvis,
right shank)

117

I-H-LS-RS pressure insole; accelerometer (head, left
shank, right shank)

117

I-P-LS-RS pressure insole; accelerometer (pelvis, left
shank, right shank)

117

I-H-P-LS-RS pressure insole; accelerometer (head, pelvis,
left shank, right shank)

146

I pressure-sensing insole measures, H head accelerometer measures, P pelvis
accelerometer measures, LS left shank accelerometer measures, RS right shank
accelerometer measures
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The classification criterion was retrospective fall occur-
rence. For all models, 75% of participant data (18 fallers,
57 non-fallers) were used for training and 25% were used
for testing (6 fallers, 19 non-fallers). Faller classification
using NN, NB, and SVM without feature selection was
performed previously [17] using identical train:test
groupings and input data, and the top ten models from
that previous analysis were used in the current study to
evaluate the effect of feature selection on classification
performance.
Model evaluation parameters included accuracy, speci-

ficity, sensitivity, positive predictive value (PPV), nega-
tive predictive value (NPV) [18], F1 score (harmonic
mean of precision and sensitivity) [19], and Matthew’s
Correlation Coefficient (MCC) [20]. A ranking method
similar to the approach used in Kendell et al., 2012 [21]
was employed to determine the best models. Each model
evaluation parameter was ranked from best (1) to worst
(n), and ranks for all model evaluation parameters were
summed to identify the overall best model (lowest
summed rank) (Fig. 2). Confidence intervals (CI) for
model accuracy were computed using the Wilson
interval (Equation 1), which is an appropriate bino-
mial proportion interval estimation method for small
sample sizes [22].

CI ¼
pþ z2

2N � z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p
N − p2

N þ z2
4N2

q

1þ z2
N

ð1Þ

where p is the model accuracy, N is the number of
participants in the test dataset, and z is 1.96 for a 95%
confidence interval.

Prediction stability
The prediction accuracy of the top twenty feature
selection-based models and top ten all variable-based
models were further examined by training 10,000 models
with randomized 75:25 train:test stratified holdouts
(repeated random sampling, RRS). Model evaluation pa-
rameters were calculated and averaged across all 10,000
models and then ranking was performed, as described
previously.

Results
Nine feature subsets (eight Relief-F, one CFS, one FCBF:
Table 3) were inputs for the twenty best models (Table 4).
CFS and FCBF analyses outputted the same feature set
(Feature Subset 9). For the single 75:25 train:test stratified
holdout, the top fifteen models used Relief-F feature selec-
tion, with the top two models (Feature Subset 1, SVM-6
and SVM-7) including three insole measures and seven
head accelerometer measures (Table 3). The top model
(Feature Subset 1, SVM-7) achieved the highest accuracy
(96%), sensitivity (100%), NPV (100%), F1 score (0.92) and
MCC (0.90) and a specificity of 95%, and PPV of 86%.
Two single-sensor-based models ranked 11th (Feature
Subset 5 with head accelerometer sensor, SVM-4; and Fea-
ture Subset 6 with pelvis accelerometer sensor, SVM-4),
achieving an accuracy of 88%, sensitivity 67%, specificity
95%, PPV 80%, NPV 90%, F1 score 0.73, and MCC 0.66.
The twenty best models using feature selection were com-
pared to the ten best models generated using all combina-
tions of variables (AV) but no feature selection [17]
(Table 4). The top fifteen models that used feature selec-
tion outperformed the best models that did not use
feature selection.

Relief-F Models
15 Best NB Models

15 Best SVM Models
15 Best NN Models

Determined using process as in [17]

FCBF Models
15 Best NB Models

15 Best SVM Models
15 Best NN Models

Determined using process as in [17]

CFS Models
15 Best NB Models

15 Best SVM Models
15 Best NN Models

Determined using process as in [17]

Ranking Analysis:
Best 15 Models Selected

Model Comparison
15 CFS Models

15 FCBF Models
15 Relief-F Models

Ranking 
Analysis

Best 20 FS Models by Ranking

Ranking Analysis:
Best 15 Models Selected

Ranking Analysis:
Best 15 Models Selected

Best 10 AV Models from [17]

