Journal of NeuroEngineering and Rehabilitation© The Author(s) 2021
https://doi.org/10.1186/s12984-021-00947-8

Review

Resting motor threshold in the course of hand motor recovery after stroke: a systematic review

Jitka Veldema1  , Dennis Alexander Nowak2 and Alireza Gharabaghi1
(1)Institute for Neuromodulation and Neurotechnology, Department of Neurosurgery and Neurotechnology, University Hospital and University of Tübingen, Otfried-Mueller-Str.45, 72076 Tübingen, Germany

(2)Department of Neurology, VAMED Hospital Kipfenberg, Konrad-Regler-Straße 1, 85110 Kipfenberg, Germany

 

 
Jitka Veldema
Email: jitka.veldema@klinikum.uni-tuebingen.de



Received: 24 June 2021Accepted: 13 October 2021Published online: 3 November 2021
Abstract
Background
Resting motor threshold is an objective measure of cortical excitability. Numerous studies indicate that the success of motor recovery after stroke is significantly determined by the direction and extent of cortical excitability changes. A better understanding of this topic (particularly with regard to the level of motor impairment and the contribution of either cortical hemisphere) may contribute to the development of effective therapeutical strategies in this cohort.

Objectives
This systematic review collects and analyses the available evidence on resting motor threshold and hand motor recovery in stroke patients.

Methods
PubMed was searched from its inception through to 31/10/2020 on studies investigating resting motor threshold of the affected and/or the non-affected hemisphere and motor function of the affected hand in stroke cohorts.

Results
Overall, 92 appropriate studies (including 1978 stroke patients and 377 healthy controls) were identified. The analysis of the data indicates that severe hand impairment is associated with suppressed cortical excitability within both hemispheres and with great between-hemispheric imbalance of cortical excitability. Favorable motor recovery is associated with an increase of ipsilesional motor cortex excitability and reduction of between-hemispheric imbalance. The direction of change of contralesional motor cortex excitability depends on the amount of hand motor impairment. Severely disabled patients show an increase of contralesional motor cortex excitability during motor recovery. In contrast, recovery of moderate to mild hand motor impairment is associated with a decrease of contralesional motor cortex excitability.

Conclusions
This data encourages a differential use of rehabilitation strategies to modulate cortical excitability. Facilitation of the ipsilesional hemisphere may support recovery in general, whereas facilitation and inhibition of the contralesional hemisphere may enhance recovery in severe and less severely impaired patients, respectively.
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Abbreviations
	BOLD
	Blood-oxygen-level-dependent

	BL
	Baseline

	(f)MRI
	(Functional) magnetic resonance imaging

	GABA
	Gamma aminobutyric acid

	MEP
	Motor evoked potential

	Mm
	Millimeter

	M1
	Primary motor cortex

	PET
	Positron emission tomography

	RMT/rMT
	Resting motor threshold

	(r)TMS
	(Repetitive) transcranial magnetic stimulation

	µV
	Microvolt

	1 FU
	First follow-up

	2 FU
	Second follow-up




Introduction
Stroke is the leading cause of long-term disability in adults world-wide [1]. In consequence, rehabilitation and optimized care of stroke survivors is of high socio-economic priority. Motor impairment is the most common clinical deficit after stroke [1] and its recovery usually remains incomplete. Six months after the cerebro-vascular incident 60 to 70 percent of stroke survivors suffer from motor impairment of one hand which significantly impacts disability and activities of daily living [2, 3]. Up to now, tens of studies have shown that motor recovery after stroke is accompanied by reorganization of the functional network architecture within both the lesioned and the non-lesioned hemisphere [4, 5]. Nevertheless, the mechanism underlying recovery of motor function after a focal lesion is still not sufficiently understood.
Transcranial magnetic stimulation (TMS) is a neurophysiological method often used to probe neural processing related to hand motor function/recovery after stroke. A comprehensive analysis of these data may help to foster our understanding of the neurophysiological changes in cortical excitability accompanying motor recovery and, at the same time, may contribute to optimize stroke rehabilitation. For this reason, we performed a review on the relationship of changes in corticospinal excitability within the ipsi- and contralesional hemisphere (as measured by TMS) and the functional outcome of the affected hand after stroke. This review summarizes current data on resting motor threshold and hand motor function over the course of recovery after stroke and compares these data with the data of healthy subjects. Following issues need to be clarified: (1) Is the cortical excitability of the ipsi- and the contralesional hemisphere in stroke patients higher or lower in comparison to a healthy brain? (2) Is the between-hemispheric balance of cortical excitability in stroke subjects shifted toward the contra- or ipsilesional hemisphere? (3) Is there a relationship between the level of cortical excitability within either hemisphere and the between-hemispheric imbalance? (4) Is there a relationship between the level of cortical excitability within either hemisphere and/or the between-hemispheric imbalances, and the motor function/motor recovery of the affected hand?
Neural plasticity following stroke
A focal brain lesion causes disturbance of functional and structural architecture within both the ipsilesional and contralesional hemisphere [4, 5]. Motor recovery results from the reorganization of neural interconnection within intact neuron pools, and causes alterations of movement-related neural activity within perilesional and more distant brain areas [4, 5]. This process is thought to compensate and adjust functional brain capacities to the new situation. “Adaptive/positive plasticity” means reorganization within neural tissue to optimize neural resources for recovery of function. However, such brain plasticity is not always “adaptive/positive”. The idea of “maladaptive/negative plasticity”, which may hamper motor recovery after stroke, is based on the theory of interhemispheric rivalry [6, 7]. In a healthy brain, neural activity in the motor areas of both hemispheres is functionally coupled and equally balanced in terms of mutual inhibitory control. An active movement of a hand is associated with an enhanced neural activity in contralateral motor areas and increased inhibitory influence toward homologous areas of the ipsilateral hemisphere [8, 9]. In stroke patients, a shift of the between-hemispheric balance detrimental to the affected hemisphere can be observed. Several fMRI and PET studies have shown that during an active movement of the affected hand there is increased neural activity within motor areas of both the lesioned and the non-lesioned hemisphere and describe a link to hand motor disability [10–13]. Patients with a favorable functional outcome show lateralized activation within the contralateral hemisphere (comparably to healthy subjects) during active movement of the affected hand. In contrast, patients with a poor motor outcome show bilateral recruitment of motor-related brain regions when moving the affected hand [10–13]. Based on this data, a maladaptive role of the contralesional (i.e., ipsilateral) hemisphere for motor recovery after stroke has been postulated. It has been assumed that the “overactive” non-lesioned hemisphere exerts an increased inhibitory influence towards the homologous areas of the lesioned hemisphere and hampers in this way the motor recovery of the affected hand. However, the general validity of this theory is still under debate. In contrast to fMRI and PET trials [10–13], TMS studies showed no clear evidence for increased excitability of the unaffected hemisphere or imbalanced interhemispheric inhibition. Moreover, no differences were detected between the unaffected hemisphere and healthy brains [14]. Furthermore, recent EEG-TMS studies provide contrasting findings with regard to interhemispheric interactions in chronic stroke cohorts. One study detected increased TMS-evoked interhemispheric beta coherence during ipsilesional M1 stimulation. This was associated with reduced intracortical inhibition within both the ipsi-and the contralesional hemisphere as compared to healthy subjects [15]. In contrast, another study found decreased TMS-evoked interhemispheric beta coherence during ipsilesional M1 stimulation and detected a correlation to the amount of hand motor disability [16]. Both studies have not found any relevant differences between the contralesional hemisphere in stroke patients in comparison to healthy controls. These findings indicate that the changes of neural processing following stroke are complex and not well understood.
Resting motor threshold
Over the past decades, tens of TMS-studies have investigated reorganization within the motor cortex after stroke as well as its relationship to hand motor recovery. We performed a comprehensive review on the resting motor threshold measure (an objective assessment of cortical excitability) and its relationship to motor rehabilitation. The resting motor threshold (rMT) is considered as the stimulus intensity that causes a “minimum motor response” in a resting muscle during single transcranial magnetic stimulation (TMS) pulses applied over the “motor hotspot” [17]. In literature, the “minimum motor response” is defined as the lowest stimulator output intensity that elicits a motor evoked potential (MEP) with a peak-to-peak amplitude of at least 50 µV in at least 50% of 8, 10 or 20 consecutive stimuli [17]. The “motor hotspot” is defined as the position on the scalp where the greatest amplitude and minimum latency of the motor evoked potential can be elicited [17]. A low resting motor threshold is associated with a high cortical excitability, a high resting motor threshold with a low cortical excitability. A recent review that investigated whether the rMT is a suitable biomarker for predicting post-stroke upper limb function found a correlation between rMT and upper limb motor function after stroke [18]. However, it needs still to be clarified how the rMT in either hemisphere changes in the course of motor recovery to identify potential mechanisms of functional restoration.
Methods
Data source
The PubMed research database was searched from its inception through to 31 October 2020 for studies investigating resting motor threshold as measured by TMS and motor function of both hands in stroke patients. The search terms “stroke”, “transcranial magnetic stimulation” and “motor” were used. The screening was performed by one reviewer. Figure 1 illustrates the actual search strategy.[image: ../images/12984_2021_947_Fig1_HTML.png]
Fig. 1Summary of literature search results based on PRISMA guidelines


Study selection
Studies matching the following criteria were included: (1) study on humans, (2) diagnosis of stroke with the consequence of a hemiparesis/hemiplegia, (3) assessment of motor function of both the affected and the non-affected hand, (4) assessment of resting motor threshold of the ipsilesional and/or contralesional hemisphere, (5) prospective study and (6) more than four patients included. The appropriate studies were included, regardless of study design used (interventional—observational, crossover—longitudinal, different number of groups).
Data extraction
The primary data extracted from the selected publications were (1) the hand motor function of the affected and non-affected hand and (2) the resting motor threshold of the affected and/or the non-affected hemisphere. For longitudinal studies, the baseline data, and the data of two last follow-up evaluations were extracted. If a healthy control group was available, the resting motor threshold of the non-dominant and the dominant hemisphere was extracted for a comparison with stroke subjects. The secondary selected data were (1) subjects characteristics (number, age, gender, time since stroke, stroke etiology and location), (2) methodological approach (study design, interventions, evaluations scheduling) and assessments (targeted muscle, stimulator and coil type, hand motor assessment) (Tables 1, 2, 3).Table 1Subjects characteristics and study design of studies included in the review


	Patients characteristics
	Study design
	Healthy controls (number)
	References

	Number/sex/age (years)
	Time since stroke
	Stroke etiology and location
	Cross-sectional
	Longitudinal
	Observational
	Interventional
	Interventions/groups
	Evaluations schedule (days)

	BL
	1.FU
	2.FU

	19/Na/69 ± 10
	Acute phase
	19 i/10sc, 9c/6r, 13 l
	✘
	 	✘
	 	 	0
	 	 	 	Nascimbeni et al. [60]

	8 m, 8f/58 ± 18
	 < 1 day
	19 i/19c/8r, 8 l
	 	✘
	✘
	 	Na
	0
	365
	 	20
	Delvaux et al. [61]

	7 m, 3f/37–80
	1–5 days
	19i/6sc, 4c/5r, 5 l
	✘
	 	✘
	 	Na
	0
	 	 	 	Freundlieb et al. [62]

	12 m, 9f/72 ± 3
	1–5 days
	16i, 5 h/6sc, 13c, 1na/7r, 14 l
	✘
	 	✘
	 	Na
	0
	 	 	 	Trompetto et al. [37]

