Skip to main content
Fig. 6 | Journal of NeuroEngineering and Rehabilitation

Fig. 6

From: Characterization of stroke-related upper limb motor impairments across various upper limb activities by use of kinematic core set measures

Fig. 6Fig. 6

A Relationship between kinematics of reaching distally across subjects. Core set kinematics of reaching distally are correlated with each other per movement task and impairment level subgroups. 1, Trunk displacement; 2, Shoulder flexion/extension; 3, Shoulder abduction/adduction; 4, Elbow flexion/extension; 5, Forearm pronation/supination; 6, wrist flexion/extension; 7, Movement time; 8, Peak velocity; 9, Number of velocity peaks (NVP); 10, Spectral arc length (SPARC). The correlation coefficient is presented in a color code as shown on the right of each heat map. Strong correlations between metrics that were consistent across tasks are highlighted by black square outlines in the heatmap. The dashed black square outlines represent metric associations, suspected to be consistent across tasks, that were not significantly strong correlated. B Relationship between kinematics of reaching distally across subjects. Core set kinematics of reaching proximally are correlated with each other per movement task and impairment level subgroups. 1, Trunk displacement; 2, Shoulder flexion/extension; 3, Shoulder abduction/adduction; 4, Elbow flexion/extension; 5, Forearm pronation/supination; 6, wrist flexion/extension; 7, Movement time; 8, Peak Velocity; 9, Number of velocity peaks (NVP); 10, Spectral arc length (SPARC). The correlation coefficient is presented in a color code as shown on the right of each heat map. Strong correlations between metrics that were consistent across tasks are highlighted by black square outlines in the heatmap. The dashed black square outlines represent metric associations, suspected to be consistent across tasks, that were not significantly strong correlated

Back to article page