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Abstract
Background
Motor hand skill and associated dexterity is important for meeting
the challenges of daily activity and an important resource post-stroke. In this
context, the present study investigated the finger movements of right-handed
subjects during tactile manipulation of a cuboid, a prototypical task underlying
tactile exploration. During one motor act, the thumb and fingers of one hand
surround the cuboid in a continuous and regular manner. While the object is
moved by the guiding thumb, the opposed supporting fingers are replaced once
they reach their joint limits by free fingers, a mechanism termed finger
gaiting.

Methods
For both hands of 22 subjects, we acquired the time series of
consecutive manipulations of a cuboid at a frequency of 1 Hz, using a digital
data glove consisting of 29 sensors. Using principle component analysis, we
decomposed the short action into motor patterns related to successive
manipulations of the cuboid. The components purport to represent changing grasp
configurations involving the stabilizing fingers and guiding thumb. The temporal
features of the components permits testing whether the distinct configurations
occur at the frequency of 1 Hz, i.e. within the time window of 1 s, and, thus,
taxonomic classification of the manipulation as finger gaiting.

Results
The fraction of variance described by the principal components
indicated that three components described the salient features of the single
motor acts for each hand. Striking in the finger patterns was the prominent and
varying roles of the MCP and PIP joints of the fingers, and the CMC joint of the
thumb. An important aspect of the three components was their representation of
distinct finger configurations within the same motor act. Principal component
and graph theory analysis confirmed modular, functionally synchronous action of
the involved joints. The computation of finger trajectories in one subject
illustrated the workspace of the task, which differed for the right and left
hands.

Conclusion
In this task one complex motor act of 1 s duration could be
described by three elementary and hierarchically ordered grasp configurations
occurring at the prescribed frequency of 1 Hz. Therefore, these configurations
represent finger gaiting, described until now only in artificial systems, as the
principal mechanism underlying this prototypical task.

Trial registration
clinicaltrials.gov, NCT02865642, registered 12 August 2016.
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Background
Motor hand skill is important for meeting the challenges of daily
activity and its loss a critical consequence of stroke [1, 2]. The requisite manual dexterity relies on motor control exerted
during active touch, which is essential to tactile object manipulation and
exploration [3]. The relationship
between tactile object manipulations and dexterity is evident in proposed
definitions of the latter: “(The) process in manipulating an object from one grasp
configuration to another” [4] or “(The)
capability of changing the position and orientation of the manipulated object from a
given reference configuration to a different one” [5]. Roland and Mortensen [6] developed a theoretical model of human somatosensory
exploration of kinesthesia, macrogeometry, size and shape which describes the
input-output relationships of tactile exploration. Using their fully quantified
macrogeometrical stimuli, i.e. a set of parallelepipeds and spheres of identical
volume representing non-real objects, we and others have verified in functional
magnetic resonance imaging (fMRI) studies three modes of exploration in extended
actions of digital object exploration [7, 8]. These modes
consist of coordinated dynamic digital movements of the fingers: mainly thumb, index
and middle finger, including intervals of rotating and encompassing the object with
the three middle fingers. As measured by video-monitoring, the dynamic movement of
the thumb consumed the most time [7,
9]. These modes of exploration
disappeared in over-learned pure motor sequences at high frequency [10].
As done in previous fMRI studies [8, 11] assessing
somatosensory discrimination, we investigated with the digital glove a task
requiring the coordinated dynamic finger movements underlying tactile exploration in
the absence of cognitive load. From a behavioral perspective, our paradigm consists
of a series of changing elementary precision grasps, requiring multiple
independently controlled contacts to optimize in-hand object orientation
[12, 13]. According to Landsmeer such precise handling of the adapted
fingers enables the subject to perform intrinsic hand movements without moving the
arm [14, 15]. This sequence of manipulations has been described in
artificial systems as finger gaiting; it requires multiple independently controlled
contacts, designated virtual fingers, to optimize the object orientation during one
motor act [12, 16, 17]. In gaiting, the set of constraining contacts is exchanged,
where grasping fingers are replaced once they have reached joint limits by free
fingers which continue the motion [13].
In the present study, twenty-two normal subjects manipulated with the
digital glove repeatedly a cuboid at a frequency of 1 Hz, as instructed previously
via a video. The time series of the 19 sensors observed to be associated with
dynamic digital movements were subjected to a principal component analysis (PCA) for
all subjects and sessions, yielding sensor and temporal patterns. The spatial
patterns were classified using cluster analysis to establish commonality of the
patterns. Graph and frequency analysis of individual finger movements yielded
temporal aspects of the manipulation. The finger movements of a single selected
subject in 3D space illustrated the manipulation. We propose that the short motor
actions performed during the task can thus be decomposed into single motor acts of
opposing thumb and finger configurations represented by the principal components.
The decomposition thereby permits the characterization and quantification of the
dynamical digital movements constituting the manipulations. This characterization is
the precondition for classifying the task as finger gaiting in the taxonomy of
within hand prehensile manipulation [16]. More importantly, the description of the patterns in healthy
subjects provided by our study is intended to serve as a standard in monitoring
post-stroke sensori-motor rehabilitation in patients with hand paresis and in the
development of robotic tactile perception systems.
Subjects and methods
Subjects
Twenty-two healthy right-handed subjects, 10 males and 12 females
ranging in age between 42 and 84 years, were included in the study. Their
handedness scores according to the Edinburgh Handedness Questionnaire
[17] ranged between 50 and 100.
More detailed demographic data are shown in Table 1. The subjects had no prior history of psychological
disorders, achieved normal Mini-Mental State Examination (MMSE) scores, and
showed no abnormalities in MRI brain scans. The study received ethical approval
from the Kantonale Ethikkommission Bern (KEK), 3010 Bern, Switzerland. Prior to
the study all participants gave written informed consent before enrollment,
according to the Declaration of Helsinki [18]. Table 1Demographic subjects’ data