	7 m, 5f/70 ± 10
	5 ± 3 days
	12i/3sc, 9c/3r, 9 l
	✘
	 	✘
	 	Na
	0
	 	 	12
	Di Lazzaro et al. [63]

	8 m, 17f/53 ± 10
	5 ± 3 days
	25i/18sc, 8c/11r, 14 l
	✘
	 	✘
	 	Na
	0
	 	 	 	Du et al. [27]

	14 m, 6f/65 ± 11
	5 ± 3 days
	20i/sc,c/na
	 	✘
	 	✘
	(1) Anodal tDCS
	0
	5
	33
	 	Sattler et al. [30]

	(2) Sham tDCS

	48 m, 12f/55 ± 11
	5 ± 4 days
	60i/46sc, 14c/28r, 33 l
	✘
	 	✘
	 	Na
	0
	 	 	 	Du et al. [64]

	15 m, 16f/64 ± 14
	6 (1–18) days
	31i/14sc, 17c/12r, 19 l
	✘
	 	✘
	 	Na
	0
	 	 	29
	Huynh et al. [28]

	17 m, 9f/67 ± 13
	7 ± 4 days
	26i/21sc, 5c/22r, 4 l
	✘
	 	✘
	 	Na
	0
	 	 	 	Volz et al. [65]

	39 m, 44f/43–66
	8 ± 2 days
	83i/na/na
	 	✘
	 	✘
	(1) CIMT
	0
	14
	 	 	El Helow et al. [66]

	(2) CT

	10 m, 6f/69 ± 7
	10 days
	16i/na/10r, 6 l
	 	✘
	 	✘
	(1) 1 Hz rTMS
	0
	45
	90
	 	Blesneag et al. [67]

	(2) Sham rTMS

	6/na/18–80
	10 ± 3 days
	6i/4sc, 2c/4r, 2 l
	 	✘
	✘
	 	Na
	0
	90
	180
	 	Birchenall et al. [68]

	6 m, 4f/58 ± 16
	10 ± 4 days
	10i/4sc, 6c/8r, 2 l
	 	✘
	✘
	 	Na
	0
	30
	180
	 	Swayne et al. [34]

	26 m, 14f/58 ± 9
	13 ± 5 days
	40i/14sc, 26c/22r, 18 l
	 	✘
	 	✘
	(1) Anodal tDCS
	0
	7
	 	 	Khedr et al. [69]

	(2) Cathodal tDCS

	(3) Sham tDCS

	10 m, 8f/59 ± 3
	 < 4 weeks
	18i/5sc, 13c/9r, 9 l
	✘
	 	✘
	 	Na
	0
	 	 	13
	Bütefisch et al. [70]

	24 m, 7f/37 ± 8
	14 days
	31i/31sc/12r, 19 l
	 	✘
	✘
	 	Na
	0
	14
	28
	 	Prashanta et al. [71]

	13 m, 8f/60 ± 12
	16 ± 5 days
	9i, 12 h/na/16r, 5 l
	✘
	 	✘
	 	Na
	0
	 	 	 	Lee et al. [72]

	13 m, 4f/60 ± 10
	25 days
	na/8sc, 8c, 1na/11r, 6 l
	 	✘
	 	✘
	(1) Virtual reality training
	0
	14
	44
	 	Yarossi et al. [73]

	10 m, 12f/62 ± 14
	27 ± 12 days
	18i, 4 h/na/10r, 12 l
	 	✘
	 	✘
	(1) 1 Hz rTMS + AO
	0
	10
	 	 	Noh et al. [74]

	(2) 1 Hz rTMS

	16 m, 8f/64 ± 11
	27 ± 7 days
	10i, 14 h/24sc/na
	 	✘
	✘
	 	Na
	0
	90
	365
	25
	Takechi et al. [75]

	6 m, 8f/68 ± 10
	30 days
	14i/7sc, 7c/5r, 7 l
	 	✘
	✘
	 	Na
	0
	30
	 	 	Lioumis et al. [76]

	8 m, 2f/67 ± 7
	30 ± 6 days
	2i, 8 h/3sc, 7c/4r, 6 l
	✘
	 	✘
	 	Na
	0
	 	 	10
	Cincinelli et al. [77]

	6 m, 4f/72 ± 8
	30 ± 12 days
	9i, 1 h/8sc, 2c/4r, 6 l
	✘
	 	✘
	 	Na
	0
	 	 	 	Lüdemann-Podubecká et al. [78]

	10 m, 7f/66 ± 15
	31 ± 20 days
	14i, 3 h/4sc, 13c/10r, 7 l
	✘
	 	✘
	 	Na
	0
	 	 	 	Veldema et al. [38]

	16 m, 12f/62 ± 14
	32 ± 15 days
	na/sc, c/16r, 12 l
	 	✘
	✘
	 	Na
	0
	28
	 	 	Platz et al. [79]

	13 m, 7f/58 ± 11
	34 ± 13 days
	20i/11sc, 9c/8r, 12 l
	✘
	 	✘
	 	Na
	0
	 	 	 	Renner et al. [80]

	11 m, 4f/55 ± 18
	34 ± 9 days
	9i, 6 h/12sc, 3c/7r, 7 l, 1na
	✘
	 	✘
	 	Na
	0
	 	 	15
	Kim et al. [22]

	6 m, 4f/60 ± 6
	37 ± 15 days
	10i/7sc, 3c/5r, 5 l
	 	✘
	 	✘
	(1) TBS
	0
	1
	 	10
	Khan et al. [81]

	(2) NMES

	(3) TBS + NMES

	11 m, 9f/64 ± 12
	37 ± 17 days
	15i, 5 h/11sc, 9c/11r, 9 l
	 	✘
	✘
	 	Na
	0
	90
	120
	 	Traversa et al. [82]

	9 m, 9f/62 ± 10
	38 days
	18i/18sc/14r, 4 l
	✘
	 	✘
	 	Na
	0
	 	 	11
	Renner et al. [83]

	26 m, 14f/63 ± 9
	40 ± 24 days
	35i, 5 h/14sc, 26c/23r, 17 l
	✘
	 	✘
	 	Na
	0
	 	 	 	Seniòw et al. [84]

	6 m, 8f/67 ± 12
	43 ± 12 days
	11i, 3 h/6sc, 8c/6r, 8 l
	✘
	 	✘
	 	Na
	0
	 	 	14
	Brouwer et al. [25]

	5 m, 4f/55 (42–68)
	43 days
	9i/7sc, 2c/3r, 6 l
	 	✘
	 	✘
	(1) PT
	0
	0
	1
	 	Liepert et al. [85]

	12 m, 6f/61 ± 12
	35–60 days
	na/10sc, 8c/3r, 16 l
	 	✘
	✘
	 	Na
	0
	63
	 	20
	Cincinelli et al. [26]

	2 m, 6f/76 ± 14
	52 ± 37 days
	4i, 4 h/4sc, 4c/3r, 5 l
	 	✘
	✘
	 	Na
	0
	60
	 	 	Matsura et al. [86]

	9 m, 9f/70 ± 10
	54 ± 44 days
	na/8sc, 10c/11r, 7 l
	✘
	 	✘
	 	Na
	0
	 	 	 	Veldema et al. [44]

	16 m, 8f/50 ± 12
	71 ± 39 days
	15i, 8 h, 1ih/14sc, 10c/13r, 11 l
	✘
	 	✘
	 	Na
	0
	 	 	 	Tarri et al. [87]

	11 m, 6f/64 ± 10
	73 ± 15 days
	na/5sc, 12c/7r, 10 l
	✘
	 	✘
	 	Na
	0
	 	 	 	Cincinelli et al. [88]

	5 m, 3f/60 ± 13
	83 ± 56 days
	8i/8sc/2r, 6 l
	✘
	 	✘
	 	Na
	0
	 	 	8
	Liepert et al. [89]

	6 m, 3f/62 ± 10
	3 ± 1 months
	8i, 1 h/5sc, 4c/7r, 2 l
	 	✘
	✘
	 	Na
	0
	28
	 	9
	Grau-Sánchez et al. [90]

	26 m, 14f/63 (57–71)
	4 (1–59) months
	40i, 24sc, 16c/20r, 20 l
	✘
	 	✘
	 	Na
	0
	 	 	24
	Kemlin et al. [91]

	11 m, 9f/72 ± 13
	 < 6 months
	20i/11sc, 9c/11r, 9 l
	✘
	 	✘
	 	Na
	0
	 	 	 	Schambra et al. [92]

	15 m, 6f/62 ± 9
	 > 6 months
	21i/12sc, 9c/6r, 15 l
	✘
	 	✘
	 	Na
	0
	 	 	 
	38 m, 10f/63 ± 12
	5 ± 4 months
	48i/22sc, 23c, 3na/na
	 	✘
	 	✘
	(1) 1 Hz rTMS + iTBS
	0
	28
	120
	 	Wang et al. [45]

	(2) iTBS + 1 Hz rTMS

	(3) sham

	13/na/58 ± 4
	3–9 months
	13i/na/na
	 	✘
	✘
	 	Na
	0
	14
	28
	 	Sawaki et al. [123]

	26/na/58 ± 4
	 > 3 months
	26i/na/na
	 	✘
	✘
	 	(1) 3–9 months since stroke
	0
	14
	134
	 	Sawaki et al. [93]

	(2) > 12 months since stroke


	Patients characteristics
	Study design
	Evaluations schedule (days)
	Healthy controls (number)
	References

	Number/sex
	Time since stroke
	Stroke etiology and location
	Cross-sectional
	Longitudinal
	Observational
	Interventional
	Groups
	BL
	1.FU
	2.FU

	17 m, 7f/61 ± 13
	6 ± 12 months
	24i/10sc, 14c/17r, 7 l
	✘
	 	✘
	 	Na
	0
	 	 	 	Theilig et al. [94]

	26 m, 16f/59 ± 11
	7 ± 6 months
	na/na/28r, 14 l
	✘
	 	✘
	 	Na
	0
	 	 	 	Chervyakov et al. [95]

	41 m, 13f/63 ± 13
	8 ± 2 months
	35i, 19 h/35sc, 19c/na
	 	✘
	 	✘
	(1) 1 Hz rTMS + iTBS
(2) sham rTMS + iTBS
(3) 1 Hz rTMS + sham iTBS
(4) sham rTMS + sham iTBS
	0
	14
	28
	 	Sung et al. [96]

	17 m, 9f/64 ± 12
	6–18 months
	Na/26sc/12r, 14 l
	✘
	 	✘
	 	Na
	0
	 	 	20
	Pennisi et al. [97]

	36/na/66 ± 7
	 > 6 months
	36i/sc, c/na
	✘
	 	✘
	 	Na
	0
	 	 	 	Borich et al. [24]

	5 m, 7f/26–75
	14 ± 9 months
	Na (6sc, 6c/6r, 6 l
	✘
	 	✘
	 	Na
	0
	 	 	 	Bastings et al. [40]

	13 m, 9f/64 ± 9
	17 ± 7 months
	22i/3sc, 19c/8r, 14 l
	✘
	 	✘
	 	Na
	0
	 	 	 	Cakar et al. [23]

	6 m, 4f/56 ± 11
	17 ± 15 months
	7i,3 h/na/4r, 6 l
	✘
	 	✘
	 	Na
	0
	 	 	 	Shiner et al. [31]

	6 m, 3f/52 ± 9
	18 ± 6 months
	9i/9sc/9 l
	✘
	 	✘
	 	Na
	0
	 	 	 	Braun et al. [98]

