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Abstract

Background: Motor imagery can elicit brain oscillations in Rolandic mu rhythm and central beta rhythm, both
originating in the sensorimotor cortex. In contrast with simple limb motor imagery, less work was reported about
compound limb motor imagery which involves several parts of limbs. The goal of this study was to investigate the
differences of the EEG patterns between simple limb motor imagery and compound limb motor imagery, and
discuss the separability of multiple types of mental tasks.

Methods: Ten subjects participated in the experiment involving three tasks of simple limb motor imagery
(left hand, right hand, feet), three tasks of compound limb motor imagery (both hands, left hand combined with
right foot, right hand combined with left foot) and rest state. Event-related spectral perturbation (ERSP), power
spectral entropy (PSE) and spatial distribution coefficient were adopted to analyze these seven EEG patterns. Then
three algorithms of modified multi-class common spatial patterns (CSP) were used for feature extraction and
classification was implemented by support vector machine (SVM).

Results: The induced event-related desynchronization (ERD) affects more components within both alpha and beta
bands resulting in more broad ERD bands at electrode positions C3, Cz and C4 during left/right hand combined
with contralateral foot imagery, whose PSE values are significant higher than that of simple limb motor imagery.
From the topographical distribution, simultaneous imagination of upper limb and contralateral lower limb certainly
contributes to the activation of more areas on cerebral cortex. Classification result shows that multi-class stationary
Tikhonov regularized CSP (Multi-sTRCSP) outperforms other two multi-class CSP methods, with the highest accuracy
of 84% and mean accuracy of 70%.

Conclusions: The work implies that there exist the separable differences between simple limb motor imagery and
compound limb motor imagery, which can be utilized to build a multimodal classification paradigm in motor
imagery based brain-computer interface (BCI) systems.

Keywords: Compound limb motor imagery, Event-related desynchronization, Event-related spectral perturbation,
Power spectral entropy, Spatial distribution coefficient, Common spatial patterns, Support vector machine
Background
Brain-Computer Interface (BCI) systems allow people to
send messages or commands to an electronic device only
by means of brain activity instead of muscular activity,
and hence can provide an alternative communication
and control channel for people with limited motor func-
tion to improve quality of their lives [1-4]. One kind of
EEG-based BCI systems is based on the recording and
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reproduction in any medium, provided the or
classification of circumscribed and transient EEG chan-
ges in association with the imagination of different types
of movements [5]. Motor imagery can modify the
neuronal activity in the primary sensorimotor areas in a
very similar way as observable with a real executed
movement, so as a result it can serve to generate self-
induced variations of the EEG [5,6]. Different from
steady-state visual evoked potential (SSVEP) or event-
related potential (ERP), self-induced brain activities
could be interpreted as particular control signals which
reflect subjective movement-related mental state of the
user directly without any inducing factors outside.
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Motor imagery may be seen as mental rehearsal of a
motor act without any overt motor output [5]. Since
Jasper and Penfield’s discovery of brain oscillatory activ-
ity induced by motor imagery [7], the development of
brain-computer interface based on motor imagery has
went through several decades. As early as 1996, the Graz
BCI system was reported to discriminate between three
simple limb motor imagery tasks (left hand, right hand,
right foot), where band power estimations from three
bipolar EEG channels were presented to a neuronal
network-based classifier [8]. To confirm whether motor
imagery could be available for patients with severe
motor impairment, a tetraplegic patient had learned to
operate an electrical driven hand orthosis by discrimin-
ation of two mental states to restore the hand grasp
function [9]. On the other hand, motor imagery has
already been applied as a brain switch in a hybrid BCI
system by detecting the postimagery beta event-related
synchronization (ERS) of foot movement imagination to
turn on/off a four-step electrically driven hand orthosis
with two flickering lights in order to reduce the false
positive rate during resting period [10].
However, most research has been concentrated on to

analyze the EEG rhythms induced by simple limb motor
imagery involving single part of the limbs such as, e.g.,
left hand, right hand or foot. In recent years, less work
was reported about brain oscillatory patterns induced by
compound limb movement imagination. The character-
istic intrinsic mode functions and brain synchrony
between the supplementary motor area (SMA) and pri-
mary motor area (M1) have been studied during three
kinds of motor imagination combining body with limb
action [11]. Meanwhile, the limited numbers of classes
contribute to the limited output commands, so for pur-
pose of continuous three-dimensional control of a vir-
tual helicopter in a three-dimensional space, both hands
movement imagination was adopted to compensate the
lack of instructions in simple limb motor imagery based
BCI [12].
With respect to motor imagery of simple limb move-