	ID
	gender
	age (years)
	LQ
	MMSE

	1
	m
	74
	90
	27

	2
	f
	73
	60
	29

	3
	m
	42
	100
	30

	4
	f
	48
	60
	29

	5
	f
	65
	50
	27

	6
	f
	71
	100
	28

	7
	m
	47
	100
	30

	8
	f
	52
	100
	30

	9
	f
	59
	90
	29

	10
	m
	53
	100
	26

	11
	m
	54
	70
	29

	12
	f
	47
	100
	30

	13
	f
	51
	100
	29

	14
	f
	56
	100
	29

	15
	f
	59
	80
	30

	16
	f
	69
	100
	28

	17
	m
	84
	100
	28

	18
	m
	83
	80
	29

	19
	f
	69
	90
	29

	20
	m
	75
	100
	28

	21
	m
	68
	100
	27

	22
	m
	71
	100
	29

	N or Median
	10 m / 12 f
	62
	100
	29

	Range
	 	42–84
	50-100
	26-30


(m male, f female, LQ laterality quotient, MMSE Mini-Mental State Examination)



Sensori-motor assessment
Sensori-motor function was assessed with five measurements for both
hands: (1) Power grip was measured using a Jamar hydraulic hand dynamometer
[19]; (2) Precision grip was
measured with a Jamar hydraulic pinch gauge [19]; (3) Motor hand skill was determined using one of the
seven timed subtests comprising the Jebsen-Taylor Test (JTT) [20], namely, “Picking Small Objects” (PSO);
(4) Two-point discrimination (2PD) was measured on the index finger tip using a
graded caliper [2-point Discriminator, Medwork Instruments, Vancouver, Canada]
[21]; and (5) tactile object
recognition (TOR) was tested using a standardized protocol employing 30 everyday
objects as previously described [22]. The assessments were intended solely to confirm normal
sensori-motor abilities in the subjects; they were not incorporated in the
following analyses.
Data glove instrumentation and calibration
We employed the VMG 30™ data glove from Virtual Motion Labs
[Virtual Motion Labs, LLC., 3010 LBJ Freeway, Dallas, Texas 75,234 (see http://​www.​virtualmotionlab​s.​com)]. The glove is equipped with 29 sensors of which 16 are bend
sensors. Two finger bend sensors per finger measure the movement extent in the
metacarpo-phalangeal (MCP) and proximal interphalangeal (IP) joints, and two
finger bend sensors at the thumb measure movement extent in the MCP and IP
joints. Four sensors between the fingers measure abduction versus adduction. One
palm arch sensor detects spatial configuration related to the proximal and
distal transverse arch of the hand described by Hertling and Kessler
[23]. One thumb cross sensor
(Tcross) detects the complex movement of the thumb during finger opposition at
carpo-metacarpal (CMC) joint. Five sensors situated at the finger tips measure
pressure and eight sensors measure hand and wrist orientation (Fig. 1 a, b). Calibration of the data glove set as
default consisted of seven calibration stages detailed in Supporting
Information. Bend sensors were calibrated between values of 1000 and 0. The
maximum occurred by flexion in the MCP and proximal interphalangeal (PIP)
joints, adduction of fingers, transaxial extension of the thumb and forming the
palm arch and the minimum value of 0 by maximal extension in the finger joints,
abduction of fingers, resting position of the palm arch and CMC joint of thumb.
Finger pressure sensors were calibrated between a value of 1000 for no pressure
and 0 for maximum pressure. [image: ../images/12984_2020_755_Fig1_HTML.png]
Fig. 1Labels and locations of sensors, data glove and
consecutive steps of manipulation. a Labels of all sensors, b representation of a hand in the data glove
holding the cuboid, c image
sequence of instruction video showing manipulation of cuboid
(one motor act)


Task performance
The sensori-motor task to be performed by the subjects consisted of
regular single motor acts at a frequency of 1 Hz in which the opposed thumb and
fingers of one hand surround the cuboid in a continuous and regular action.
Consecutive steps of the motor act as displayed in the instruction video are
depicted in Fig. 1c, which shows
successive phases of the thumb and finger trajectories. Each phase begins with a
transaxial movement of the thumb versus the ring finger. During the concerted
action of thumb and fingers, the thumb exerts tangential forces that produce a
marked rotation of the object, anticlockwise in the right hand, and clockwise in
the left. In the terminology of Bullock et al. [13], 1) the action is prehensile, 2) the stabilizing fingers
change continuously during one motor act, 3) the cuboid moves, guided by the tip
of the thumb, relative to the contact points of the virtual fingers (i.e. in
this task index, middle and ring finger) [12], 4) thumb and fingers move relative to the reference
frame defined by the hand base, and 5) the motor sequence of fingers and thumb
is repeated at the given frequency.
The cuboid was made of granite with a density of
2.6 g/cm3 and side lengths of
2.254 × 2.254 × 2.257 cm resulting in a total volume of
11.5 cm3 and weight of 29.9 g, comparable with
those of the aluminum cube used in. A video was filmed to instruct the subjects
how to perform the task. This video consisted of three, 20 s long, consecutive
segments: (1) fixation, (2) observation, (3) active manipulation, each announced
by written instruction on a blank white screen for 4 s. “Fixation” showed a hand
holding the cube, however, had only the function of rest pause to prevent
fatigue and thus, keep concentration high; “Observation” showed the same hand
manipulating the cuboid at the prescribed 1 Hz; and upon “Active manipulation”
the subjects were given the cube by the study physician and requested to
manipulate the cube at the required speed as shown in the video sequence
displayed during the segment “Observation” on the screen. A right hand was shown
for the right hand sensori-motor task and a left hand for the left hand
sensori-motor task. The 3 segments were repeated six times showing 3 male and 3
female hands and resulting in a total video length of 7.2 min. In-house software
recorded the sensor data only during the 20 s of active manipulation.
During task performance, subjects were seated at a desk on which
was placed a computer screen with their hands supine on the desktop. To ensure
that the subjects understood the motor task, it was explained by the study
physician, and subjects requested to manipulate the cuboid with the left and
right hand without the data glove for about 10 s as shown by the physician. Then
the calibrated data glove was put on the non-dominant left hand of the subject
and checked for fit by the physician. The video was started when the subject’s
hand was relaxed on the table top. When the instruction “Active manipulation”
appeared on the screen, the physician placed the cuboid in the subject’s hand;
after completion of the segment, the cuboid was removed. The glove calibration
procedure required a break of about 2 min between acquisitions with the left and
right hand.
Data sampling
Data were acquired with software programmed in house and based on
the Software Development Kit provided by Virtual Motion Labs. Pre-study testing
of the signals produced by the task indicated that they could be most
efficiently encoded at a frequency of 50 Hz, implying time frames of 20 msec.
This frequency appears sufficient as indicated by the published critical
thresholds of about 20 Hz for steady visual perception and 10 Hz for visual
parsing [24]. One action of
consecutive manipulations, denoted a run, consisted of 1000 time frames. In
order to i) exclude irregularities as the subject adjusted to the prescribed
frequency observed in the instruction video and ii) to impose a standard for
subsequent analysis, only the last 800 time frames, i.e. 16 s, of each run were
analysed.
Data analysis
A graphical representation of the analysis procedures is shown in
Fig. 2. [image: ../images/12984_2020_755_Fig2_HTML.png]
Fig. 2Comprehensive analysis of glove data. Note: Main topics
outlined in the grey boxes are reviewed in separate paragraphs
of discussion


