Skip to main content

Table 3 Performance for predicting effectiveness of RAGT using (a) Clinical data and all sessions for improvement or not by ten-fold cross-validation, and (b) Using clinical data and all sessions to predict three levels of FAC change by ten-fold cross-validation

From: Prediction of robotic neurorehabilitation functional ambulatory outcome in patients with neurological disorders

Algorithms

Accuracy

Sensitivity

Specificity

AUC

(a) Prediction performance of model 2 using clinical data and all sessions for improvement or not by ten-fold cross-validation

 Random Forest

0.879 ± 0.079

1.000 ± 0.000

0.767 ± 0.161

0.981 ± 0.043

 Logistic Regression

0.853 ± 0.101

0.933 ± 0.141

0.767 ± 0.141

0.918 ± 0.061

 Support Vector Machine

0.836 ± 0.124

0.855 ± 0.166

0.850 ± 0.123

0.919 ± 0.120

 Decision Tree

0.618 ± 0.087

0.626 ± 0.208

0.717 ± 0.284

0.695 ± 0.160

 XGBoost

0.854 ± 0.072

0.933 ± 0.141

0.817 ± 0.166

0.937 ± 0.070

(b) Prediction performance of model 3 using clinical data and all sessions to predict three levels of FAC change by ten-fold cross-validation

 Random Forest

0.747 ± 0.074

0.567 ± 0.077

0.846 ± 0.049

0.814 ± 0.093

 Logistic Regression

0.535 ± 0.114

0.441 ± 0.147

0.732 ± 0.065

0.675 ± 0.127

 Support Vector Machine

0.522 ± 0.132

0.391 ± 0.106

0.720 ± 0.084

0.724 ± 0.131

 Decision Tree

0.499 ± 0.065

0.329 ± 0.043

0.667 ± 0.029

0.485 ± 0.038

 XGBoost

0.731 ± 0.079

0.580 ± 0.116

0.842 ± 0.051

0.768 ± 0.119

  1. XGBoost, Extreme Gradient Boosting