Skip to main content
Fig. 2 | Journal of NeuroEngineering and Rehabilitation

Fig. 2

From: Systematic review on wearable lower-limb exoskeletons for gait training in neuromuscular impairments

Fig. 2

Exoskeletons included in the literature review. From left to right and top to bottom: A diagram showing the locations of the active joints of the exoskeletons included in the literature review, HAL (Image courtesy of Cyberdine, Inc.), WPAL (Reproduced from [39]), H2 (Reproduced from [40]), REX (Reproduced from [41]), Ekso (Image courtesy of Paolo Milia, Prosperius Institute, Neurorehabilitation and Robotic Area, University of Perugia, Umbertide, Italy), ReWalk (Image courtesy of ReWalk Robotics), Robin (Image courtesy of Hyunsub Park, Applied Robot Technology R&D Group, Korea Institute of Industrial Technology, Korea), CUHK-EXO (Reproduced from [42]), ITRI (Reproduced from [43]), Vanderbilt Exoskeleton (Image courtesy of Michael Goldfarb, Vanderbilt University, Nashville), Indego (Reproduced from [44]), ARKE (Image courtesy of Edward Lemaire, Ottawa Hospital Research Institute, Centre for Rehabilitation Research and Development, Ottawa, Canada), Curara (Reproduced from [45]), Arazpour2103a (Image courtesy of Mokhtar Arazpour, Department of orthotics and prosthetics, University of Social Welfare and Rehabilitation Sciences, Tehran, Islamic Republic of Iran), Kim2013 (Image courtesy of Kim Gyoosuk, Korea Workers Compensat & Welf Serv, Rehabil Engn Res Inst, Incheon, South Korea), Chang2017 (Reproduced from [46]), SMA (Reproduced from [47]), Keoogo (Reproduced from [48]), Kinesis (Image courtesy of Antonio J. del Ama, Electronic Technology Deparment, Rey Juan Carlos University, Spain), Lerner2017 (Image courtesy of Thomas Bulea, Rehabilitation Medicine Department, National Institutes of Health Clinical Center, Bethesda, USA), Alter G Bionic Leg (Image courtesy of Luna Solution, S.L.), Arazpour2013b (Image courtesy of Monireh A. Bani, Department of Orthotics and Prosthetics, University of Social Welfare and Rehabilitation Sciences, Tehran, Islamic Republic of Iran), Kawasaki2017 (Image courtesy of Ohata Koji, Department of Human Health Sciences, Kyoto University Graduate School of Medicine, Japan), Yeung2017 (Reproduced from [49]), and Boes2017 (Reproduced from [50]). Note that Vanderbilt Exoskeleton and Kinesis are the former prototypes from the current commercial version of Indego and H2, respectively

Back to article page