# Table 2 Details of various measures used to quantify jumping jack movements

Category Name Description Formula
Efficiency K1 Highest wrist position normalized by height: Maximum difference wrists and shoulders heights, divided by height $$D_{w/h} = E_{t} \left[ {\frac{{\left( {b_{1} , \ldots ,b_{4} } \right) }}{{\left( {a_{1} ,a_{2} } \right) }}} \right]$$
K2 Widest leg split normalized by height: Widest distance between the ankles, divided by height $$D_{b/h} = E_{t} \left[ {\left( {\frac{d}{{\left( {a_{1} ,a_{2} } \right) }}} \right) } \right]$$
Synchrony H1 Dominant frequency variance: Variance of dominant frequencies of articulated figure angles $${\theta }_{1},\dots ,{\theta }_{4}$$ where dominant frequency $${f}_{i}^{max}$$ is the frequency on the fast Fourier transform spectrum of $${\theta }_{i}$$ with highest magnitude $$\sigma_{{f^{max} }}^{2} = \frac{1}{3}\sum\nolimits_{i = 1}^{4} {\left( {f_{i}^{max} - \mu_{{f^{max} }} } \right)^{2} }$$
$$\mu_{{f^{max} }} = \frac{1}{4}\sum\nolimits_{j = 1}^{4} {f_{j}^{max} }$$
H2 Mean absolute relative phase: Average difference in absolute value of instantaneous phase angles (PAs) of two signals $$MARP_{{s_{1} ,s_{2} }} = E_{t} \left[ {\left| {PA_{{s_{1} }} - PA_{{s_{2} }} } \right|} \right]$$
$$PA_{s} = \left( {\frac{{s^{\prime}}}{s}} \right)$$
H3 Continuous relative phase standard deviation: Standard deviation of continuous relative phase of two signals $$CRPSD_{{s_{1} ,s_{2} }} = \sqrt {var_{t} \left[ {PA_{{s_{1} }} - PA_{{s_{2} }} } \right]}$$
H4 Average of hand stop differences: Average difference in absolute value of time instants at which left and right arms stop moving, e.g. at the apex of JJ $$A_{w} = \left[ {\frac{1}{{\left( {n_{R} ,n_{L} } \right) }}\sum\nolimits_{k = 1}^{{\left( {n_{R} ,n_{L} } \right) }} {\left| {T_{i + k}^{{w_{R} }} - T_{j + k}^{{w_{L} }} } \right|} } \right]$$
H5 Average of leg stop differences: Average difference in absolute value of time instants at which left and right legs stop moving, e.g. at the apex of JJ $$A_{l} = \left[ {\frac{1}{{\left( {m_{R} ,m_{L} } \right) }}\sum\nolimits_{k = 1}^{{\left( {m_{R} ,m_{L} } \right) }} {\left| {T_{i + k}^{{l_{R} }} - T_{j + k}^{{l_{L} }} } \right|} } \right]$$
Symmetry M1 Average hands bilateral symmetry: Average difference in absolute value of horizontal distance between the hands $$\mu_{{X^{w} }} = E_{t} \left[ {\left| {c_{1} - c_{2} } \right|} \right]$$
M2 Standard deviation of hands bilateral symmetry: Standard deviation of difference in absolute value of horizontal distance between the hands $$\sigma_{{X^{w} }} = var_{t} \left[ {\left| {c_{1} - c_{2} } \right|} \right]$$
M3 Horizontal hand velocities bilateral symmetry: Average difference in absolute value of horizontal velocities of left and right hands $$\mu_{{V_{ \to }^{w} }} = E_{t} \left[ {\left| {V_{ \to }^{{w_{R} }} - V_{ \to }^{{w_{L} }} } \right|} \right]$$
M4 Vertical hand velocities bilateral symmetry: Average difference in absolute value of vertical velocities of left and right hands $$\mu_{{V_{ \downarrow }^{w} }} = E_{t} \left[ {\left| {V_{ \downarrow }^{{w_{R} }} - V_{ \downarrow }^{{w_{L} }} } \right|} \right]$$ 