	6 m, 4f/61 ± 8
	6–48 months
	na/na/na
	✘
	 	✘
	 	Na
	0
	 	 	10
	Cruz Martínez et al. [99]

	6 m, 1f/66 ± 9
	23 ± 13 months
	5i, 2 h/5sc, 2c/2r, 5 l
	 	✘
	✘
	 	Na
	0
	21
	 	 	Chouinard et al. [100]

	7 m, 6f/69 ± 8
	23 ± 16 months
	10i, 3 h/13sc/4r, 9 l
	✘
	 	✘
	 	Na
	0
	 	 	 	Ackerley et al. [101]

	13 m, 7f/53 ± 14
	27 ± 18 months
	20i/na/8r, 12 l
	✘
	 	✘
	 	Na
	0
	 	 	 	Takeuchi et al. [35]

	10 m, 2f/57 ± 12
	28 ± 30 months
	12i/12sc/10r, 2 l
	✘
	 	✘
	 	Na
	0
	 	 	 	Bestmann et al. [41]

	15 m, 6f/54 ± 12
	29 ± 38 months
	na/8sc, 13c/9r, 12 l
	✘
	 	✘
	 	Na
	0
	 	 	 	Stinear et al. [33]

	7 m, 3f/59 ± 15
	30 ± 25 months
	na/na/6r, 4 l
	 	✘
	 	✘
	(1) OT
	0
	28
	58
	 	Koski et al. [21]

	15 m, 5f/59 ± 9
	6–74 months
	na/12sc, 8c/9r, 11 l
	 	✘
	✘
	 	Na
	0
	28
	 	 	Amangual et al. [124]

	2 m, 4f/58 ± 15
	31 ± 38 months
	6i/3sc, 3c/1r, 5 l
	✘
	 	✘
	 	Na
	0
	 	 	 	Talelli et al. [102]

	13 m, 3f/64 (41–81)
	33 (12–86) months
	16i/na/2r, 14 l
	 	✘
	 	✘
	(1) CIMT
(2) control
	0
	10
	 	 	Wittenberg et al. [103]

	12 m, 8f/61 ± 6
	38 ± 38 months
	Na/na/6r, 14 l
	✘
	 	✘
	 	Na
	0
	 	 	 	Milot et al. [104]

	15 m, 3f/67 ± 2
	40 ± 6 months
	Na/12sc, 6c/5r, 13 l
	✘
	 	✘
	 	Na
	0
	 	 	17
	Guder et al. [42]

	7 m, 5f/60 ± 11
	40 ± 25 months
	Na/6sc, 6c/4r, 8 l
	 	✘
	✘
	 	Na
	0
	12
	 	 	Liepert et al. [105]

	17 m, 13f/65 ± 9
	40 ± 27 months
	Na/8sc, 21c/17r, 13 l
	 	✘
	 	✘
	(1) PT
(2) RMV + PT
	0
	7
	14
	 	Marconi et al. [106]

	17 m, 6f/56 ± 14
	43 ± 63 months
	23i/23sc/15r, 8 l
	✘
	 	✘
	 	Na
	0
	 	 	 	Thickbroom et al. [36]

	50 m, 32f/68 (42–90)
	43 (5–227) months
	82i/na /82 l
	 	✘
	✘
	 	Na
	0
	90
	270
	 	Edwards et al. [20]

	6 m, 3f/40 ± 5
	44 ± 8 months
	9i/2sc, 7c/1r, 8 l
	✘
	 	✘
	 	Na
	0
	 	 	 	Conforto et al. [107]

	11 m, 8f/66 ± 11
	45 ± 36 months
	19i/13sc, 6c/11r, 8 l
	✘
	 	✘
	 	Na
	0
	 	 	 	Palmer et al. [16]

	4 m, 5f/57 ± 17
	50 ± 41 months
	9i/sc, c/5r, 4 l
	✘
	 	✘
	 	Na
	0
	 	 	 	Von Lewinski et al. [108]

	8 m, 4f/62 ± 10
	51 ± 30 months
	12i/12c/6r, 6 l
	✘
	 	✘
	 	Na
	0
	 	 	 	Carey et al. [109]

	8 m, 5f/66 ± 10
	52 ± 39 months
	13i/13sc/7r, 6 l
	✘
	 	✘
	 	Na
	0
	 	 	12
	Gray et al. [110]

	50 m, 20f/60 ± 12
	57 ± 63 months
	i, h/na/38r, 32 l
	✘
	 	✘
	 	Na
	0
	 	 	 	Kuppuswamy et al. [111]

	8 m, 3f/66 ± 9
	57 ± 52 months
	9i, 2 h/5sc, 6c/3r, 8 l
	✘
	 	✘
	 	Na
	0
	 	 	 	Cassidy et al. [112]

	4 m, 6f/62 ± 12
	4.8 ± 5.5 years
	10i/7sc, 3c/6r, 4 l
	 	✘
	✘
	 	Na
	0
	14
	28
	 	Restemeyer et al. [113]

	11 m, 1f/71 ± 9
	5.0 ± 4.4 years
	na/1sc, 11c/7r, 5r
	✘
	 	✘
	 	Na
	0
	 	 	16
	Mooney et al. [114]

	10 m, 8f/62 ± 12
	5.1 ± 1.0 years
	18i/10sc, 8c/8r, 10 l
	✘
	 	✘
	 	Na
	0
	 	 	18
	Buetefisch et al. [115]

	10 m, 4f/48–91
	5.1 ± 3.8 years
	14i/na/na
	✘
	 	✘
	 	Na
	0
	 	 	 	Silverstein et al. [32]

	17 m, 10f/61 ± 8
	5.6 ± 4.0 years
	na/27sc/14r, 13 l
	✘
	 	✘
	 	Na
	0
	 	 	 	Takeuchi et al. [116]

	10 m, 3f/57 ± 10
	5.9 ± 4.7 years
	13i/10sc, 3c/2r, 11 l
	 	✘
	✘
	 	Na
	0
	40
	194
	 	Liepert et al. [117]

	19 m, 5f/65 ± 9
	6.0 ± 5.1 years
	na/14sc, 8c/na
	✘
	 	✘
	 	Na
	0
	 	 	11
	Mang et al. [43]

	14 m, 6f/62 ± 14
	6.2 ± 2.7 years
	20i/13sc, 7c/12r, 8 l
	✘
	 	✘
	 	Na
	0
	 	 	 	Werhahn et al. [39]

	9 m, 4f/66 ± 9
	6.2 ± 3.6 years
	na/8sc, 4c/6r, 7 l
	✘
	 	✘
	 	Na
	0
	 	 	 	Miller et al. [29]

	26 m, 6f/61 ± 8
	6.8 ± 3.5 years
	20i, 12 h/na/12r, 20 l
	✘
	 	✘
	 	Na
	0
	 	 	 	Liu et al. [118]

	6 m, 2f/59 ± 9
	7.3 ± 7.5 years
	na/6sc, 2c/4r, 4 l
	 	✘
	✘
	 	Na
	0
	28
	 	 	Liepert et al. [119]

	22 m, 5f/61 ± 8
	7.6 ± 2.3 years
	17i, 10 h/na/9r, 18 l
	✘
	 	✘
	 	Na
	0
	 	 	15
	Liu et al. [120]

	6 m, 8f/62 ± 16
	8.0 ± 11.3 years
	9i, 5 h/7sc, 7c/8r, 6 l
	✘
	 	✘
	 	Na
	0
	 	 	14
	Brouwer et al. [25]

	11 m, 5f/59 ± 10
	10.0 ± 6.0 years
	na/na/6r, 10 l
	✘
	 	✘
	 	Na
	0
	 	 	9
	Lewis et al. [121]

	5 m, 5f/16 ± 6
	16 ± 6 years
	na /sc, c/4r, 6 l
	✘
	 	✘
	 	Na
	0
	 	 	8
	Berweck et al. [122]


AO, action observation; c, cortical involvement; BL, baseline; CIMT, constraint induced movement therapy; f, female; h, hemorrhagic; Hz, hertz; I, ischemic; iTBS, intermittent theta burst stimulation; l, left; m, male; na, not available, not applicable; NMES, neuromuscular electrical stimulation; OT, occupational therapy; PT, physiotherapy; r, right; RMV, repeated muscle vibration; rTMS, repetitive transcranial magnetic stimulation; sc, subcortical; tDCS, transcranial direct current stimulation; (i)TBS, (intermittent) theta burst stimulation; 1. FU, first follow-up; 2. FU, second follow-up


Table 2Motor function of the affected and the non-affected hand (means) and laterality quotients (means) of studies included in the review


	Test (units)
	Interventions/groups
	Baseline
	1. Follow up
	2. Follow up
	1. Follow up—baseline changes
	2. Follow up—baseline changes
	References

	NA
	A
	LQ
	NA
	A
	LQ
	NA
	A
	LQ
	NA
	A
	LQ
	NA
	A
	LQ

	MI (UL) (score)
	Na
	100
	10
	82
	 	 	 	 	 	 	 	 	 	 	 	 	Nascimbeni et al. [60]

	MRC (score)
	Na
	5.0
	0.7
	75
	5.0
	4.0
	11
	 	 	 	0.0
	3.3
	−64
	 	 	 	Delvaux et al. [61]

	FM (score)
	Na
	66
	44
	20
	 	 	 	 	 	 	 	 	 	 	 	 	Freundlieb et al. [62]

	SSS hand (score)
	Na
	6.0
	1.1
	69
	 	 	 	 	 	 	 	 	 	 	 	 	Trompetto et al. [37]

	NIHSS (UL) (score)
	Na
	0.0
	1.9
	100
	 	 	 	 	 	 	 	 	 	 	 	 	Di Lazzaro et al. [63]

	FM (score)
	Na
	66
	34
	32
	 	 	 	 	 	 	 	 	 	 	 	 	Du et al. [27]

	FM (score)
	(1) Anodal tdcs
	66
	47
	17
	66
	54
	10
	66
	60
	5
	0
	7
	−7
	0
	13
	−12
	Sattler et al. [30]

	(2) Sham tdcs
	66
	49
	15
	66
	58
	6
	66
	61
	4
	0
	9
	−8
	0
	12
	−11

	FM (score)
	Na
	66
	28
	40
	 	 	 	 	 	 	 	 	 	 	 	 	Du et al. [64]

	FM (score)
	Na
	66
	50
	14
	 	 	 	 	 	 	 	 	 	 	 	 	Huynh et al. [28]

	Grip strength (N)
	Na
	65
	25
	44
	 	 	 	 	 	 	 	 	 	 	 	 	Volz et al. [65]

	FM (score)
	(1) CT
	66
	36
	29
	66
	37
	28
	 	 	 	0
	1
	−1
	 	 	 	El Helow et al. [66]

	(2) CIMT
	66
	32
	35
	66
	50
	14
	 	 	 	0
	18
	−21
	 	 	 
	FM (score)
	(1) Sham rTMS
	66
	32
	35
	66
	38
	27
	66
	42
	22
	0
	6
	−8
	0
	10
	−12
	Blesneag et al. [67]

	(2) 1 Hz rTMS
	66
	29
	39
	66
	43
	21
	66
	45
	19
	0
	14
	−18
	0
	16
	−20

	FM (score)
	Na
	66
	15
	63
	66
	50
	14
	66
	46
	18
	0
	35
	−49
	0
	31
	−45
	Birchenall et al. [68]