Model Comparison
20 FS Models
10 AV Models

Ranking 
Analysis

Best Models by Ranking
(Table 4)

Fig. 2 Flowchart of feature selection-based model development and ranking analysis. AV: All variable, FS: Feature selection, NB: Naïve Bayesian,
NN: Neural network, SVM: Support vector machine.
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The RRS model performance (Table 5) was lower than
results from the single 75:25 train:test stratified holdout
(Table 4) for all of the thirty evaluated models. The single
75:25 train:test stratified holdout used in the initial ana-
lysis resulted in model performance at the upper end of
model performances observed over 10,000 randomiza-
tions. A histogram of RRS model accuracies is shown in
Fig. 3, for Feature Subset 1, SVM-7, where the single hold-
out accuracy of 96% was one of the best accuracies. Simi-
lar to the single holdout results (Table 4), the top sixteen
RRS models that used feature selection outperformed the
best models that did not use feature selection (AV
models). The top model (Feature Subset 1, SVM-7) from

the single 75:25 train:test stratified holdout ranked second
best after RRS, with 74% accuracy, 44% sensitivity, 83%
specificity, 47% PPV, 83% NPV, 0.44 F1 score, and 0.29
MCC. The top RRS model (Feature Subset 9, SVM-2)
achieved 78% accuracy, 26% sensitivity, 95% specificity,
65% PPV, 80% NPV, 0.36 F1 score, and 0.31 MCC.

Discussion
The three feature selection techniques, CFS, FCBF, and
Relief-F, successfully reduced the feature set from up to
146 features, derived from pressure-sensing insoles and
four wearable accelerometers, to a viable set containing as
few as one feature. Models derived using the reduced
feature sets outperformed models derived using the full
feature set when classifying fall risk, demonstrating the
benefits of feature selection methods when creating faller
classification models.
Relief-F feature selection performed well for the single

75:25 stratified holdout and RRS. A feature subset out-
putted by both CFS and FCBF feature selection tech-
niques was used in the top RRS model. In other
classification studies, CFS and FCBF provided the best
feature subsets [16, 23]. However, these studies were not
classifying elderly fall risk and instead classified human
activities such as sitting, standing, and stair walking [23]
or benchmark data sets that include healthcare diagno-
ses and census data [16]. Elderly fall risk is a complex
classification problem where differences between fallers
and non-fallers are often subtle and varied [24]. Relief-F
feature selection has recognized strengths when dealing
with noisy data sets and parameters with interdependen-
cies [15], which may make this method suitable for
elderly faller classification, in addition to CFS and FCBF
feature selection techniques.
The best model (Feature Subset 1, SVM-7) for the sin-

gle 75:25 stratified holdout and second best RRS model
contained ten features: 3 pressure-sensing insole features
and seven head accelerometer features. For the single
75:25 stratified holdout, this model achieved 96% accur-
acy, 0.92 F1 score, and 0.90 MCC. With 100% sensitivity,
this model would be an excellent screening tool because
all fallers would be identified. “Feature Subset 1, SVM-7”
results were comparable to the best faller classification
results in the literature: Caby et al. [8] with 100%
accuracy and Giansanti et al. [25] with 97% accuracy.
However, RRS model performance was lower, with an
accuracy of 74%, F1 score of 0.44, and MCC of 0.29.
This lower model performance is likely more indicative
of future model performance given the large number of
models trained with different data splits. With RRS
analysis, this wearable sensor approach did not achieve
80% accuracy, which is often considered a threshold for
good classification.