The nineteen sensor time courses of each run and subject associated
with prehensile in-hand manipulation were submitted to PCA (see Results).
Separate analyses were performed for each hand. PCA was performed using in house
software written in Matlab [The Mathworks, Inc., Natick, MA] based on the
algorithm described by Alexander and Moeller [25]. The sensor amplitudes for each sensor in the 800 time
frames were entered in a matrix. The rows corresponded to the 800 time frames
and columns to the 19 relevant sensors of a run. PCA was applied to a residual
matrix. Using the singular value decomposition implemented in Matlab, the
residual matrix was then decomposed into 19 principal components (PC). Each PC
consisted of a sensor expression pattern, a time course and an eigenvalue. The
sensor expression coefficients (ECs) describe the amount each sensor contributes
to the component. The time course represents the variation of the component with
time and the eigenvalue characterizes the fraction of variance described by each
component. The sensor ECs and time courses of a PC are orthonormal; the
orthogonality reflects the lack of statistical correlation among the principal
components.
Preliminary analysis showed that the first three PCs of each run
and subject explained about 75% of the variance, a number consistent with the
Guttman-Kaiser criteria (GK) for salient PCs [26]. Further analysis was therefore restricted to these first
three PCs.
Spatial sensor patterns
Statistical analysis of the sensor ECs must take into account the
indeterminacy of the signs associated with multilinear models such as PCA
[27], i.e. two different sets
of coefficients expressing the same pattern might differ only in the signs of
the sensor contributions. Before analysis of the subject cohort, alignment of
the ECs was therefore necessary. Alignment was performed in two stages. First,
pairwise correlations of the ECs were computed for the six runs of each subject
and PC and the signs adjusted to yield the highest positive correlation. Second,
the realigned ECs of the 22 subjects were submitted to a second pairwise
correlation analysis to determine the most favorable alignment among subjects.
Based on the two steps of the alignment procedure and preliminary analyses of
the principal components, we then assigned a positive sign to reflect increased
bending of the thumb cross, MCP and/or PIP finger sensors. Thus, sensors
yielding prominent positive signals indicate bending movements or less pressure
synchronous with the selected finger sensors. Sensors yielding prominent
negative signals indicate that the bending or pressure are out of phase compared
to sensors exhibiting a positive sign, but with the same time course.
In order to assure the homogeneity of the component ECs for the
complete cohort, k-means clustering was applied to the 3 PCs in all 132 runs and
subjects, i.e. 6 runs for the 22 subjects. An iterative method for partitioning
data, k-mean clustering yields mutually exclusive clusters after determining
their central members. Therefore, each EC is assigned to a cluster and its
distance to the central member, denoted centroid, is computed. Homogeneity of
the coefficients implies that the clusters should correspond to the rank of the
PC in explaining the variance of the coefficients, i.e. the PCs explaining the
greatest variance would compose one cluster, the PCs explaining the second
greatest variance a second cluster, and so on. To be consistent with the number
of PCs considered in each run, we limited the number of clusters to three. We
implemented the clustering using the program k-mean of Matlab. The distance
between centroid and cluster member was computed using the option “correlation”,
as suggested by the alignment procedure.
In order to evaluate the salience of the individual sensors in the
task, medians, percentiles and confidence levels (CL) for the correctly
identified component ECs were computed and compared with the centroid. Correctly
identified coefficients are those for which the PC is labeled as belonging to
its corresponding cluster, i.e. the dominant PC, PC1, of a particular run and
subject is correctly identified if it is labeled as belonging to the cluster
characterized by a predominance of PC1’s. To confirm the salience of individual
sensors, a Kruskal-Wallis test of the sensor distributions, corrected for
multiple comparisons of ranks, was performed using the Matlab programs,
kruskalwallis and post-hoc multicompare.
Temporal sensor patterns
To investigate the temporal properties of the PC clusters,
frequency spectral analysis was applied to the time courses of correctly
identified PCs. In addition, time delays between PCs for each run and subject
were computed using the Matlab program finddelay. The sampling frequency of
50 Hz determined the maximum delay of 25 frames in the program, corresponding to
one half of a sampling cycle. This procedure allows for assessing the hypothesis
of finger gaiting underlying one complex motor act as posited, i.e. testing
whether the distinct grasp configurations, as reflected by the PCs, occur at the
same frequency of 1 Hz and, thus, in the same time window of 1 s.
In addition to the PCA, the frequencies and time delays among
twelve individual sensors for all runs and subjects correctly assigned to
Cluster 1 for both hands were analysed as represented by the central column of
Fig. 2. The sensors comprised the ten
finger bends (i.e. related to MCP and PIP joints, respectively IP joint of the
thumb) and thumb cross (i.e. related to CMC joint and palm arch sensors). To
reduce the noise in the time courses, the time courses were first filtered using
a finite impulse response (FIR) filter with low pass cutoff frequency of 10 Hz.
To achieve similar gain levels, they were normalized such that the magnitude of
the maximum amplitude was unity. This preprocessing was implemented using the
Signal Processing Toolbox of Matlab. The frequencies were determined by the time
difference between signal maxima using the Matlab program findpeaks, Matlab. The
time differences between minima and null positions confirmed the frequencies.
The delays were limited to maximum delay of 25 frames as above.
Graph analysis of selected sensor time series
Using the same time series of the 12 MCP/PIP (IP) finger bends,
palm arch and thumb cross sensors included in the PCA and cluster analyses, we
performed graph analysis with GraphVar (Release V2.01) [28] as implemented in Matlab. Restricting to
runs for which PC1 was assigned to the associated cluster, the analysis required
first calculation of the 12 × 12 Pearson correlation matrices for correctly
assigned runs of each hand. From these were calculated mean matrices yielding a
weighted undirected graph with 12 nodes and 66 edges for each hand. Negative
weights, corresponding to negative correlations, were retained. To investigate
subnetworks, the graphs were thresholded in steps of 0.05 for positive and
negative weights. Global efficiencies for both graphs were calculated without
thresholds. A null model network consisting of 100 random fully connected
weighted graphs generated with 1000 iterations served as basis for comparison
using the Mann-Whitney-U-Test. Finally, the graphs were submitted to the Louvain
community detection algorithm [29]
as implemented in the brain connectivity toolbox [30] using a gamma of one in order to determine the modularity
of the graphs.
Temporal evolution of finger movements in space
To complement and illustrate the group PCA and temporal analysis of
individual sensors, we acquired 3D data for male subject ID 10 in an additional
acquisition. This analysis is represented on the right of Fig. 2. The group cluster analysis showed that PC1 of
the subject had been assigned to the corresponding cluster in all runs of the
right and in most runs of the left hand (Fig. 3, Fig. S2).
Software provided by Virtual Realities converts the raw sensor data into the C3D
file format (www.​c3d.​org) used in biomechanics, animations and gait analysis laboratories.
This format comprises 23 data points representing a standardized 3D hand model,
each consisting of x, y, and z values in millimeters. Because the finger tips
play a central role in the task, we focused on the five data points representing
the end of the distal phalanges to calculate spatial finger trajectories and
average speed. A trajectory was defined as the points between consecutive
maximal extensions of the thumb derived from repeated manipulations, as
determined by the program findpeaks of Matlab. [image: ../images/12984_2020_755_Fig3_HTML.png]
Fig. 3K-mean cluster classification of sensor patterns for PC1
and PC2 of left and right hands. The clusters are defined by the
dominant PC, i.e. cluster 1 by PC1, cluster 2 by PC2 and cluster
3 by PC3 (Fig. S2, Supplemental Material). The distances are
derived from the correlation between the cluster centroid and
the spatial patterns of a run. The colour blue denotes the
PC1’s, red the PC2’s and green the PC3’s. The medians, means,
and 2 s bands of the dominant PC’s of a cluster are represented
as dashed, solid and dotted lines, respectively. Misassigned
runs are paled