	ARAT (score)
	Na
	57
	34
	25
	57
	45
	12
	57
	51
	6
	0
	11
	−14
	0
	17
	−20
	Swayne et al. [34]

	MRC (score)
	(1) Anodal tdcs
	5.0
	1.5
	54
	5.0
	3.3
	20
	 	 	 	0.0
	1.8
	−33
	 	 	 	Khedr et al. [69]

	(2) Cathodal tdcs
	5.0
	2.0
	43
	5.0
	3.4
	19
	 	 	 	0.0
	1.4
	−24
	 	 	 
	(3) Sham tdcs
	5.0
	1.5
	54
	5.0
	2.4
	35
	 	 	 	0.0
	0.9
	−19
	 	 	 
	MI (UL) (score)
	Na
	100
	63
	23
	 	 	 	 	 	 	 	 	 	 	 	 	Bütefisch et al. [70]

	MRC (score)
	Na
	5.0
	0.0
	100
	5.0
	2.7
	30
	5.0
	2.6
	32
	0.0
	2.7
	−70
	0.0
	2.6
	−68
	Prashanta et al. [71]

	FM (score)
	Na
	66
	23
	48
	 	 	 	 	 	 	 	 	 	 	 	 	Lee et al. [72]

	FM (score)
	(1) VRT
	66
	24
	47
	66
	35
	31
	66
	46
	18
	0
	11
	−16
	0
	22
	−29
	Yarossi et al. [73]

	FM (score)
	(1) 1 Hz rTMS + AO
	66
	28
	40
	66
	40
	25
	 	 	 	0
	12
	−16
	 	 	 	Noh et al. [74]

	(2) 1 Hz rTMS
	66
	21
	52
	66
	31
	36
	 	 	 	0
	10
	−16
	 	 	 
	FM (score)
	Na
	66
	30
	38
	66
	44
	20
	66
	45
	19
	0
	14
	−18
	0
	15
	−19
	Takechi et al. [75]

	ARAT (score)
	Na
	57
	48
	9
	57
	50
	7
	 	 	 	0
	2
	−2
	 	 	 	Lioumis et al. [76]

	CNS (UL) (score)
	Na
	4.5
	1.1
	61
	 	 	 	 	 	 	 	 	 	 	 	 	Cincinelli et al. [77]

	JTHFT (sec)
	Na
	6.39
	10.41
	24
	 	 	 	 	 	 	 	 	 	 	 	 	Lüdemann-Podubecká et al. [46]

	WMFT (score)
	Na
	70
	32
	37
	 	 	 	 	 	 	 	 	 	 	 	 	Veldema et al. [44]

	FM (score)
	Na
	66
	24
	47
	66
	36
	29
	 	 	 	0
	12
	−17
	 	 	 	Platz et al. [79]

	MI (UL) (score)
	Na
	100
	62
	23
	 	 	 	 	 	 	 	 	 	 	 	 	Renner et al. [80]

	FM (score)
	Na
	66
	55
	9
	 	 	 	 	 	 	 	 	 	 	 	 	Kim et al. [22]

	NHPT (time)
	(1) TBS
	36
	22
	24
	34
	22
	21
	 	 	 	−2
	0
	−3
	 	 	 	Khan et al. [81]

	(2) NMES
	36
	22
	24
	34
	21
	24
	 	 	 	−2
	−1
	−1
	 	 	 
	(3) TBS + NMES
	36
	21
	26
	30
	21
	18
	 	 	 	−6
	0
	−9
	 	 	 
	CNS (UL) (score)
	Na
	4.5
	0.5
	80
	4.5
	0.9
	67
	4.5
	1.0
	64
	0.0
	0.4
	−13
	0.0
	0.5
	−16
	Traversa et al. [82]

	RMA (score)
	Na
	15.0
	11.8
	12
	 	 	 	 	 	 	 	 	 	 	 	 	Renner et al. [83]

	WMFT (score)
	Na
	75
	38
	33
	75
	48
	22
	75
	55
	15
	0
	10
	−11
	0
	17
	−17
	Seniòw [84]

	MAS (UL) (score)
	Na
	68
	24
	48
	 	 	 	 	 	 	 	 	 	 	 	 	Brouwer et al. [25]

	FAT (score)
	(1) PT
	5
	3.8
	14
	5
	3.8
	14
	5
	3.8
	14
	0
	0
	0
	0
	0.0
	0
	Liepert et al. [119]

	CNS (UL) (score)
	Na
	4.50
	0.36
	85
	 	 	 	 	 	 	 	 	 	 	 	 	Cincinelli et al. [26]

	FM (score)
	Na
	66
	52
	12
	66
	58
	6
	 	 	 	0
	6
	−5
	 	 	 	Matsura et al. [86]

	WMFT (score)
	Na
	70
	31
	39
	 	 	 	 	 	 	 	 	 	 	 	 	Veldema et al. [44]

	FM (score)
	Na
	66
	23
	48
	 	 	 	 	 	 	 	 	 	 	 	 	Tarri et al. [87]

	MI (UL) (score)
	Na
	100
	72
	16
	 	 	 	 	 	 	 	 	 	 	 	 	Cincinelli et al. [88]

	Grip strength (N)
	Na
	75
	62
	9
	 	 	 	 	 	 	 	 	 	 	 	 	Liepert et al. [89]

	ARAT (score)
	Na
	57
	38
	20
	57
	46
	11
	 	 	 	0
	8
	−9
	 	 	 	Grau-Sánchez et al. [90]

	FM (score)
	Na
	66
	52
	12
	 	 	 	 	 	 	 	 	 	 	 	 	Kemlin et al. [91]

	MRC (score)
	(1) < 6 months
	5.0
	4.4
	6
	 	 	 	 	 	 	 	 	 	 	 	 	Schambra et al. [92]

	(2) > 6 months
	5.0
	4.0
	11
	 	 	 	 	 	 	 	 	 	 	 	 
	WMFT (score)
	(1) 1 Hz rTMS + iTBS
	75
	30
	43
	75
	38
	33
	75
	40
	30
	0
	8
	−10
	0
	10
	−12
	Wang et al. [45]

	(2) iTBS + 1 Hz rTMS
	75
	31
	42
	75
	35
	36
	75
	37
	34
	0
	4
	−5
	0
	6
	−8

	(3) sham
	75
	31
	42
	75
	32
	40
	75
	31
	42
	0
	1
	−1
	0
	0
	0

	WMFT (sec)
	Na
	0.48
	1.30
	46
	0.43
	1.20
	47
	0.45
	1.26
	47
	−0.05
	−0.10
	1
	−0.03
	−0.04
	1
	Sawaki et al. [123]

	WMFT (min)
	(1) 3–9 months
	0.36
	1.17
	53
	0.32
	0.88
	47
	0.42
	0.96
	39
	−0.04
	−0.29
	−6
	0.06
	−0.21
	−14
	Sawaki et al. [93]

	(2) > 12 months
	0.42
	1.24
	49
	0.39
	1.18
	50
	0.31
	1.21
	59
	−0.03
	−0.06
	1
	−0.11
	−0.03
	10

	WMFT (score)
	Na
	75
	15
	67
	 	 	 	 	 	 	 	 	 	 	 	 	Theilig et al. [94]

	FM (score)
	Na
	66
	32
	35
	 	 	 	 	 	 	 	 	 	 	 	 	Chervyakov et al. [95]

	WMFT (score)
	(1) 1 Hz rTMS + iTBS
	75
	31
	42
	75
	33
	39
	75
	39
	32
	0
	2
	−3
	0
	8
	−10
	Sung et al. [96]

	WMFT (score)
	(2) Sham rTMS + iTBS
	75
	31
	42
	75
	31
	42
	75
	33
	39
	0
	0
	0
	0
	2
	−3

	WMFT (score)
	(3) 1 Hz rTMS + sham iTBS
	75
	33
	39
	75
	40
	30
	75
	35
	36
	0
	7
	−8
	0
	2
	−3

	WMFT (score) (sham + sham)
	(4) Sham rTMS + sham iTBS
	75
	31
	42
	75
	31
	42
	75
	32
	40
	0
	0
	0
	0
	1
	−1

	NHPT (time)
	Na
	17
	19
	3
	 	 	 	 	 	 	 	 	 	 	 	 	Pennisi et al. [97]

	B&B (score)
	Na
	55
	29
	31
	 	 	 	 	 	 	 	 	 	 	 	 	Borich et al. [24]

	MI (UL) (score)
	Na
	33
	25
	14
	 	 	 	 	 	 	 	 	 	 	 	 	Bastings et al. [40]

	MI (UL) (score)
	Na
	100
	57
	27
	 	 	 	 	 	 	 	 	 	 	 	 	Cakar et al. [23]

	FM (score)
	Na
	66
	55
	9
	 	 	 	 	 	 	 	 	 	 	 	 	Shiner et al. [31]

	MRC (score)
	Na
	5.0
	4.2
	9
	 	 	 	 	 	 	 	 	 	 	 	 	Braun et al. [98]

	CNS (UL) (score)
	Na
	4.5
	2.2
	34
	 	 	 	 	 	 	 	 	 	 	 	 	Cruz-Martínez et al. [99]

	MAL (score)
	Na
	5.0
	2.6
	32
	5.0
	3.9
	12
	 	 	 	0.0
	1.3
	−19
	 	 	 	Chouinard et al. [100]

	FM (score)
	Na
	66
	41
	23
	 	 	 	 	 	 	 	 	 	 	 	 	Ackerley et al. [101]

	FM (score)
	Na
	66
	45
	19
	 	 	 	 	 	 	 	 	 	 	 	 	Takeuchi et al. [35]

	ARAT (score)
	Na
	57
	48
	9
	 	 	 	 	 	 	 	 	 	 	 	 	Bestmann et al. [41]

	FM (score)
	Na
	66
	16
	61
	 	 	 	 	 	 	 	 	 	 	 	 	Stinear et al. [33]

	FM (score)
	Na
	66
	36
	29
	66
	42
	22
	66
	45
	19
	0
	6
	−7
	0
	9
	−10
	Koski et al. [21]

	ARAT (score)
	Na
	57
	42
	15
	57
	47
	10
	 	 	 	0
	4
	−5
	 	 	 	Amengual et al. [124]

	ARAT (score)
	Na
	57
	51
	6
	 	 	 	 	 	 	 	 	 	 	 	 	Talelli et al. [102]

	MAL (score)
	(1) CIMT
	5.0
	1.1
	64
	5.0
	2.2
	39
	 	 	 	0.0
	1.1
	−25
	 	 	 	Wittenberg et al. [103]

	(2) Control
	5.0
	1.3
	59
	5.0
	1.3
	59
	 	 	 	0.0
	0.0
	0
	 	 	 
	FM (score)
	Na
	66
	52
	12
	 	 	 	 	 	 	 	 	 	 	 	 	Milot et al. [104]

	FM (score)
	Na
	66
	57
	7
	 	 	 	 	 	 	 	 	 	 	 	 	Guder et al. [42]

	MAL (score)
	Na
	5.0
	2.2
	39
	5.0
	3.0
	25
	 	 	 	0.0
	0.8
	−14
	 	 	 	Liepert et al. [105]

	WMFT (score)
	(1) PT
	75
	40
	30
	75
	42
	28
	75
	43
	27
	0
	2
	−2
	0
	3
	−3
	Marconi et al. [106]

	 	(2) RMV + PT
	75
	38
	33
	75
	46
	24
	75
	53
	17
	0
	8
	-9
	0
	15
	−16
	 
	Grip strength (N)
	Na
	40
	37
	3
	 	 	 	 	 	 	 	 	 	 	 	 	Thickbroom et al. [36]