Table 3 Feature-selection subsets used as inputs for faller
classification models

Method Feature-Selection Subset Output Subset #

Relief-F Insoles: Impulse I3, I6, and I7 Head: Maximum,
mean, and standard deviation posterior
acceleration Maximum, mean, and standard
deviation anterior acceleration Mean
superior acceleration

1

Relief-F Pelvis: AP ratio of even to odd harmonics
Maximum, mean, and standard deviation
left acceleration Left Shank: ML Lyapunov
exponent

2

Relief-F Head: Vertical ratio of even to odd harmonics
Mean and standard deviation posterior
acceleration Pelvis: Maximum and standard
deviation left acceleration

3

Relief-F Insole: Impulse I1, I3, I4, I6, and I7 Pelvis: ML FFT
first quartile AP Lyapunov exponent Maximum,
mean, and standard deviation left acceleration

4

Relief-F Head: ML and vertical FFT first quartile Vertical
ratio of even to odd harmonics ML Lyapunov
exponent Maximum, mean, and standard
deviation right acceleration Maximum, mean,
and standard deviation posterior acceleration
Maximum, mean, and standard deviation
anterior acceleration Maximum and mean
superior acceleration

5

Relief-F Pelvis: ML FFT first quartile AP ratio of even to
odd harmonics AP, ML, and vertical Lyapunov
exponent Maximum, mean, and standard
deviation left acceleration Maximum and
standard deviation inferior acceleration

6

Relief-F Insole: Impulse I3, I6, and I7 Head: Maximum,
mean, and standard deviation posterior
acceleration Pelvis: ML FFT first quartile
AP Lyapunov exponent Maximum and
mean left acceleration

7

Relief-F Pelvis: ML Lyapunov exponent Maximum, mean,
and standard deviation left acceleration Left
Shank: ML Lyapunov exponent Maximum and
standard deviation left acceleration Maximum
and standard deviation superior acceleration
Right Shank: AP and vertical ratio of even to
odd harmonics AP, ML, and vertical Lyapunov
exponent Mean anterior acceleration

8

CFS/FCBF Pelvis: Standard deviation left acceleration 9

AP anterior-posterior, ML medial-lateral, FFT fast Fourier transform
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The pressure-sensing insole features in Feature Subset
1 were impulse measures I3, I6, and I7. I3 and I6 meas-
ure impulse during the second half of stance phase and
I7 measures impulse during the entire stance phase. This
indicates the importance of force magnitude and timing
of force application during stance phase for faller identi-
fication, with fallers having lower I3, I6, and I7 impulse
compared to non-fallers [24]. The lower impulse could
indicate reduced force application due to muscle weak-
ness, which is a fall risk factor [26, 27]. The head fea-
tures were maximum, mean, and standard deviation for

posterior and anterior acceleration, and mean superior
acceleration. Head accelerations in the direction of pro-
gression was important for faller classification, with
fallers having greater posterior and lower anterior accel-
eration compared to non-fallers [24].
Based on RRS model performances, the best model

(Feature Subset 9, SVM-2) contained one feature from
the posterior pelvis accelerometer: left acceleration
standard deviation. This model achieved 78% accuracy,
26% sensitivity, 95% specificity, 65% PPV, 80% NPV,
0.36 F1 score, and 0.31 MCC. The posterior pelvis

Table 4 Best twenty models using feature selection and best ten all variable (AV) models using a single 75:25 train:test stratified
holdout. Feature subset numbers are defined in Table 3. For AV, feature set indicates the sensor and number of variables (in
parentheses) in the subset

Method Feature Set Modela Accuracyb (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) F1 MCC SR