As in group acquisitions, the data were acquired in 6 runs of 16 s
each. However, the prescribed rate for the 3D acquisition mode was 36.97 Hz.
Since the time between maximum extensions of the thumb varied, the number of
trajectories was less than optimum: 80 for the right hand and 75 for the left.
The speed of finger movement were then computed by dividing the path length of
the trajectory by its duration. From the ensemble of trajectories for each hand
were calculated a mean trajectory and 95% CL region, the latter using an error
ellipsoid for each time point with the Matlab program error ellipse (https://​ch.​mathworks.​com/​matlabcentral/​fileexchange/​4705-error_​ellipse). For visualization, the trajectories of approximately 37 frames
were resampled to 100 frames and the mean trajectories and CL region displayed
(Video 1) using the open source software Mokka version 0.6.2 (https://​biomechanical-toolkit.​github.​io/​mokka/​).


Results
Sensori-motor assessment
As indicated in Table S1
in Supporting Information, the results of the sensori-motor assessments were
consistent with published data regarding age- and gender-matched healthy
controls for power and precision grip [19], PSO [20],
two point discrimination and TOR [22].
Spatial sensor pattern
An initial PCA of all time series of all 29 glove sensors for both
hands of all subjects showed that 10 sensors, including the 8 sensors comprising
the hand and wrist quaternion and the pressures sensors P4 and P5 yielded ECs
significantly smaller than the remaining nineteen sensors. These nineteen
sensors, reflecting specifically prehensile in-hand manipulation as postulated
in the introduction, produced ECs consistently within a 90% confidence interval
(CI) range (0.05 < p < 0.95). They
included all ten finger bend sensors, all four ab/adduction sensors and three
pressure sensors, P1 – P3, previously shown predominantly involved in this
manipulation task (8). Two sensors describing the deformation of the palm: palm
arch and thumb cross, also produced significant ECs. These relevant sensors were
submitted to further analysis.
A PCA of each of the six runs for each subject yielded a total of
132 analyses for each hand. The Guttman-Kaiser criteria for salient PCs yielded
a mean value of 3.73 ± 0.84 for the left hand and 3.95 ± 0.82 for the right.
Since the first three PCs of each run yielded mean fractions of variance
explained of 81% ± 6% for the left hand and 78% ± 6% for the right, further
analysis was restricted to these first three PCs.
After the realignment described in Methods, the ECs of the first
three PCs of all subjects and runs, i.e. 3 × 132 = 396 sets of ECs for each
hand, were assigned to one of three clusters according to K-means clustering as
described above. As shown in Figs. 3, 98
PC1’s were assigned to Cluster1 of the right hand and 105 PC1’s to Cluster1 of
the left. The Fisher’s exact test indicated no significant difference between
hands regarding the number of assignments. The numbers of PC2’s assigned to
Cluster 2 were 82 for the right hand and 102 for the left; they differ
significantly at level, p < 0.01. Finally,
as shown in Fig. S1 of Supporting
Information, the numbers of PC3’s assigned to Cluster3 were 74 for the right
hand and 91 for the left; they differ significantly at level, p < 0.05. Further comparison of Cluster1’s
reveals that the means and confidence intervals of the correctly assigned PCs
are comparable, but that the spread of distances for the misassigned PC1’s is
markedly greater in Cluster1 of the right hand. Both the means and confidence
intervals of the Cluster2’s and Cluster3’s are greater than those of the
Cluster1’s for both hands. Thus, the left hand appears to show a clearer pattern
of PC assignments to clusters. Regarding misassignments, 32 of 34 of the
misassigned PC1’s of Cluster1 are assigned to Cluster2 for the right hand; 20 of
the 27 misassigned PC1’s of Cluster1 are assigned to Cluster2 for the left hand.
The difference indicates a trend: p < 0.07. Furthermore, 41 of 58 missassigned PC3’s of the right
hand and 27 of 43 PC3’s of the left hand are assigned to their respective
Cluster2’s, suggesting a mutability between the two, although the centroids are
not significantly correlated; p < 0.14 for
the right hand and p < 0.19 for the
left.
The mean spatial trajectories related to the end phalanges and
joint sensors are shown in the animation calculated for subject ID10 (Video 1).
The expression coefficient (EC) of a specific sensor expresses only the relative
extent of (1) movement in the main plane of a joint: positive values indicating
flexion and adduction and negative extension and abduction, or of (2) local
pressure: positive values indicating less pressure and negative more pressure.
In a particular principal component, the coefficient represents a phase of the
trajectory. Figure 4 shows the
expression of the 16 bend sensors related to the joints in the Clusters 1 and 2
for right and left hands. Complete sensor patterns for PC1, PC2 and PC3 of both
hands, including the pressure sensors, are displayed in Supporting Information
(Fig. S3). [image: ../images/12984_2020_755_Fig4_HTML.png]
Fig. 4Spatial sensor patterns for PC1 and PC2 of left and
right hands. The means and standard deviations of the expression
coefficients determined for the dominant PCs in a cluster are
represented by blue circles and bars. The adjacent diamonds
denote the cluster centroids. The means and standard deviations
of the ranks according to the Kruskal-Wallis analysis are
represented by red circles and bars. The y-axes are coloured
correspondingly; the x-axes label the sensors as in Fig.
1. A and
Table 3


An omnibus Kruskal Wallis analysis of the correctly assigned ECs
indicated in red and summarized in Table 2 showed clearer inhomogeneities among the sensor patterns
than the means and cluster centroids indicated in blue, at
p < <e− 10 for PC1–3 on both sides.
Post-hoc multiple comparison test using the multicompare matlab program of the
ranks validated the salience of three groups of sensors: thumb cross with palm
arch as well as MCP and PIP joints of the fingers exhibited highly significant
variations due to phase differences between changing thumb to finger
oppositions, satisfying a p-value of
< 0.05 after correction for multiple comparisons according to Bonferroni.
These main dynamics were: (1) The patterns of the Cluster1’s showing positive EC
of thumb cross, prominent together with palm arch on the right, indicating
marked opposition transmitted by CMC joint. In the right hand, the PIP joints
and to a lesser degree the MCP joints of all fingers are out of phase (as
related to varying negative ECs); in the left, the MCP joints of the fingers are
in phase with the thumb CMC joint (both with positive EC) whereas the PIP joints
are out of phase (negative EC). (2) The parameters of the Cluster2’s reveal in
the right hand simultaneous activation of the PIP and MCP joints of the fingers
(relatively positive EC); out of phase are all thumb joints (relatively negative
EC). In the left hand, activation of the PIP joints of all fingers dominates
(positive EC), while thumb cross (CMC joint), palm arch and MCP joints of the
finger sensors are out of phase (varying negative ECs). – The interdigital
sensors, measuring abduction versus adduction, indicated rather a neutral joint
position according to ECs, except for A4 in Cluster1’s on the left (with
positive EC consistent with adduction between ring and little finger) and for A1
in Cluster2’s on the right (with negative EC consistent with abduction between
thumb and index finger). Table 2Non-parametric tests of prominent bend sensor ECs and
post-hoc pairwise analysis


[image: ../images/12984_2020_755_Tab2_HTML.png]
Kruskal Wallis and Multicompare analysis implemented in
Matlab
* All shown differences for post-hoc Multicompare are
significant at p < 0.05 after correction for 19 comparisons
according to Bonferroni Abbreviations: PC Principal component, EC
expression coefficient, Rt Right, Lt Left, MCP Metacarpo-phalangeal
joints (I Index, M Middle, R Ring, L Little), PIP Proximal
interphalangeal joints (I, M, R, L); Tcross, Thumb cross sensor
related to carpo-metacarpal (CMC) joint of thumb; PArch, Palm
Arch



According to EC the sensor patterns of Cluster3’s indicated mostly
neutral joint positions on the right; on the left the thumb cross predominates
indicating thumb opposition transmitted by CMC joint of thumb. Pressure sensors
suggest relatively elevated pressure over the pad of the moving thumb in
comparison to that over index and middle finger pad in Cluster1’s and Cluster3’s
of both sides (Fig. S3).
Temporal sensor patterns
We present below two types of temporal analysis in order to compare
the motion of right and left hands: analyses (1) of the principal component time
series and (2) of the complete time series of the three groups of finger and
thumb sensors suggested by the spatial sensor patterns. The mean frequency
spectra of the dominant PCs shown in Fig. 5 are very similar for the two hands. Determined mainly by
the instructed task the frequency was of about 1 Hz; the spectra of PC1 showed a
peak at 1.03 Hz for the right hand and at 1.07 Hz for the left. For PC2, the
spectra showed peaks at 1.03 Hz and 0.93 Hz, respectively. [image: ../images/12984_2020_755_Fig5_HTML.png]
Fig. 5Temporal sensor frequencies for PC1 and PC2 and delays
between themselves. The temporal sensor frequencies and delays
fpr PC1 and PC2 of left and right hands, calculated for dominant
components of a cluster. a
Normalized frequency spectra in which blue denotes PC1 and red
PC2, and b histograms of the
delays between PC1 and PC2 in frames (1 frame = 0.02 s). Almost
all the represented dominant components of PC1 and PC2 arise
within 1 s manipulation corresponding to a related changing
grasp configuration at that time window