	FM (score)
	Na
	66
	25
	45
	66
	33
	33
	66
	34
	32
	0
	8
	−12
	0
	9
	−13
	Edwards et al. [20]

	FM (score)
	Na
	66
	63
	2
	 	 	 	 	 	 	 	 	 	 	 	 	Conforto et al. [107]

	FM (score)
	Na
	66
	50
	14
	 	 	 	 	 	 	 	 	 	 	 	 	Palmer et al. [16]

	ARAT (score)
	Na
	57
	8
	75
	 	 	 	 	 	 	 	 	 	 	 	 	Von Lewinski et al. [108]

	FM (score)
	Na
	66
	39
	26
	 	 	 	 	 	 	 	 	 	 	 	 	Carey et al. [109]

	FM (score)
	Na
	66
	51
	13
	 	 	 	 	 	 	 	 	 	 	 	 	Gray et al. [110]

	ARAT (score)
	Na
	57
	56
	1
	 	 	 	 	 	 	 	 	 	 	 	 	Kuppuswamy et al. [111]

	FM (score)
	Na
	66
	46
	18
	 	 	 	 	 	 	 	 	 	 	 	 	Cassidy et al. [112]

	ARAT (score)
	Na
	57
	54
	3
	57
	54
	3
	57
	54
	3
	0
	0
	0
	0
	0
	0
	Restemeyer et al. [113]

	FM (score)
	Na
	66
	48
	16
	 	 	 	 	 	 	 	 	 	 	 	 	Mooney et al. [114]

	JTHFT (min)
	Na
	0.16
	0.49
	51
	 	 	 	 	 	 	 	 	 	 	 	 	Buetefisch et al. [115]

	FM (score)
	Na
	66
	33
	33
	 	 	 	 	 	 	 	 	 	 	 	 	Silverstein et al. [32]

	FM (score)
	Na
	66
	52
	12
	 	 	 	 	 	 	 	 	 	 	 	 	Takeuchi et al. [116]

	MAL (score)
	Na
	5.0
	2.2
	39
	5.0
	3.7
	15
	 	 	 	0.0
	1.5
	−24
	 	 	 	Liepert et al. [117]

	FM (score)
	Na
	66
	41
	23
	 	 	 	 	 	 	 	 	 	 	 	 	Mang et al. [43]

	FM (score)
	Na
	66
	44
	20
	 	 	 	 	 	 	 	 	 	 	 	 	Werhahn et al. [39]

	FM (score)
	Na
	66
	30
	38
	 	 	 	 	 	 	 	 	 	 	 	 	Miller et al. [29]

	FM (score)
	Na
	66
	58
	6
	 	 	 	 	 	 	 	 	 	 	 	 	Liu et al. [118]

	MAL (score)
	Na
	5.0
	2.3
	37
	5.0
	3.0
	25
	 	 	 	0.0
	0.7
	−12
	 	 	 	Liepert et al. [119]

	FM (score)
	Na
	66
	59
	6
	 	 	 	 	 	 	 	 	 	 	 	 	Liu et al. [120]

	MAS (UL) (score)
	Na
	68
	46
	19
	 	 	 	 	 	 	 	 	 	 	 	 	Brouwer et al. [25]

	FM (score)
	Na
	60
	31
	32
	 	 	 	 	 	 	 	 	 	 	 	 	Lewis et al. [121]

	MACS (score)
	Na
	1.0
	1.8
	29
	 	 	 	 	 	 	 	 	 	 	 	 	Berweck et al. [122]


A, affected hand; AO, action observation; ARAT, Action Research Arm Test; B&B, Box and Block Test; CIMT, constraint induced movement therapy; CNS, Canadian Neurological Scale; CT, conventional treatment; FAT, Frenchay Arm Test; FM, Flugl Meyer assessment; Hz, hertz; iTBS, intermittent theta burst stimulation; JTHFT, Jebsen Taylor Hand Function Test; LQ, laterality quotient; MACS, Manual Ability Classification System; MAL, Motor Activity Log; MAS, Motor Assessment Scale; MI, Motoricity Index; min, minute; MRC, British Medical Research Council; N, Newton; NA, non affected hand; NHPT, Nine Hole Peg Test; NIHSS, National Institutes of Helth Stroke Scale; NMES, neuromuscular electrical stimulation; PT, physiotherapy; RMA, Rivermead Motor Assessment; RMV, repeated muscle vibration; rTMS, repetitive transcranial magnetic stimulation; sec, second; SSS, Scandinavian Stroke Scale; TBS, theta burst stimulation; tDCS, transcranial direct current stimulation; UL, upper limb; VRT, virtual reality training; WMFT, Wolf Motor Function Test


Table 3Resting motor threshold of the affected and the non-affected hemisphere (means) and laterality quotients (means) of studies included in the review


	Targeted muscle, stimulator type, coil type
	Interventions/groups
	Baseline
	1. Follow up
	2. Follow up
	1. Follow up—baseline changes
	2. Follow up—baseline changes
	Healthy controls
	References

	NA
	A
	LQ
	NA
	A
	LQ
	NA
	A
	LQ
	NA
	A
	LQ
	NA
	A
	LQ
	D
	ND
	LQ

	FDI, MS-200, RC
	Na
	 	95
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	Nascimbeni et al. [60]

	FDI, MS-200, F8C
	Na
	55
	68
	−11
	50
	56
	−6
	 	 	 	−5
	−12
	5
	 	 	 	48
	48
	0
	Delvaux et al. [61]

	FDM, NS-eX, na
	Na
	38
	55
	−18
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	Freundlieb et al. [62]

	TM, MS-200, RC
	Na
	57
	79
	−16
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	Trompetto et al. [37]

	FDI, MS-200, F8C
	Na
	56
	68
	−10
	 	 	 	 	 	 	 	 	 	 	 	 	55
	54
	1
	Di Lazzaro et al. [63]

	APB, MP-X100, F8C
	Na
	47
	68
	−18
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	Du et al. [27]

	ECR, MS-200, F8C
	(1) Anodal tDCS
	 	70
	 	 	66
	 	 	65
	 	 	−4
	 	 	−5
	 	 	 	 	Sattler et al. [30]

	(2) Sham tDCS
	 	62
	 	 	57
	 	 	56
	 	 	−5
	 	 	−6
	 	 	 	 
	APB, MP-X100, F8C
	Na
	 	73
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	Du et al. [64]

	APB, MS-BS, RC
	Na
	58
	66
	−6
	 	 	 	 	 	 	 	 	 	 	 	 	62
	 	 	Huynh et al. [28]

	APB, MS-200, F8C
	Na
	 	67
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	Volz et al. [65]

	APB, ML-200, F8C
	(1) CT
	 	70
	 	 	68
	 	 	 	 	 	–2
	 	 	 	 	 	 	 	El Helow et al. [66]

	(2) CIMT
	 	70
	 	 	61
	 	 	 	 	 	−9
	 	 	 	 	 	 	 
	APB, MP-X100, F8C
	(1) Sham rTMS
	62
	74
	−9
	68
	66
	1
	72
	67
	4
	6
	−8
	10
	10
	−7
	12
	 	 	 	Blesneag et al. [67]

	(2) 1 Hz rTMS
	53
	63
	−9
	79
	66
	9
	70
	68
	1
	26
	3
	18
	17
	5
	10
	 	 	 
	FDI, MS-200, F8C
	Na
	51
	93
	−29
	50
	85
	−26
	48
	76
	−23
	−1
	−8
	3
	−3
	−17
	7
	 	 	 	Birchenall et al. [68]

	FDI, MS-BS, F8C
	Na
	42
	64
	−21
	43
	57
	−14
	45
	57
	−12
	1
	−7
	7
	3
	−7
	9
	 	 	 	Swayne et al. [34]

	FDI, MS-200, F8C
	(1) Anodal tDCS
	37
	60
	−24
	37
	48
	−13
	 	 	 	0
	−12
	11
	 	 	 	 	 	 	Khedr et al. [69]

	(2) Cathodal tDCS
	34
	60
	−28
	33
	51
	−21
	 	 	 	−1
	−9
	6
	 	 	 	 	 	 
	(3) Sham tDCS
	35
	63
	−29
	34
	59
	−27
	 	 	 	−1
	−4
	2
	 	 	 	 	 	 
	FDI, MS-BS, F8C
	Na
	59
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	51
	51
	0
	Bütefisch et al.[70]

	FDI, MS-200, F8C
	Na
	44
	95
	−37
	39
	93
	−41
	37
	93
	−43
	−5
	−2
	−4
	−7
	−2
	−6
	42
	 	 	Prashanta et al. [71]

	FDI, MS-R, F8C
	Na
	79
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	Lee et al. [72]

	FDI, MS-200, F8C
	(1) VRT
	60
	91
	−21
	59
	90
	−21
	62
	90
	−18
	−1
	−1
	0
	2
	−1
	2
	 	 	 	Yarossi et al. [73]

	APB, MP-X100, F8C
	(1) 1 Hz rTMS + AO
	70
	 	 	71
	 	 	 	 	 	1
	 	 	 	 	 	 	 	 	Noh et al. [74]

	(2) 1 Hz rTMS
	67
	 	 	73
	 	 	 	 	 	6
	 	 	 	 	 	 	 	 
	FDI, MS-BS, F8C
	Na
	47
	74
	−22
	51
	66
	−13
	52
	59
	−6
	4
	−8
	9
	5
	−15
	16
	54
	 	Takechi et al. [75]

	FDI, NS-eX, F8C
	Na
	57
	69
	−10
	57
	67
	−8
	 	 	 	0
	−2
	1
	 	 	 	 	 	 	Lioumis et al. [76]

	ADM, MS-BS, F8C
	Na
	59
	69
	−8
	 	 	 	 	 	 	 	 	 	 	 	 	59
	59
	0
	Cincinelli et al. [77]

	FDI, MS-RS, F8C
	Na
	60
	66
	−5
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	Lüdemann-Podubecká et al. [78]

	FDI, MS-RS, F8C
	Na
	60
	92
	−21
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	Veldema et al. [38]

	APB, MS-200, F8C
	Na
	55
	89
	−24
	54
	83
	−21
	 	 	 	−1
	−6
	2
	 	 	 	 	 	 	Platz et al. [79]

	FCU, MS-BS, F8C
	Na
	 	64
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	Renner et al. [80]

	ECR, MP-R30, RC
	Na
	 	53
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	51
	 	Kim et al. [22]

	FDI, MS-R, F8C
	(1) TBS
	54
	54
	0
	55
	50
	5
	 	 	 	1
	−4
	5
	 	 	 	54
	54
	0
	Khan et al. [81]

	(2) NMES
	54
	54
	0
	54
	49
	5
	 	 	 	0
	−5
	5
	 	 	 
	(3) TBS + NMES
	50
	54
	−4
	54
	43
	11
	 	 	 	4
	−11
	15
	 	 	 
	ADM, MS-200, RC
	Na
	48
	70
	−19
	47
	63
	−15
	45
	61
	−15
	−1
	−7
	4
	−3
	−9
	4
	 	 	 	Traversa et al. [82]

	FDI, MS-200, F8C
	Na
	 	62
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	43
	 	Renner et al. [83]

	FDI, MS-R, F8C
	Na
	60
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	Seniòw et al. [84]

	FDI, na, F8C
	Na
	63
	86
	−15
	 	 	 	 	 	 	 	 	 	 	 	 	58
	57
	1
	Brouwer et al. [25]