Relief-F 1 SVM-7 96.0 [80.4: 99.3] 100.0 94.7 85.7 100.0 0.923 0.901 33

Relief-F 1 SVM-6 92.0 [75.0: 97.8] 83.3 94.7 83.3 94.7 0.833 0.781 43

Relief-F 2 NN-15 88.0 [70.0: 95.8] 50.0 100.0 100.0 86.4 0.667 0.657 44

Relief-F 3 NN-21 88.0 [70.0: 95.8] 50.0 100.0 100.0 86.4 0.667 0.657 44

Relief-F 3 NN-23 88.0 [70.0: 95.8] 50.0 100.0 100.0 86.4 0.667 0.657 44

Relief-F 3 NN-25 88.0 [70.0: 95.8] 50.0 100.0 100.0 86.4 0.667 0.657 44

Relief-F 1 NN-21 88.0 [70.0: 95.8] 50.0 100.0 100.0 86.4 0.667 0.657 44

Relief-F 4 NN-9 88.0 [70.0: 95.8] 50.0 100.0 100.0 86.4 0.667 0.657 44

Relief-F 4 NN-21 88.0 [70.0: 95.8] 50.0 100.0 100.0 86.4 0.667 0.657 44

Relief-F 1 SVM-5 92.0 [75.0: 97.8] 100.0 89.5 75.0 100.0 0.857 0.819 52

Relief-F 5 SVM-4 88.0 [70.0: 95.8] 66.7 94.7 80.0 90.0 0.727 0.656 65

Relief-F 6 SVM-4 88.0 [70.0: 95.8] 66.7 94.7 80.0 90.0 0.727 0.656 65

Relief-F 7 NN-21 88.0 [70.0: 95.8] 66.7 94.7 80.0 90.0 0.727 0.656 65

Relief-F 3 SVM-3 88.0 [70.0: 95.8] 83.3 89.5 71.4 94.4 0.769 0.693 68

Relief-F 8 NB-Q 84.0 [65.3: 93.6] 83.3 84.2 62.5 94.1 0.714 0.618 102

AV H(29) SVM-4 84.0 [65.3: 93.6] 33.3 100.0 100.0 82.6 0.500 0.525 104

AV I(30),H(29) SVM-4 84.0 [65.3: 93.6] 33.3 100.0 100.0 82.6 0.500 0.525 104

AV I(30),P(29), LS(29) SVM-2 84.0 [65.3: 93.6] 33.3 100.0 100.0 82.6 0.500 0.525 104

AV H(29),P(29), LS(29),RS(29) NN-5 84.0 [65.3: 93.6] 33.3 100.0 100.0 82.6 0.500 0.525 104

CFS/FCBF 9 NN-8 84.0 [65.3: 93.6] 33.3 100.0 100.0 82.6 0.500 0.525 104

CFS/FCBF 9 NN-10 84.0 [65.3: 93.6] 33.3 100.0 100.0 82.6 0.500 0.525 104

AV H(29) SVM-2 84.0 [65.3: 93.6] 66.7 89.5 66.7 89.5 0.667 0.561 107

AV I(30),P(29), LS(29),RS(29) NB-Q 80.0 [60.9: 91.1] 83.3 78.9 55.6 93.8 0.667 0.554 120

AV I(30),P(29) SVM-2 84.0 [65.3: 93.6] 50.0 94.7 75.0 85.7 0.600 0.521 121

AV I(30),H(29), P(29) SVM-3 84.0 [65.3: 93.6] 50.0 94.7 75.0 85.7 0.600 0.521 121

AV I(30),P(29) NN-9 84.0 [65.3: 93.6] 50.0 94.7 75.0 85.7 0.600 0.521 121

AV I(30),H(29), P(29),LS(29) NN-20 84.0 [65.3: 93.6] 50.0 94.7 75.0 85.7 0.600 0.521 121

CFS/FCBF 9 NB-Q 76.0 [56.6: 88.5] 66.7 78.9 50.0 88.2 0.571 0.418 157

CFS/FCBF 9 SVM-2 80.0 [60.9: 91.1] 33.3 94.7 66.7 81.8 0.444 0.369 176

CFS/FCBF 9 SVM-3 80.0 [60.9: 91.1] 33.3 94.7 66.7 81.8 0.444 0.369 176

AV all variables, I pressure-sensing insole measures, H head accelerometer measures, P pelvis accelerometer measures, LS left shank accelerometer measures, RS
right shank accelerometer measures, NN neural network, NB naïve Bayesian model, SVM support vector machine, SR summed rank
aNN-a, where a is the number of nodes in the hidden layer; SVM-b, where b is the polynomial degree; NB-Q is quadratic naïve Bayesian
bAccuracy [95% Confidence Interval]
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location allows unobtrusive and easy monitoring with a
belt attached sensor or accelerometer-equipped smart-
phone, and high user acceptance was found in a 20-day
case-study with a lower back sensor [28]. While this
single-sensor RRS model ranked higher than the best
multi-sensor RRS model, the single-sensor model had a
much lower sensitivity 26% compared to 44% with the
best multi-sensor model (Feature Subset 1, SVM-7).
Given that the goal of the model is to identify fallers,
the multi-sensor model with higher sensitivity (true
positive rate), may be preferable even though the