The negative and positive time delays between PCs shown in Fig.
5b confirm the independence observed
in the spatial patterns. Almost all delays between PC1 and PC2 occur within a
time window of 1 s, i.e. 50 frames: 98% for the right hand and 90% for the left.
The difference is marginally significant: p < 0.05, two-tailed. Moreover, the asymmetries of the delay
distributions differ significantly between hands at the level, p < 0.001. The distributions of delays between
PC1 and PC3 within the same time window are broader: 74% for the right hand and
70% for the left, which are not significantly different. To facilitate
comparison of all delay distributions, Fig. S4 displays them for a time window of 2 s, i.e. 100
frames.
Analysis of the complete time series of the three groups,
comprising ten finger bend, palm arch and thumb cross sensors, is summarized in
Table 3. It reveals no significant
frequency differences between respective finger groups of the left and right
hands nor among the three groups of each hand. All groups reproduce the
instructed frequency within statistical deviations. Table 3Comparison of frequencies for dominant groups of finger
sensors


	Sensor groups
	Left hand (n = 105 runs)
	Right hand (n = 98 runs)
	p-value
left vs right
(Mann-Whitney-U-Test)

	mean
	± SD
	mean
	± SD

	Thumb (4 sensors, incl. Palm Arch)
	1.01
	0.10
	1.04
	0.13
	0.20

	MCP (4 sensors)
	1.01
	0.13
	1.01
	0.12
	0.98

	PIP (4 sensors)
	1.01
	0.11
	1.02
	0.13
	0.17

	p-value
Friedman’s Test within one hand (thumb, MCP,
PIP)
	0.78
	0.17
	 

Of the the 19 relevant sensors, the 12 most prominent
sensors are grouped as Thumb (IP, MCP, Thumb Cross and Palm Arch),
MCP (of fingers) and PIP (of fingers) sensors



Graph analysis of selected sensor time series
The time series of the 12 MCP/PIP finger bend, palm arch and thumb
cross sensors included in the PCA and cluster analyses resulted in a weighted,
undirected network for each hand. The number of positive weights: 29 of 66 edges
or 43.9%, and negative weights: 37 of 66 edges or 56.1%, was equal in both
hands. The edges with the highest positive weights connect the ring MCP and
little MCP joints (0.869) of the left hand and the ring PIP and little PIP
joints (0.854) of the right hand. The edges with the lowest negative weights
connect the thumb MCP and ring MCP joints (− 0.421) of the left hand and the
thumb MCP and little MCP (− 0.503) of the right hand.
The networks of positive weights shown in Fig. 6, thresholded at 0.35 for better illustration,
reveal three strongly connected sub-networks in each hand and three modules. One
network in blue connects all MCP joints and another in green all PIP joints;
these joints comprise also two of the modules. A third sub-network and module in
red features a strong connection between palm-arch and thumb cross. The two
isolated nodes of the right hand, thumb MCP and IP, are members of the third
module, whereas the thumb IP joint of the left hand is a member of the PIP
module. The networks of negative weights shown in Fig. 6, thresholded at − 0.35 for better illustration, manifest
the same modular structure as the positive weights, but the connections are
intermodular. In the right hand, the connections between palm arch and index PIP
and between thumb MCP and middle MCP are particularly strong; less strong are
the connections between thumb CMC and ring and middle PIP, between thumb MCP,
little MCP and index PIP, and between thumb PIP, middle and index MCP and index
PIP. [image: ../images/12984_2020_755_Fig6_HTML.png]
Fig. 6Graph networks and modular organization of finger
movements. Pictorial representation of graph analysis and
networks for left and right hands as related to the mainly
involved joints by the task, with positive weights in the upper
row and negative weights in the lower row. Nodes’ colour
displays the modular structure in each hand, almost identical on
the right and left. Nodes are denoted by their sensor labels,
the relative weights of the connections indicated by the
thickness of the lines between them (at a threshold of 0.35 in
the upper row where high positive weights are represented
parallel to thickness, and at a threshold of − 0.35 in the lower
row where low negative weights are represented inverse to
thickness). Note the strong intramodular connections in the
positive weighted graph and the strong intermodular connections
in the negative weighted graphs