	APB, MS-na, F8C
	(1) PT
	45
	55
	−10
	45
	57
	−12
	45
	57
	−12
	0
	2
	−2
	0
	2
	−2
	 	 	 	Liepert et al. [119]

	ADM, MS-R, F8C
	Na
	42
	71
	−26
	 	 	 	 	 	 	 	 	 	 	 	 	47
	48
	−1
	Cincinelli et al. [26]

	FCR, MS-200, F8C
	Na
	50
	 	 	50
	 	 	 	 	 	0
	 	 	 	 	 	 	 	 	Matsura et al. [86]

	APB, MS-SR, F8C
	Na
	64
	86
	−15
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	Veldema et al. [44]

	ECR, MP-na, F8C
	Na
	 	71
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	Tarri et al. [87]

	ADM, MS-R, F8C
	Na
	48
	61
	−12
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	Cincinelli et al. [88]

	FDI, MS-200, F8C
	Na
	45
	45
	0
	 	 	 	 	 	 	 	 	 	 	 	 	42
	 	 	Liepert et al. [89]

	FDI, MS-R, F8C
	Na
	54
	73
	−15
	56
	67
	−9
	 	 	 	2
	−6
	6
	 	 	 	67
	70
	−2
	Grau-Sánchez et al. [90]

	FDI, MS-200, F8C
	Na
	42
	56
	−14
	 	 	 	 	 	 	 	 	 	 	 	 	41
	 	 	Kemlin et al. [91]

	FDI, MS-BS, F8C
	(1) < 6 months
	47
	51
	−4
	 	 	 	 	 	 	 	 	 	 	 	 	49
	50
	−1
	Schambra et al. [92]

	(2) > 6 months
	46
	56
	−10
	 	 	 	 	 	 	 	 	 	 	 	 
	FDI, MS-200, F8C
	(1) 1 Hz rTMS + iTBS
	72
	85
	−8
	74
	78
	−3
	74
	80
	−4
	2
	−7
	6
	2
	−5
	4
	 	 	 	Wang et al. [45]

	(2) iTBS + 1 Hz rTMS
	71
	78
	−5
	74
	75
	−1
	76
	76
	0
	3
	−3
	4
	5
	−2
	5
	 	 	 
	(3) Sham
	75
	88
	−8
	74
	85
	−7
	72
	86
	−9
	−1
	−3
	1
	−3
	−2
	−1
	 	 	 
	EDC, MS-200, F8C
	Na
	47
	61
	−12
	47
	59
	−11
	49
	66
	−15
	0
	−2
	1
	2
	5
	−2
	 	 	 	Sawaki et al. [123]

	EDC, MS-200, F8C
	(1) 3–9 months
	52
	65
	−11
	51
	63
	−10
	52
	62
	−8
	−1
	−2
	1
	0
	−3
	2
	 	 	 	Sawaki et al. [93]

	(2) > 12 months
	44
	55
	−11
	45
	63
	−17
	46
	53
	−7
	1
	8
	−6
	1
	−3
	4

	ECR, MS-SR, F8C
	Na
	56
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	Theilig et al. [94]


	Targeted muscle
	Interventions/groups
	Baseline
	1. Follw up
	2. Follw up
	1. Follw up—baseline changes
	2. Follw up—baseline changes
	Healthy controls
	References

	NA
	A
	LQ
	NA
	A
	LQ
	NA
	A
	LQ
	NA
	A
	LQ
	NA
	A
	LQ
	D
	ND
	LQ

	APB, MS-R, F8C
	Na
	47
	80
	−26
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	Chervyakov et al. [95]

	FDI, MS-200, F8C
	(1) 1 Hz rTMS + iTBS
	70
	86
	−10
	72
	80
	−5
	74
	77
	−2
	2
	−6
	5
	4
	−9
	8
	 	 	 	Sung et al. [96]

	(2) Sham rTMS + iTBS
	71
	87
	−10
	71
	88
	−11
	74
	85
	−7
	0
	1
	−1
	3
	−2
	3
	 	 	 
	(3) 1 Hz rTMS + sham iTBS
	71
	84
	−8
	72
	80
	−5
	70
	81
	−7
	1
	−4
	3
	−1
	−3
	1
	 	 	 
	(4) Sham rTMS + sham iTBS
	70
	85
	−10
	71
	86
	−10
	70
	84
	−9
	1
	1
	0
	0
	−1
	1
	 	 	 
	FDI, MS-NM-200, RC
	Na
	41
	45
	−4
	 	 	 	 	 	 	 	 	 	 	 	 	43
	 	 	Pennisi et al. [97]

	ECR, MS-200, F8C
	Na
	43
	48
	−5
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	Borich et al. [24]

	FDI, MS-200, F8C
	Na
	67
	77
	−7
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	Bastings et al. [40]

	ADM, MP-X100, PC
	Na
	37
	50
	−15
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	Cakar et al. [23]

	FDI, MS-200, RC
	Na
	46
	73
	−23
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	Shiner et al. [31]

	APB, MS-200, F8C
	Na
	47
	44
	3
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	Braun et al. [98]

	Na, na, na
	Na
	53
	63
	−9
	 	 	 	 	 	 	 	 	 	 	 	 	55
	 	 	Cruz-Martínez et al. [99]

	Hand, C-HS, RC
	Na
	65
	69
	−3
	66
	70
	−3
	 	 	 	1
	1
	0
	 	 	 	 	 	 	Chouinard et al. [100]

	FDI, MS-200, F8C
	Na
	45
	67
	−20
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	Ackerley et al. [101]

	FDI, MS-200, F8C
	Na
	 	65
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	Takeuchi et al. [35]

	FDI, MS-200, F8C
	Na
	44
	57
	−13
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	Bestmann et al. [41]

	ECR, MS-200, F8C
	Na
	48
	85
	−28
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	Stinear et al. [33]

	FDI, APB, ADM, C-HS/MS-R, F8C
	Na
	73
	88
	−9
	69
	82
	−9
	67
	81
	−9
	−4
	−6
	1
	−6
	−7
	0
	 	 	 	Koski et al. [21]

	FDI, MS-R, F8C
	Na
	 	66
	 	 	63
	 	 	 	 	 	−3
	 	 	 	 	 	 	 	Amengual et al. [124]

	ADM, MS-200, F8C
	Na
	39
	47
	−9
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	Talelli et al. [102]

	EDC, MS-BS, F8C
	(1) CIMT
	50
	71
	−17
	48
	73
	−21
	 	 	 	−2
	2
	−3
	 	 	 	 	 	 	Wittenberg et al. [103]

	(2) Control
	50
	72
	−18
	55
	82
	−20
	 	 	 	5
	10
	−2
	 	 	 	 	 	 
	ECR, MS-200, F8C
	Na
	 	59
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	Milot et al. [104]

	FDI, MS-200, F8C
	Na
	42
	44
	−2
	 	 	 	 	 	 	 	 	 	 	 	 	37
	36
	1
	Guder et al. [42]

	FDI, MS-200, F8C
	Na
	43
	46
	−3
	43
	45
	−2
	 	 	 	0
	−1
	1
	 	 	 	 	 	 	Liepert et al. [105]

	FRC, BS-200, F8C
	(1) PT
	 	67
	 	 	68
	 	 	69
	 	 	1
	 	 	2
	 	 	 	 	Marconi et al. [106]

	(2) RMV + PT
	 	70
	 	 	58
	 	 	60
	 	 	−12
	 	 	−10
	 	 	 	 
	BB, BS-200, F8C
	(1) PT
	 	72
	 	 	70
	 	 	68
	 	 	−2
	 	 	−4
	 	 	 	 
	(2) RMV + PT
	 	72
	 	 	59
	 	 	62
	 	 	−13
	 	 	−10
	 	 	 	 
	EDC, BS-200, F8C
	(1) PT
	 	68
	 	 	67
	 	 	71
	 	 	−1
	 	 	3
	 	 	 	 
	nnnnnn RMV + PT
	 	70
	 	 	60
	 	 	64
	 	 	−10
	 	 	−6
	 	 	 	 
	FDI, MS-200, F8C
	Na
	47
	51
	−4
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	Thickbroom et al. [36]

	FCR, MP-X100, F8C
	Na
	 	84
	 	 	81
	 	 	80
	 	 	 	 	 	 	 	 	 	 	Edwards et al. [20]

	APB, MS-BS, F8C
	Na
	53
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	Conforto et al. [107]

	APB, MS-200, F8C
	Na
	53
	60
	−6
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	Palmer et al. [16]

	APB, MS-200, F8C
	Na
	38
	78
	−34
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	Von Lewinski et al. [108]

	ED, MS-R, F8C-AF
	Na
	 	52
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	Carey et al. [109]

	APB, MS-200, F8C
	Na
	51
	55
	−4
	 	 	 	 	 	 	 	 	 	 	 	 	53
	46
	7
	Gray et al. [110]

	FDI, MS-BS, F8C
	Na
	 	53
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	Kuppuswamy et al. [111]

	FDI, MS-BS, F8C
	Na
	44
	56
	−12
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	Cassidy et al. [112]

	FDI, na, F8C
	Na
	55
	61
	−5
	54
	61
	−6
	54
	61
	−6
	−1
	0
	−1
	−1
	0
	−1
	 	 	 	Restemeyer et al. [113]

	FDI, MS-BS, F8C
	Na
	48
	47
	1
	 	 	 	 	 	 	 	 	 	 	 	 	51
	 	 	Mooney et al. [114]

	ECU, MS-BS, F8C
	Na
	 	67
	 	 	 	 	 	 	 	 	 	 	 	 	 	53
	 	 	Buetefisch et al. [115]

	FDI, MS-BS, F8C
	Na
	46
	76
	−25
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	Silverstein et al. [32]

	FDI, MS-200, F8C
	Na
	52
	60
	−7
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	Takeuchi et al. [116]

	APB, MS-na, F8C
	Na
	46
	55
	−10
	45
	55
	−10
	 	 	 	−1
	−1
	0
	 	 	 	 	 	 	Liepert et al. [117]

	ECR, MS-200, F8C
	Na
	46
	72
	−22
	 	 	 	 	 	 	 	 	 	 	 	 	45
	46
	−1
	Mang et al. [43]

	FDI, MS-200, F8C
	Na
	39
	62
	−23
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	Werhahn et al. [39]

	ECR, MS-SR-F8C
	Na
	 	87
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	Miller et al. [29]

	FDI, MS-na, F8C
	Na
	44
	50
	−6
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	Liu et al. [118]

	]FDI, MS-na, F8C
	Na
	 	51
	 	 	51
	 	 	 	 	 	0
	 	 	 	 	 	 	 	Liepert et al. [119]

	FDI, MS-na, F8C
	Na
	46
	49
	−3
	 	 	 	 	 	 	 	 	 	 	 	 	 	46
	 	Liu et al. [118]

	FDI, na, F8C
	Na
	63
	76
	−9
	 	 	 	 	 	 	 	 	 	 	 	 	58
	57
	1
	Brouwer et al. [25]

	APB, MS-BS, F8C
	Na
	52
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	42
	46
	−5
	Lewis et al. [121]

	FPB, MS-BS, F8C
	Na
	54
	76
	−17
	 	 	 	 	 	 	 	 	 	 	 	 	46
	43
	3
	Berweck et al. [122]