accuracy is lower (multi-sensor: 74%, single-sensor:
78%). The best RRS model sensitivity was 56% (Feature
Subset 8, NB-Q) with accuracy 68%, F1 score 0.46, and
MCC 0.26. The best single-sensor RRS model sensitiv-
ity was 41% (Feature Subset 9, posterior pelvis acceler-
ometer only, NB-Q) with accuracy 71%, F1 score 0.40,
and MCC 0.22.
Models with a feature subset performed better than

models with a complete feature set, demonstrating
the importance of including feature reduction when
defining models for faller classification. Feature

Table 5 RRS model results for the best twenty models using feature selection and best ten all variable (AV) models. Feature subset
numbers are defined in Table 3. For AV, feature set indicates the sensor and number of variables (in parentheses) in the subset.
Results are mean ± standard deviation

Method Feature Set Modela Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) F1 MCC SR

CFS/FCBF 9 SVM-2 77.9 ± 4.8 26.4 ± 15.9 95.1 ± 5.2 64.6 ± 32.6 79.7 ± 3.5 0.355 ± 0.182 0.305 ± 0.202 55

Relief-F 1 SVM-7 74.0 ± 8.1 44.3 ± 20.2 83.3 ± 9.1 47.3 ± 20.1 82.8 ± 5.5 0.441 ± 0.173 0.286 ± 0.218 58

CFS/FCBF 9 SVM-3 78.0 ± 4.9 25.5 ± 15.6 95.5 ± 5.1 65.4 ± 33.5 79.5 ± 3.5 0.348 ± 0.183 0.304 ± 0.205 59

Relief-F 3 NN-21 75.3 ± 6.9 32.0 ± 20.4 89.7 ± 8.6 50.6 ± 29.7 80.1 ± 4.8 0.367 ± 0.203 0.259 ± 0.225 61

CFS/FCBF 9 NN-8 76.9 ± 6.0 27.6 ± 18.1 93.4 ± 8.0 60.2 ± 34.5 79.7 ± 4.0 0.349 ± 0.193 0.287 ± 0.212 62

Relief-F 1 SVM-5 73.6 ± 8.0 45.3 ± 20.1 82.6 ± 9.0 46.6 ± 19.1 82.9 ± 5.5 0.443 ± 0.169 0.285 ± 0.214 62

CFS/FCBF 9 NN-10 76.7 ± 6.0 28.2 ± 18.6 92.9 ± 7.9 58.3 ± 33.8 79.7 ± 4.1 0.351 ± 0.197 0.282 ± 0.214 64

Relief-F 5 SVM-4 74.6 ± 7.5 37.5 ± 20.2 86.3 ± 8.5 47.8 ± 23.9 81.6 ± 5.1 0.401 ± 0.188 0.262 ± 0.226 64

Relief-F 1 NN-21 76.0 ± 6.9 31.5 ± 20.2 90.1 ± 8.4 49.7 ± 30.1 80.9 ± 4.6 0.362 ± 0.205 0.258 ± 0.227 66

Relief-F 3 NN-25 75.3 ± 6.8 31.9 ± 20.6 89.7 ± 8.6 50.7 ± 29.5 80.1 ± 4.9 0.365 ± 0.202 0.257 ± 0.223 67

Relief-F 1 SVM-6 74.0 ± 7.6 38.5 ± 20.1 85.2 ± 8.7 46.5 ± 22.2 81.7 ± 5.2 0.402 ± 0.180 0.255 ± 0.219 71

Relief-F 3 NN-23 75.2 ± 6.8 31.9 ± 20.5 89.6 ± 8.5 50.3 ± 29.3 80.1 ± 4.8 0.365 ± 0.202 0.255 ± 0.225 74

Relief-F 2 NN-15 75.2 ± 7.1 30.3 ± 19.7 90.2 ± 8.8 50.9 ± 31.1 79.7 ± 4.7 0.356 ± 0.204 0.252 ± 0.230 76