Despite the differences between left- and right-hand networks
suggested by Fig. 6, the global
efficiencies and small world properties of the networks do not differ
significantly. The mean global efficiencies of the unthresholded networks were
0.95 ± 0.03 for the left and 0.94 ± 0.02 for the right hand, indicating no
significant difference: p < 0.11. The mean
small-world propensities, φ, were 0.53 ± 0.20 for the left and 0.49 ± 0.21 for
the right hand, implying no significant difference: p < 0.11. The mean
small-world indices, σ, were 1.39 ± 0.59 for the left and 1.45 ± 0.55 for the
right hand, implying again no significant difference: p < 0.12. These values indicate that both networks show
small-world properties, implying substantial clustering and small path
lengths.
Temporal evolution of finger movements in space
To illustrate the spatial finger trajectories recorded during the
special acquisition of 3D data for subject ID10, we focused on the five sensors
located at the ends of the distal phalanges, i.e. P1–5. The trajectories
depicted in Fig. 7 are repeated at
median frequencies of 0.78 Hz by the left hand and 0.83 Hz by the right with
interquartile ranges of 0.68–0.95 Hz and 0.75–0.92 Hz, respectively. These are
slightly less than the frequencies measured by the twelve sensors that dominate
the spatial sensor patterns of the subject cohort. The slightly slower
repetition frequencies of the left hand accompany shorter trajectories and
slower finger speeds than those of the right hand. As shown in the Supporting
Information (Fig. S5, Table
S2), the middle finger tip of the
left hand and the thumb tip of the right hand were the fastest with median
speeds: 22 cm/s and 32 cm/s, respectively. The middle finger tip of the right
hand showed the second fastest speed for that hand, 19 cm/s, only slightly
faster than the ring finger tip, whereas the thumb tip of the left hand yielded
the second slowest speed for that hand, 15 cm/s. [image: ../images/12984_2020_755_Fig7_HTML.png]
Fig. 7Three-dimensional representation of the finger
trajectories in subject ID 10. Finger trajectories in 3
dimensions shown for left and right hands were derived from six
runs of a single right-handed subject (ID 10). The black dotted
lines indicate the mean position of the finger tip sensors,
P1–5, and the colours the 2 s tubes of the trajectories. Note
(1) the opposed position of the thumb to fingers on both sides,
while the workspace is considerably restricted on the left
compared to the right; and (2) the clockwise rotation of the
spatial trajectories involving thumb and fingers on the right,
and the anticlockwise rotation on the left