ment, several parts of limbs like hand (forearm, post-
brachium) and foot (shank, thigh) are involved in
compound limb movement imagination, which may acti-
vate the neurons oscillation in multiple functional areas
of cerebral cortex and, at the same time, also can satisfy
the requirements of multiple instructions output of con-
trol information in motor imagery based BCI systems.
The research on compound limb motor imagery has
great significance for the limb function rehabilitation for
the patients suffering from severe motor injury.
In addition, for motor imagery based BCI system, a

great variety of algorithms have been frequently used to
extract EEG features of different mental states such as
band power (BP) estimation, power spectral density
(PSD) values and autoregressive (AR) [13-16]. However,
it is very difficult to differentiate between more than two
mental states when only imagery-induced ERD patterns
are available [17]. CSP is an algorithm based on the sim-
ultaneous diagonalization of two matrices, which has
been widely used in BCI systems as it is well suited to
discriminate different MI patterns. The goal of CSP is to
design a spatial filter that projects raw signals to new
time series whose variances are optimal for the discrim-
ination of two mental tasks, namely maximize the vari-
ance of bandpass filtered EEG signals from one class
while minimizing their variance from the other class.
Although the method of CSP has been applied to dis-
criminate two movement-related patterns successfully
[18-20], it is restricted to binary problems. Therefore, a
one-versus-rest scheme has been applied to extend this
algorithm to the multi-class case [21].
In this study, seven kinds of mental tasks have been

designed, involving three tasks of simple limb motor im-
agery (left hand, right hand, feet), three tasks of com-
pound limb motor imagery combining hand with hand/
foot (both hands, left hand combined with right foot,
right hand combined with left foot) and rest state. The
goal of this paper is to investigate the differences of the
induced brain oscillatory patterns between simple limb
motor imagery and compound limb motor imagery by
event-related spectral perturbation (ERSP), power spec-
tral entropy (PSE) and spatial distribution coefficient. In
order to verify the feasibility of the application of seven
mental tasks to BCI systems, the CSP algorithm was
used and extended to the multi-class case in a one-
versus-rest scheme for seven-class feature extraction.
Three kinds of multi-class CSP algorithms were applied
and compared by the classification performance.

Methods
Experimental procedure
Ten right-handed healthy subjects (7 females and 3
males, 23–25 years old) participated in this experiment.
All of the subjects have no prior experience with motor
imagery based BCI before. They were required to take
one week of training before EEG recording. The subjects
were sitting in a chair at one-meter distance in front of a
computer screen. Each trial (8 seconds) began with a
white circle at the center of the monitor for 2 seconds.
At second 2, a red circle (preparation cue) appeared on
the screen to remind the subjects of paying attention to
the character indication next. And then at second 3, red
circle disappeared and character indication (‘Left Hand’,
‘Left Hand & Right Foot’, et al.) was presented on the
screen for 4 seconds. The participants were asked to
concentrate mind on performing the indicated motor
imagery task kinesthetically rather than a visual type of
imagery while avoiding any motion during imagination.
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At the end of imagination, ‘Rest’ was presented for 1 sec-
ond before next trail (Figure 1a). The experiments were
divided into 9 sections, involving 8 sections consisting of
60 trials each for six kinds of motor imagination tasks
(10 trials for each movement imagination in one section)
and one section consisting of 80 trials for rest state. The
sequence of six motor imagination tasks was randomized.
There were breaks of 5 to 10 minutes between sections.
So there are 560 trials (80 trials for each type of mental
task) in the dataset totally for the following study.
EEG data was recorded from 64 Ag/AgCl scalp electrodes

placed according to the International 10/20 System re-
ferenced to nose and grounded prefrontal lobe (Figure 1b).
The EEG signals were acquired by a Neuroscan SynAmps2
amplifier whose sampling rate is 1000Hz and band-pass
filtering range is 0.5-100 Hz. Besides, an additional 50-Hz
notch filter was used during data acquisition. Thereafter,
the original EEG signals were band-pass filtered between 1
and 40Hz, and then downsampled at 200Hz. Before further
analysis, common average reference (CAR) was adopted
here in the pre-processing.
The study was approved by the ethical committee of

Tianjin University. All subjects signed informed consent
in advance.

