Skip to main content
Fig. 3 | Journal of NeuroEngineering and Rehabilitation

Fig. 3

From: Rehabilitation robots for the treatment of sensorimotor deficits: a neurophysiological perspective

Fig. 3

Evolution of lower extremity rehabilitation robots. Since their introduction, rehabilitation robots for the lower extremity have evolved from stiff industrial robot arms to guide the limb passively, without cognitive or physical involvement of the patient, to systems allowing for active engagement of patients through adapted support and body weight unloading in a vertical posture. Currently, wearable exoskeletons are being introduced into clinical practice, promoting even more active engagement of the patient, while balance is provided by crutches. Future exoskeletons will support balance to the degree needed. The three systems to the right are inspired by neurophysiological insights, stimulating afferent receptors through, e.g., weight loading, ground contact and assisted hip extension to trigger leg flexion movements. From left to right, patients require increasing functional abilities, while the robotic systems provide less support. Most patients will benefit from several of these systems (from left to right) during different phases of recovery

Back to article page