A, affected hemisphere; ADM, abductor digiti minimi; AO, action observation;  APB, abductor pollicis brevis; BB, musculus biceps brachii; C-HS, Cadwell high-speed stimulator; CIMT, constraint induced movement therapy; CT, conventional; D, dominant hemisphere; ECR, extensor carpi radialis; ECU, extensor carpi ulnaris; ED, extensor digitorum; EDC, extensor digitorum communis; FDI, first dorsal interosseous muscle; FDM, flexor digiti minimi; Hz, hertz; iTBS, intermittent theta burst stimulation; FCU, flexor carpi ulnaris; FPB, flexor pollicis brevis; FCR, flexor carpi radialis; F8C, figure-of-eight shaped coil; LQ, laterality quotient; MEP, motor evoked potentials; ML-200, Maglit—200 stimulator; MP-X100, Magpro—X100 stimulator; MP-R30, Magpro—R30 stimulator; MS-BS, Magstim—BiStim stimulator; MS-NM-200, Magstim—Novametric—2000; MS-SR, Magstim—Super Rapid stimulator; MS-R, Magstim—Rapid stimulator; MS-200, Magstim—200 stimulator; na, not available, not applicable; NA, non affected hemisphere; NDH, non-dominant hemisphere; NMES, neuromuscular electrical stimulation; NS-eX, Nexstim—eXimia stimulator; PC, parabolic coil; PT, physiotherapy; RC, round coil; rMT, resting motor threshold; rMV, repeated muscle vibration; rTMS, repetitive transcranial magnetic stimulation; tDCS, transcranial direct current stimulation; TM, thenar muscles



Hand motor function
Table 2 summarizes data on hand motor function of the affected and the non-affected hand. In case a study provided more than one hand motor function assessment, we selected those involving motor activities of daily living (e.g., Flugl-Meyer assessment or Wolf Motor Function Test) for our analysis. To account for differences in hand motor assessments used across studies, a laterality quotient was calculated for each study. The laterality quotient was calculated as follows: [image: $$\left( {\frac{Non - affected\,Hand - affected\,Hand}{{Non - affected\,Hand + affected\,Hand}}} \right)*100$$]. The laterality quotient varies between 0 and ± 100. The greater the laterality differences, the stronger the hand motor disability. Depending on the test used, motor impairment of the affected hand is associated with either a positive (e.g., Wolf Motor Function Test) or a negative value (e.g., Nine Hole Peg Test). To account for these differences, absolute values of the laterality quotient were used for the analysis of hand motor function.
Resting motor threshold
Table 3 summarizes data on resting motor threshold of the ipsilesional (non-dominant) and the contralesional (dominant) hemisphere. If the MEP was not evocable, rMT was set to 100. If data for both hemispheres were available, we calculated laterality quotients for the resting motor threshold as: [image: $$\left( {\frac{Contralesional\, hemisphere - ipsilesional\, hemisphere}{{contralesional\, hemisphere + ipsilesional\, hemisphere}}} \right)*100$$]  for stroke patients, and as: [image: $$\left( {\frac{Dominant \,hemisphere - non - dominant\, hemsiphere}{{Dominant \,hemisphere + non - dominant \,hemisphere}}} \right)*100$$] for healthy controls. Negative values are associated with a between-hemispheric imbalance towards the contralesional (dominant) hemisphere, positive values with a between-hemispheric imbalance towards the lesioned (non-dominant) hemisphere.
Data synthesis and statistical analysis
Data was analyzed using SPSS Statistic 21 (IBM Corporation, USA). “Post–pre” differences between baseline and first follow-up, as well as baseline and second follow up were calculated for longitudinal data of stroke patients. Furthermore, differences between rMT in stroke patients and healthy controls were calculated for studies that included healthy control group. Pearson correlations were calculated between:	(1)
The amount of the hand motor impairment (expressed as laterality quotient of the hand motor function) and 	(a)
The ipsilesional resting motor threshold,

 

	(b)
The contralesional resting motor threshold,

 

	(c)
the between-hemispheric imbalance of resting motor threshold (expressed as laterality quotient of the resting motor thresholds).

 





 

	(2)
The amount of hand motor recovery (expressed as baseline—follow-up changes of laterality quotient of the hand motor function) and 	(a)
The baseline—follow-ups changes of the ipsilesional resting motor threshold,

 

	(b)
The baseline—follow-ups changes of the contralesional resting motor threshold,

 

	(c)
The baseline—follow-ups changes of the between-hemispheric imbalance of resting motor thresholds.

 





 

	(3)
(a) The ipsilesional resting motor threshold, (b) the contralesional resting motor threshold and (c) the between-hemispheric imbalance of resting motor thresholds.

 




R-Values ≥ 0.3 and p-values ≤ 0.05 are considered to be statistically relevant [19].
Results
We identified 92 studies that matched our inclusion criteria. The studies show large variability of methods, participants, and results.
Methods
Study design
57 studies have a cross-sectional observational study design. The remaining 35 studies were either observational (21 studies) or interventional randomized (10 studies) or interventional non-randomized (4 studies) longitudinal trials that investigated hand motor function and cortical excitability for up to one year. 25 studies included a healthy control group for resting motor threshold comparison. Table 1 illustrates study design of studies enrolled.
Hand motor function assessments
Overall 17 different hand motor assessments were used: Action Research Arm Test, Box and Block Test, Canadian Neurological Scale, Frenchay Arm Test, Flugl Meyer assessment, Grip strength, Jebsen Taylor Hand Function Test, Manual Ability Classification System, Motor Activity Log, Motor Assessment Scale, Motoricity Index, British Medical Research Council, Nine Hole Peg Test, National Institutes of Helth Stroke Scale, Rivermead Motor Assessment, Scandinavian Stroke Scale, Wolf Motor Function Test. Table 2 shows the overview of hand motor assessments applied.
Resting motor threshold assessments
13 different upper limb muscles were targeted to investigate resting motor threshold: abductor digiti minimi, abductor pollicis brevis, musculus biceps brachii, extensor carpi radialis, extensor carpi ulnaris, extensor digitorum, extensor digitorum communis, first dorsal interosseous muscle, flexor digiti minimi, flexor carpi ulnaris, flexor pollicis brevis, flexor carpi radialis, thenear muscles. Two studies did not specify which upper limb muscle has been targeted. Ten different stimulator types from five different manufacturers were used: Magstim 200, Magstim BiStim 200, Magstim Rapid, Magstim Super Rapid, Magstim Novamentric 2000 (MagStim Co., Withland, Dyfed, UK), Magpro X100, Magpro R30 (Mag Venture, Farum, Denmark), Maglit 200 (Dantec Dynamics Ltd, Bristol, UK), Nexstim eXimia (Nexstim Ltd, Helsinki, Finland) and Cadwell high-speed magnetic stimulator (Cadwell Inc., Kennewick, Washington, USA). Most studies used a figure-of-eight shaped coil with a double 70 mm winding or a round coil with a single 90 mm winding. A figure-of-eight shaped coil with a double 50 mm [20] and 25 mm [21] winding, a round coil with a single 120 mm winding [22] and a parabolic coil type [23] were only sporadically used. A few studies did not specify the type of stimulator or coil. Table 3 shows the overview of targeted muscles as well as of stimulators and coils used.
Participants
Overall, 1978 stroke patients and 377 healthy controls were enrolled. Table 1 summarizes patients characteristics.
Patient gender
Five studies (n = 100) did not report data about gender of the included subjects. All remaining studies included mixed patient cohorts. Overall, 1205 males and 674 females were investigated.
Time since stroke
time since incident varied considerably among study cohorts (between < 1 day and 16 years at mean). 14 studies (n = 444) tested stroke subjects in the acute phase (within 2 weeks since symptom onset). 20 studies (n = 353) included stroke patients in the subacute phase (2 weeks to 2 months since symptom onset). 59 studies (n = 1182) investigated stroke subjects in the chronic phase (more than 2 months since symptom onset).
Stroke etiology
24 studies (n = 498) did not report data about stroke etiology. 19 studies investigated mixed (ischemic and hemorrhagic) patient cohorts. The remaining 49 studies included ischemic stroke subjects only. Overall, 1345 patients with an ischemic stroke and 135 patients with a hemorrhagic stroke were enrolled.
Stroke location
24 studies (n = 662) did not report data about stroke location. Most remaining studies included patients with a subcortical stroke as well as patients with a cortical involvement. Overall, 772 patients with a subcortical stroke and 545 patients with a cortical involvement were investigated.
Site of lesion
Information about the site of the lesion was absent in 11 studies (n = 352). The remaining studies included 744 right hemispheric and 881 left hemispheric stroke patients.
Motor function of the affected hand
Table 2 summarizes mean values of hand motor function tests and their laterality quotients across studies. There was a wide spectrum of motor disability of the affected hand across studies. The laterality quotient varied between 100 (severe hand impairment) and 1 (mild hand impairment).
Resting motor threshold
Table 3 summarizes mean values of resting motor threshold and their laterality quotients across studies. Cortical excitability of the ipsilesional and the contralesional hemisphere, as well as the between-hemispheric balance varied strongly across studies.
Relationships between hand motor impairment/hand motor recovery and rMT
Ipsilesional hemisphere
Figure 2A illustrates overall data on ipsilesional rMT in stroke subjects and non-dominant rMT in healthy controls. Figure 2B demonstrates direct comparison of ipsilesional rMT in stroke patients and non-dominant rMT in healthy controls for studies that included healthy control group. Both illustrations indicate that ipsilesional rMT is increased in most stroke patients. Significant correlations were found between ipsilesional rMT and the amount of hand motor disability at BL (r = 0.558, p < 0.001) and 1 FU (r = 0.359, p = 0.011) in stroke subjects. Furthermore, the amount of increase (in comparison to healthy) correlates with hand motor disability on BL (r = 0.587, p = 0.001) and 1 FU (r = 0.884, p = 0.008). Thus, the higher the hand disability, the stronger the increase of ipsilesional rMT.[image: ../images/12984_2021_947_Fig2_HTML.png]
Fig. 2A Overall data on resting motor threshold in healthy subjects and stroke patients. Negative values of laterality quotient are associated with a between-hemispheric imbalance towards the contralesional (dominant) hemisphere, positive values with a between-hemispheric imbalance towards the lesioned (non-dominant) hemisphere; B Resting motor threshold in stoke patients in comparison to healthy controls (only for studies which included healthy control group). Positive values re associated with a higher, negative values with a lower resting motor threshold in stroke patients (in comparison to healthy controls); C Longitudinal changes of rMT in stroke patients. Positive values are associated with an increase, negative values with a decrease of resting motor threshold over time. Notes: BL = baseline; RMT/rMT = resting motor threshold; SO = stimulator output; 1 FU = first follow-up; 2 FU = second follow-up