Discussion
The goal of our study was a spatial and temporal description of the
dynamic finger movements involved in regularly repeated tactile manipulations in
right-handed healthy volunteers whose ages matched those of stroke survivors. The
instruction video, immediately preceeding execution, provided spatial and temporal
cues for the finger movements prior to execution, and thus supported pre-attentive
sensory processes whereas execution is based on proprioception [31, 32]. In contrast to previous studies reporting finger
trajectories in single reach-to-grasp tasks, in everyday activities [33–37] and in pure
grasping tasks involving intrinsic hand movements [15, 38], we explored
a sequence of defined motor actions typical of exploration during somatosensory
discrimination in the macroscopical domain [39]. A constituent motor act of our task, manipulation of an
almost regular cuboid, is shown in Fig. 1c.
From a hand-centric view, the fingers interact with the object using so-called
transitive movements in a workspace tightly adapted to the objects [40] as shown in Fig. 7. These movements are accompanied by motion of the object, which
requires at least two fingers to hold the object while the perpendicular finger
positions it [25]. During this
interaction occurs a continual change of finger configurations directed to contacts
at the edges and vertices of the object [4] while the fingers in contact are replaced by free fingers once
they have reached joint limits of a finger pair [41]. Thus the precise handling observed is prehensile motion
within the contacting hand (see taxonomy in [25]). In contrast to the hand-centric view, the object-centric
view postulates that perceived attributes of the object may evoke motor acts during
pure manipulation equivalent to those during active touch in object exploration,
i.e. stresses the aspect of the hand as sense organ [37]. An analysis of natural hand movements confirmed the
similarity of finger joint trajectories in both classes of prehensile in-hand
activity [38].
Derived from the 19-dimensional glove sensor space, the first three PCs
of each run explained 75 to 80% of the variance, and were thus salient according to
the Gutmann Kaiser criterion [26]. This
low dimensionality is consistent with the observations of Belic and Faisal
[34], Jarassé et al. [36] and Ingram et al. [42] in tasks involving motor control of daily
reach-to-grasp activities, of bilateral hand movements and of natural, spontaneously
generated hand movements, respectively. The first principal component for both hands
accounted typically for one half or more of the variance explained by the salient
components. K-mean clustering permitted a comprehensive analysis of the subject
cohort with respect to homogeneity of sensor pattern ECs. The number of PC1’s
assigned to corresponding Cluster1’s was comparable for both hands. The other two
PCs showed significant differences between hands, as indicated in Figs. 3 and S1 of
the Supporting Information. A greater number of PCs were correctly assigned to the
corresponding clusters for the left hand as compared to the right. Moreover, the
majority misassigned PC2’s in Cluster 2 were assigned to Cluster 3 and vice versa.
These observations suggest a more flexible handling strategy of the right hand. In
the context of stochastic optimal feedback control proposed by Todorov and Jordan
[43], the mutable PCs might
represent variability in task-irrelevant dimensions between motor acts, and reflect
fluent action in the dynamic activity of the right hand without exceeding normal
limits. If task-irrelevant is substituted forsalient, these observations are consistent
with the observations of Faisal et al. [44], who found in archaeological toolmaking a correlation between
the complexity of an underlying hand motor task and the number of salient
components.
Represented in Fig. 4, the
spatial patterns of single motor acts exhibited by the salient PCs appear to be
encoded mainly by twelve of the nineteen sensors. These twelve imply three groups of
coordinated and synergistic finger movements: a 1st group related to the
carpo-metacarpal (CMC) joint of the thumb together with palm arch sensor; a 2nd
group related to the metacarpophalangeal (MCP) joints of the fingers; and a 3rd
group related to the proximal interphalangeal (PIP) joints of the fingers.
Trajectories associated with these joints have been shown to be stereotypical and
characterized by multicollinearity of the MCP and PIP joints [45]. The Kruskal Wallis nonparametric analysis
of the EC distributions established varying interactions among thumb and fingers as
expressed by their mutual asychrony, i.e. the opposition of the CMC
(carpo-metacarpal) joint of the thumb and flexion of MCP and PIP joints, during the
phases of the task performance represented by the principal components. These phases
consist presumably of different grasp configurations composing the motor act
demanded by the task. The asymmetric expression in PC1 of the CMC joint of the thumb
together with palm arch on the right and the MCP joint of the three middle fingers
on the left is noteworthy. It marks dynamism and synchrony between thumb and shaping
the hand on the right [23, 46], and rather stabilizing a holding function
on the left. Regarding the time series associated with the salient PCs, the
frequency spectra shown in Fig. 5 evidence a
clear peak at 1 Hz, the frequency of the repeated cuboid manipulations shown in the
video immediately prior to execution of the task. The time delays between the
dominant and subdominant PCs for both hands confirm their independence. They are of
both signs, but are significantly asymmetric with the dominant sign differing
according to hand. Their common task frequency and short delays within a 1 s time
window, corresponding to one motor act, confirms finger gaiting as principal
mechanism underlying one motor act, which prevents loss of the cuboid [13]. This is the first time that finger gaiting
is observed in a human sensori-motor task fundamental to the haptic exploration of
objects, e.g. for shape perception, during which the fingers hold the object while
it is surveyed by the thumb [39,
47].
The time series of the 12 sensors comprising three groups posited to
engage in synergistic movements of the MCP and PIP joints of the fingers, and the
thumb joints together with palm arch also yielded median frequencies of 1 Hz in both
hands. As suggested in Table 3, the
