Skip to main content
Figure 3 | Journal of NeuroEngineering and Rehabilitation

Figure 3

From: Locomotor adaptation to a powered ankle-foot orthosis depends on control method

Figure 3

Effects of the powered ankle-foot orthosis on soleus muscle activation, sagittal ankle angle, orthosis torque, and orthosis power under each control scheme. The effects of the powered ankle-foot orthosis on soleus muscle activation, sagittal ankle angle, orthosis torque, and orthosis power under each control scheme (footswitch control = thin black line, proportional myoelectrical control = thick gray line) are shown for the first and last minutes of powered walking for both days. Soleus muscle activation and ankle angle are plotted with passive (normal) data (light gray dotted line) for comparison. Orthosis torque and power are plotted with normal overground biological torque and power (light gray dashed line). Electromyography is normalized to the peak Baseline (passive) value. After two training sessions, subjects using footswitch control continued to walk with increased plantar flexion whereas subjects using proportional myoelectric control reached more normal ankle kinematics (as measured by ankle angle correlation common variance). The powered ankle-foot orthosis was able to supply approximately forty percent of the biological ankle torque. Data shown is from all 12 subjects (n = 6 for footswitch control, n = 6 for proportional myoelectric control, n = 12 for passive data). The average standard deviation over the stride cycle for each signal and each condition is reported in each plot in units consistent with that signal.

Back to article page