Relief-F 8 NB-Q 68.3 ± 8.9 55.7 ± 20.6 72.5 ± 11.9 41.5 ± 13.6 83.5 ± 6.6 0.461 ± 0.140 0.264 ± 0.192 84

CFS/FCBF 9 NB-Q 70.9 ± 7.9 41.3 ± 22.4 80.7 ± 9.8 41.5 ± 20.0 80.9 ± 6.0 0.397 ± 0.184 0.221 ± 0.222 100

Relief-F 3 SVM-3 70.9 ± 8.0 37.9 ± 20.0 81.9 ± 9.6 42.2 ± 20.5 80.1 ± 5.5 0.381 ± 0.173 0.208 ± 0.214 102

AV I(30),H(29), P(29) SVM-3 75.5 ± 5.6 21.2 ± 16.2 93.6 ± 5.7 49.9 ± 35.2 78.2 ± 3.7 0.282 ± 0.195 0.207 ± 0.225 108

Relief-F 4 NN-9 73.4 ± 7.2 27.7 ± 19.5 88.7 ± 9.1 44.0 ± 29.8 78.8 ± 4.6 0.318 ± 0.201 0.196 ± 0.226 119

Relief-F 6 SVM-4 71.9 ± 7.3 31.7 ± 18.7 85.3 ± 8.2 42.2 ± 23.3 79.1 ± 4.8 0.346 ± 0.180 0.188 ± 0.218 120

Relief-F 4 NN-21 73.7 ± 6.8 25.3 ± 19.2 89.8 ± 8.6 43.0 ± 31.2 78.5 ± 4.4 0.298 ± 0.203 0.185 ± 0.225 126

Relief-F 7 NN-21 72.9 ± 6.9 25.8 ± 18.8 88.6 ± 9.0 41.7 ± 29.4 78.3 ± 4.4 0.298 ± 0.194 0.173 ± 0.218 139

AV I(30),P(29), LS(29) SVM-2 70.2 ± 7.1 30.8 ± 18.5 83.3 ± 8.7 38.4 ± 21.4 78.5 ± 4.7 0.326 ± 0.170 0.153 ± 0.204 139

AV I(30),H(29) SVM-4 74.2 ± 5.0 12.3 ± 13.2 93.7 ± 5.2 33.1 ± 35.8 77.2 ± 2.9 0.170 ± 0.175 0.087 ± 0.214 151

AV H(29) SVM-4 73.3 ± 5.8 16.1 ± 14.6 91.4 ± 6.4 35.1 ± 32.3 77.6 ± 3.3 0.209 ± 0.178 0.101 ± 0.215 153

AV I(30),P(29) SVM-2 67.6 ± 7.2 32.1 ± 18.4 79.4 ± 9.0 33.9 ± 17.6 78.0 ± 4.8 0.318 ± 0.159 0.117 ± 0.193 154

AV I(30),P(29), LS(29),RS(29) NB-Q 60.8 ± 9.2 37.6 ± 20.5 68.6 ± 11.7 28.3 ± 14.1 76.9 ± 6.4 0.314 ± 0.152 0.057 ± 0.203 171

AV I(30),P(29) NN-9 68.0 ± 8.3 24.4 ± 18.6 82.5 ± 10.6 31.4 ± 24.2 76.7 ± 4.8 0.258 ± 0.179 0.077 ± 0.216 178

AV H(29) SVM-2 67.8 ± 7.2 24.7 ± 17.3 81.4 ± 8.8 29.1 ± 19.7 77.5 ± 4.3 0.256 ± 0.163 0.063 ± 0.196 181

AV I(30),H(29), P(29),LS(29) NN-20 67.2 ± 7.9 21.0 ± 16.9 82.6 ± 10.4 27.8 ± 22.7 75.9 ± 4.3 0.226 ± 0.167 0.041 ± 0.199 190

AV H(29),P(29), LS(29),RS(29) NN-5 65.3 ± 8.2 16.5 ± 15.2 81.5 ± 11.0 22.3 ± 22.2 74.5 ± 4.0 0.177 ± 0.153 −0.021 ± 0.190 201