Longitudinal data shows a decrease of ipsilesional rMT over time in most of the studies (Fig. 2C). Significant correlations were found between changes of ipsilesional rMT and changes of hand disability from BL to 1 FU (r = 0.326, p = 0.024) and from BL to 2 FU (r = 0.365, p = 0.050). A favorable hand motor recovery was associated with a decrease, an unfavorable recovery with an increase of ipsilesional rMT.
Contralesional hemisphere
Figure 2A shows overall data on contralesional rMT in stroke subjects and dominant rMT in healthy controls. Figure 2B demonstrated a direct comparison of contralesional rMT in stroke patients and dominant rMT in healthy controls for studies that included healthy control groups. The illustrations indicate both an increase and a decrease of contralesional rMT in stroke subjects in comparison to healthy subjects. No significant correlations were found between contralesional rMT (or the amount of its changes in comparison to healthy) and the amount of hand motor disability on BL and both FUs.
Longitudinal data demonstrated both an increase and a decrease of contralesional rMT over time (Fig. 2C). No significant correlations were found between changes of contralesional rMT and hand motor recovery.
Between-hemispheric imbalance
Most studies show a between-hemisphere imbalance of rMT in favor of the contralesional hemisphere in stroke patients (Fig. 2A). Its amount correlates significantly with hand motor disability at baseline (r = −0.543, p < 0.001). The poorer the motor function of the affected hand, the greater the between-hemispheric imbalance to the disadvantage of the ipsilesional hemisphere. In contrast, mild hand impairment is associated with a slight interhemispheric imbalance towards the ipsilesional hemisphere.
Longitudinal data demonstrates either partial or complete recovery of between-hemispheric balance of rMT over time in most studies (Fig. 2A). However, no significant correlations to hand motor recovery were detected.
Relationships between ipsilesional rMT, contralesional rMT and between-hemispheric imbalance of rMT
Significant correlations were found between ipsilesional rMT and contralesional rMT at BL (r = 0.627, p < 0.001), 1 FU (r = 0.520, p = 0.001) and 2 FU (r = 0.472, p = 0.031). The higher the ipsilesional rMT, the higher the contralesional rMT (Fig. 3).[image: ../images/12984_2021_947_Fig3_HTML.png]
Fig. 3Relationships between ipsilesional rMT, contralesional rMT and between-hemispheric imbalance of rMT at the baseline. Notes: rMT = resting motor threshold; SO = stimulator output


Ipsilesional rMT correlated significantly with the laterality quotient of rMT at BL (r = −0.527, p = 0.001) and 1 FU (r = −0.418, p = 0.011). The higher the ipsilesional rMT, the greater the between-hemispheric imbalance to the disadvantage of the ipsilesional hemisphere (Fig. 3).
Contralesional rTMS correlated significantly with the laterality quotient of rMT at baseline (r = 0.320, p = 0.004), 1 FU (r = 0.546, p = 0.001) and 2 FU (p = 0.670, r = 0.001). High contralesional rMT was associated with small between-hemispheric imbalance (Fig. 3).
Discussion
This systematic review aims to evaluate the neural background of hand motor disability/hand motor recovery in stroke patients, based on resting motor threshold data. In total, 92 studies including 1411 stroke subjects and 331 healthy controls were enrolled and analyzed. The available data demonstrates several relevant relationships between the neurophysiological and the behavioral data. These results may contribute to a better understanding of the neural background of motor recovery after a stroke and support the development of innovative therapies in this cohort.
Cortical excitability during motor recovery after stroke
Our data shows that severe hand motor impairment in stroke patients is associated with a suppressed cortical excitability within the ipsilesional hemisphere as well as with between-hemispheric imbalance to the disadvantage of the ipsilesional hemisphere. A favorable motor recovery is associated with an increase of ipsilesional cortical excitability and with a reduction of this between-hemispheric imbalance. Completely recovered patients show ipsilesional cortical excitability and between-hemispheric balance comparable to healthy controls. These findings are supported by individual studies reported in our review. Nineteen studies demonstrate within their patients cohort, (1) that low ipsilesional cortical excitability is associated with poor motor function and/or (2) that favorable hand motor recovery is associated with an increase of ipsilesional cortical excitability [20, 21, 23–39]. Similarly, ten trials indicate that large between-hemispheric imbalance to the disadvantage of the ipsilesional hemisphere is associated with severe hand motor impairment, and slight between-hemispheric imbalance in favor of the ipsilesional hemisphere is associated with mild hand impairment [21, 32, 36, 38, 40–44].
With regards to the contralesional hemisphere, our data reveals both higher and lower cortical excitability in stroke patients in comparison to healthy subjects. Nonetheless, the correlation analyses show no significant link to hand motor impairment/hand motor recovery. However, three of the studies (included in our review) found significant relationships in this regard [24, 34, 45]. On the one hand, severely impaired patients in the acute phase (10 days after symptom onset) showed an increase of cortical excitability in both the contra- and the ipsilesional hemisphere, in the course of hand motor recovery [34]. On the other hand, moderately impaired patients in the chronic phase (5 months after the incident) demonstrated a decrease of contralesional cortical excitability over time [45]. Furthermore, chronic stroke patients (> 6 months after the incident) with mild residual hand impairment showed higher contra- and ipsilesional cortical excitability in comparison to severely affected patients [24].
Cortical excitability versus neuroimaging
Figure 4 illustrates the evolution of cortical excitability in the course of hand motor recovery after stroke, as measured with resting motor threshold data. These observations receive support from a previous systematic review that investigates the neural background of stroke motor recovery with regard to the size and location of hand motor representation as measured by TMS [46].[image: ../images/12984_2021_947_Fig4_HTML.png]
Fig. 4Illustration of (1) changes of the cortical excitability within the ipsilesional and the contralesional hemisphere during motor recovery after a stroke as well as of (2) applicable therapy strategies


Our findings differ somewhat from the traditional view of neural processing after stroke on the basis of fMRI and PET data [11–13]. A longitudinal fMRI study demonstrated in severely impaired patients a bilateral increase of task-related neural activation within motor areas during the first two weeks after stroke. The movement-related BOLD activity in mildly impaired stroke patients did not differ from healthy subjects [11]. A cross-sectional study that recruited patients at least three months after stroke revealed similar results. Patients with less favorable hand motor recovery were more likely to recruit several motor-related brain regions over and above those recruited in healthy controls during a hand motor task [12]. In contrast, patients with favorable hand motor recovery showed a brain activation pattern similar to that found in healthy subjects [12]. Motor outcome correlated negatively with task-related activation in various brain regions, such as supplementary motor area, cingulate motor area, premotor cortex, posterior parietal cortex, and cerebellum of both ipsilateral and contralateral hemispheres [12]. In accordance with this data, a PET study demonstrated a significant increase of cerebral blood flow in several brain regions of both the contralateral and ipsilateral hemispheres (primary sensorimotor cortex, cerebellar hemispheres, insular cortex, inferior parietal, and premotor cortices) when stroke survivors moved their affected hand [13]. In contrast, active movement of the non-affected hand was associated with a significant increase of regional cerebral blood flow within the contralateral primary sensorimotor cortex and the ipsilateral cerebellar hemisphere [13]. Taken together fMRI and PET data showed a profound lateralization of neural activation within motor areas of the contralateral hemisphere in healthy subjects moving one hand. Similar brain activation patterns were found in stroke subjects moving a mildly impaired hand. Severe hand motor impairment was associated with increased neural activation within both the contralesional and ipsilesional hemispheres, which deceased over time when motor recovery proceeded. Up to now, it is still not clear if the increased compensatory recruitment of intact brain regions is an effective strategy to overcome motor impairment. A stroke incident activates a cascade of cellular and molecular processes within the peri-lesional tissue and remote brain regions [47]. Initial loss of functional and structural integrity of neural networks is followed by sprouting of axons and dendrites and formation of new synapses. The “rewiring” of neurons is expected to compensate for the stroke-induced loos of brain tissue [48]. However, aging-related decline of neural processing, such as dysfunctional activation spreading [49, 50] or poor network segregation [51, 52] may interfere with an efficient reorganization of the neural network. Elderly people, for example, show less segregated functional networks in comparison to young elderly. Multiple studies indicate the existence of multiple segregated functional networks within the human brain that exhibit correlated activity and are assumed to be functionally connected [53]. Young adults demonstrate quite dense connections within these functional networks and more sparse connections between different networks. In contrast, elderly people show weaker functional connectivity within the same functional network but stronger functional connectivity between regions belonging to different networks [52]. This phenomenon may be the reason for the increase recruitment of contralesional brain regions after stroke. It has been repeatedly demonstrated that a less segregated brain network is associated with worse motor and cognitive performance, independent of age [51, 52]. An important and potentially causal role in this context plays the brain's major inhibitory neurotransmitter, gamma aminobutyric acid (GABA). Present data demonstrates reduced GABA levels in elderly people, which is correlated with both less segregated sensorimotor networks and worse sensorimotor performance in comparison to young adults [51]. The GABAeric system in particular plays a crucial role during the repair phase of stroke [54]. Another cause of extensive network activation in stroke patients may be dysfunctional activation and deactivation of specific brain areas as a result of aging. Young adults show task-related activation (increase of signal) in specific brain regions, and simultaneously deactivation (decrease of signal) in other areas as detected by PET and fMRI [49, 50]. Interestingly, consistent deactivation patterns (within large areas of the lateral parietal cortex, medial parietal, and medial frontal cortex) can be observed across a wide range of tasks and stimulus modalities [50, 55]. A hypothesis suggests that these regions constitute a “default network” which is active when a person is not focused on the outside world, e.g., during remembering, thinking about the future, and mind wandering [50, 56]. Elderly people show in comparison to young adults an increased spread of activation within the “task-positive areas” but a reduced spread deactivation within the “task-negative network” [49]. Such changes are typically explained as upregulation of resources, or alternatively as the reduced suppression of distracting mental processes.
In accordance with our findings, some reviews on this topic question the general validity of the simplified interhemispheric competition model—which posits that suppressing the excitability of the contralesional hemisphere will enhance recovery by reducing interhemispheric inhibition of the stroke hemisphere [57, 58]. An earlier review, for example, analyzed the proposed mechanisms of synaptic and functional reorganization after stroke and suggests a bimodal balance–recovery model that links interhemispheric balancing and functional recovery to the structural reserve (i.e., remaining functional motor output) spared by the lesion [57]. Another review focused on the role of ipsilateral motor pathways during stroke recovery and its implications for non-invasive brain stimulation. Its results emphasize that contralesional M1 suppression may also reduce excitability of ipsilateral descending pathways that may be important for paretic upper limb control for some patients [58].
Conclusions
This review provides information about the relationship between hand motor function and motor cortex excitability changes within and across both hemispheres during recovery. In particular, the amount of motor cortex excitability of both hemispheres depended on the amount of hand motor function. In comparison to cortical excitability within the ipsilesional hemisphere, which was uniquely suppressed, motor cortex excitability within the contralesional hemisphere was reduced in those with severe hand dysfunction but enhanced in those with a less severe motor disability. Based on these findings, specific rehabilitation approaches may be developed to account for these differential changes in motor cortex excitability for mildly and severely affected stroke subjects. For example, more disabled patients may benefit from therapy strategies, which enhance motor cortex excitability within both hemispheres, e.g., a bilateral hand motor training. In contrast, mildly impaired patients may benefit from strategies that enhance motor cortex excitability within the ipsilesional hemisphere but suppress excitability within the contralesional hemisphere. This may be achieved by constraint induced movement therapy [59]. Also, within the context of non-invasive brain stimulation, the present set of data may be beneficial to develop a specific application of these techniques in dependence of the individual time-point and extent of hand motor recovery. Figure 4 illustrates how inhibitory or facilitatory rehabilitation techniques may be used in a specific fashion depending on the amount of motor impairment of the affected hand during recovery after stroke.
Strength and limitations
This is the first systematic review on rMT and hand motor function in stroke subjects. Thus, its results may contribute to a better understanding of the neural principles of motor recovery after stroke and support the application of appropriate therapeutical strategies. However, our analysis has limitations related to the reviewed data: i.e., the inconsistency of methods (diverse hand motor assessment scores, different targeted muscles, different types of stimulators and coils), subjects (different stroke states, etiologies, locations), and study designs (observational versus interventional studies, different follow-up timings). This may hamper the interpretation of the results.
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