frequencies of the fingers are consistent and homogenous for the three groups in
each hand, suggesting an intrinsic harmonic, synchronous organization (cf.
[46, 48]). Complementary analysis of the time series of the 12 sensors
using graph theory establishes the modular organization underlying this multifinger
task (Finger 5), supplementing earlier assumption of modular organization of finger
movements relying on suprathreshold magnetic stimulation of the human motor cortex
[49]. It shows for the right hand
positive correlations among analogous joints, MCP and PIP, of four fingers and
between palm arch and thumb cross, and negative correlations among joints of palm
arch and thumb and a majority of the finger joints. The left hand shows similar, but
fewer connections. The connections of the positively correlated nodes at the MCP and
PIP joints may reflect repeated synchronous motor acts during the task and encode
time varying motor information essential for a dynamical system engaged in
manipulation [50]. The dense
interconnections between MCP and PIP joints of adjacent fingers confirm the positive
correlations between these joint pairs posited in the spatial patterns [48]. The connections of the negatively
correlated nodes reflect anticorrelation between thumb and PIP and to a lesser
degree MCP joints, compatible with their asynchrony among each other in the motor
act patterns shown in Fig. 4. The graph
analysis indicates high local movement efficiency and short paths among the
interconnected joints, corroborating temporal organization during the task within
and among joint groups as detailed above [46, 51, 52]. The graphs of both hands exhibit small
world characteristics, i.e. specifically high global efficiency as a measure of
information exchange among subnetworks. Thus, the capacity for functional parallel
synergy within the modules is equally great in both hands [53, 54].
The spatial finger trajectories shown in Fig. 7 illustrate for a single subject the temporal evolution of the
finger tips in space. They represent the tangential sliding of the fingers as they
encompass the cuboid. The paths are restricted, comprising only a small percentage
of available workspace and limited degrees of freedom [55]. The workspace occupied by the trajectories
of the right hand is much greater than that of the left hand, suggesting the greater
variability associated with optimal feedback control [43] posited in the spatial patterns. The longer trajectories of
the right hand imply that the speeds of the finger tips are greater [56], since the repetition frequencies are
subordinated to the manipulation frequency of 1 Hz. The manifest differences between
right and left hands observed in the spatial and temporal patterns of the PCA, in
the graph analysis and in the trajectories of Fig. 7 may reflect the distinct roles of left and right hands in
everyday human activities as reported in studies of bimanual tasks. In these tasks,
the left hand provides rather stable postural support while the right assumes a more
dynamic, spatially extended role [44,
57].
Limitations are inherent in the choice of object to be explored and in
precise instructions of how it should be explored. We relied deliberately on a
theoretical model of human somatosensory exploration of kinesthesia developed and
validated by Roland and Mortensen [58]
in which information is sampled successively and sequentially. Hence, the
application of this well-studied task allows generalization specifically to
recognition of macroscopical aspects of objects, e.g. shape [22]. Moreover, multiple precision grips of the
involved fingers during a sequence of consecutive manipulations are subject to
failure above a grasping frequency threshold of 2 Hz. The selection of a cuboid as
object and exploration frequency of 1 Hz was made to provide a prototypical task for
the study of the post-stroke recovery of coordinated hand motor skills in a clinical
context and of significance for daily motor needs cf. [54].
Conclusions and practical implications
Using a digital data glove, we have exposed new spatial and temporal
aspects of the object manipulation underlying tactile exploration. A comprehensive
data analysis has revealed: 1. A hierarchy of three elementary grasp configurations
revealed using PCA. Occurring at the prescribed frequency of 1 Hz with distinct
delays between configurations within the 1 s time window, and thus constituting one
complex motor act, these configurations represent finger gaiting. 2. A functional
network of high global efficiency revealed by graph analysis of the time series of
the twelve finger and thumb sensors most involved in the configurations. The network
could be partitioned into three modules consisting of a. MCP and b. PIP joints of
the fingers and c. the thumb joint and palm arch, and reflecting intramodular
synchrony and intermodular asynchrony. 3. Striking lateral differences confirmed in
the 3D reconstruction of the manipulations in a single subject. The right hand
exhibited a larger workspace of opposed thumb and fingers than the left hand,
confirming the greater variability of spatial motor patterns proposed in the cluster
analysis of cohort principal components. In addition to providing a prototypical
task for the study of the post-stroke recovery, the sequence of basic manipulations
required by the task might serve as a model of human TOR involving prehensile
in-hand manipulation relevant also to the development of robotic tactile perception
systems [5, 59, 60]. Concerning post-stroke recovery, this study offers a
standard for monitoring sensori-motor defects. The practical importance resides in
the observation that preserved partial dexterity after stroke, including motor
control during active touch, has been shown to be an important resource in
rehabilitation of the upper extremity [1, 2]. Moreover,
post-stroke motor function may depend heavily on the recovery of sensory function
[22, 61], and persistent somatosensory impairment may be associated
with slow recovery and persistent dependency [62–64]. Possible use of the task in the future might be integration
of the instruction video into a rehabilitation program supplemented by visual
feedback of training sessions. In the future a more ambitious application might be
the addition of vibro-tactile stimulation at the site of the glove’s bend sensors
which, mediated by robot-assisted proprioceptive feedback, could progressively
facilitate motor performance [65,
66].
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