AV all variables, I pressure-sensing insole measures, H head accelerometer measures, P pelvis accelerometer measures, LS left shank accelerometer measures, RS
right shank accelerometer measures, NN neural network, NB naïve Bayesian model, SVM support vector machine, SR summed rank
aNN-a, where a is the number of nodes in the hidden layer; SVM-b, where b is the polynomial degree; NB-Q is quadratic naïve Bayesian
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selection techniques removed irrelevant features and
improved classification accuracy. Improved classifica-
tion accuracy is one of the expected advantages of
feature selection [3, 4, 23].
A stratified holdout was performed and confidence

intervals calculated using the Wilson interval, as recom-
mended by Shany et al. [29] in their recent review paper.
Shany and colleagues recommended external validation as
the optimal method for validating model performance,
followed by holdout validation with confidence intervals
computed, and finally cross validation, although it is cur-
rently not theoretically known whether cross-validation
gives a better estimate of future model performance than
simple holdout validation [29]. From our study, the results
indicated that simple holdout validation may not accur-
ately estimate future model performance, particularly
when many models are investigated. Some accuracy confi-
dence intervals did not include the average RRS model
performance achieved across 10,000 stratified holdouts.
For example, the accuracy for Feature Subset 1, SVM-7
was 96% with a 95% confidence interval of 80% to 99% for
a single stratified holdout; however, the average RRS accur-
acy was 74%, which was 6% less than the lower confidence
limit. With this older-adult gait dataset, a wide variance in
model performance occurred with different train:test data
divisions (Fig. 3). Therefore, cross-validation may be
preferred over simple holdout validation for model devel-
opment because cross-validation reduces the influence of
the data partition on model performance. Furthermore,
randomization of a large number of holdouts, such as the
10,000 randomizations performed in this study, may be
preferred when evaluating model performance.
This study used retrospective fall occurrence as the cri-

terion for classifying faller and non-faller status. While this
is superior to using a clinical assessment based criterion

[1], future studies should use prospective fall occurrence
as the criterion for evaluating model classification per-
formance. Retrospective fall occurrence is limited by
inaccurate recall of falls and changes to gait patterns that
occur between the fall and assessment, either in an
attempt to increase stability or from fear of falling.
The use of the entire data set for feature selection

allowed an analysis of consistent feature subsets across
the different RRS data partitions and the comparison
and recommendation of specific feature subsets. Feature
selection on the entire data set may have overfit the fea-
ture subsets to the data set; therefore, the results should
be confirmed with a new population sample to verify
that the results are consistent for an older adult popula-
tion that was not used for the feature selection process.
While this study explored a large number of features (up
to 146 features), other possible features could be in-
cluded in future research. Additional accelerometer-
based features from the literature, that were relevant to
older adult fall risk, could be generated from phase-
dependent local dynamic stability [30, 31], discrete wave-
let transform [32, 33], sample entropy [5, 34], and power
spectral density [35, 36]. Furthermore, this study exam-
ined features derived from a 7.62 m (25 ft) walking trial.
This distance translates to clinical settings where the “25
ft Walk Test” [37, 38] could be performed; however, a
longer walking trial may be more reflective of everyday
walking for older adults. A study by Rispens et al. [34]
found differences between treadmill-walking-based gait
features and daily-life-walking-based gait features, with
daily-life-based gait being more variable, less symmet-
ric, and less stable compared to treadmill-based gait.
Similar differences could be found when comparing
lab-based, relatively short walking trials to daily-life
walking. The 7.62 m walking distance may have affected

Fig. 3 Histogram of RRS model accuracy for 10,000 randomizations of 75:25 train:test stratified holdouts for Feature Subset 1, SVM-7
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MLE reliability, since stable MLE measures occurred
after 35 strides in [39].

Conclusion
Feature selection provided models with smaller feature
sets and improved faller classification compared to faller
classification without feature selection. CFS and FCBF
provided the best feature subset for faller classification
with a model based on one posterior pelvis accelerom-
eter feature. However, better sensitivity was achieved by
the second best model based on a Relief-F feature subset
with three pressure-sensing insole features and seven
head accelerometer features. Feature selection should be
considered as an important step in faller classification
using wearable sensors.
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