Event-related spectral perturbation
The event-related spectral perturbation (ERSP) method
allows us to observe the spectral power changes of the
induced EEG relative to the stimulus from the views of
time-frequency domain, which could supply more details
about ERD/ERS patterns of different types of motor im-
agery. Changes of event-related spectral power were ana-
lyzed with ERSP defined as follows:

ERSP f ; tð Þ ¼ 1
n

Xn

k¼1

Fk f ; tð Þ2� � ð1Þ

where n is the number of trails, and Fk(f, t)is the spectral
estimation of kth trial at frequency f and time t [22].
Figure 1 Experimental paradigm and electrode positions. (a) Experime
Mean ERSP values were calculated from -3000ms to
5000ms and displayed between 1 and 35Hz for every
mental task. In this study, the time-frequency ERD/ERS
maps from three key electrode positions C3, Cz, C4 were
presented for analysis.
To explore more clear information about the ERD band

range, we averaged the ERSP values across the imagination
period (4 s) in order to obtain the power changes of EEG
with frequency for different mental tasks. Then the mean
power changes were computed by averaging over all sub-
jects. To verify the differences of ERD band range between
simple limb motor imagery and compound limb motor
imagery, we constructed six groups for comparison: BH
VS LH, BH VS RH, LH&RF VS LH, RH&LF VS RH,
LH&RF VS F, and RH&LF VS F.
In addition, topographical distribution is a method for

us to figure out which areas of the brain are involved
when ERD occurs during the imagination of different
types of movements. Based on the ERSP values from 60
electrodes (except HEO,VEO, CB1 and CB2), the aver-
aged ERSP value in the fixed frequency band and time
interval within alpha band was calculated.

Power spectral entropy and spatial distribution coefficient
Entropy provides a physical measurement to assess the
order of a system [23]. Modified from Shannon’s defin-
ition of entropy, power spectral entropy (PSE) estimates
the changes in the amplitude component of the power
spectrum of the EEG, using the amplitude components
at each frequency of the power spectrum as the prob-
abilities in the entropy calculations [24]. It can be calcu-
lated as the following formula [25]:

H ¼ −
Xn

i¼1

pi ln pið Þ ð2Þ

Where Pi is the value of power spectral density at each
frequency point of the EEG signal, n is the number of
ntal paradigm of one trial. (b) 64-electrode positions.
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frequency points. A high PSE implies a flat, uniform
spectrum with a broad spectral content, while a low PSE
implies a spectrum with all the power condensed into a
single frequency bin [24]. In this paper, PSE value of
each movement imagination was calculated from 5 to
35Hz and averaged over 80 trials. To verify the differ-
ences between simple limb motor imagery and com-
pound limb motor imagery, we also constructed six
groups for comparison as above.
On the other hand, spatial distribution coefficient was

proposed to investigate the distinct between simple limb
motor imagery and compound limb motor imagery from
the view of spatial distribution. The spatial distribution
coefficient can be calculated based on Equation (2), as
follows:

Hsdc ¼ −
Xm

i¼1

qi ln qið Þ ð3Þ

where m denotes the number of channels. The input qi
is defined as follows:

qi ¼
mi−rij j
ri

ð4Þ

where mi and ri are the mean power spectral density of
alpha band at each channel from imagination tasks and
rest state respectively.

CSP algorithms
Common Spatial Patterns algorithm is a method to extract
features of two classes based on multi-channel EEG infor-
mation [26]. In this study, the raw data was band-pass fil-
tered between 8 Hz and 30 Hz [20], time interval starting
from 3.5 s to 6.5 s. Since the property of CSP for binary
situation, it has to be modified to be appropriate to the
circumstance of multi-class MI tasks. We present here
three multi-class CSP algorithms: multi-class CSP (Multi-
CSP), multi-class CSP based on generalized eigenvector
(Multi-GECSP), multi-class stationary Tikhonov regular-
ized CSP (Multi-sTRCSP).

1) Multi-CSP

For the analysis, the multi-channel EEG data
of a single trial is represented as an N*T
matrix Xi, where i∈{1,2,,7}, N is the number of
channels and T is the number of samples per
channel. Similar to the steps in [20], we firstly obtain
average covariance matrix ∑i of each MI pattern,
i∈{1,2,,7}. The whitening matrix can be
obtained by

P ¼ Λ
−1=2UT

0 ð5Þ
Where Uo is the matrix of eigenvectors and ∧ is the
diagonal matrix of eigenvalues from

Σ ¼
X7

i¼1

Σi ¼ U0ΛU
T
0 ð6Þ

Thereafter, in order to acquire the spatial filter

matrix relevant to the first class, we let Σ
0
1 ¼

X7

i¼2

Σi

according to the strategy of one-versus-rest, and if

∑1 and Σ
0
1 can be translated as

Y 1 ¼ PΣ1PT

Y
0
1 ¼ PΣ

0
1P

T ð7Þ

Then Y1 and Y
0
1 share common eigenvectors

Y 1 ¼ U1Λ1UT
1

Y
0
1 ¼ U1Λ

0
1U

T
1

ð8Þ

With the projection matrix W 1 ¼ UT
1 P consisting of

spatial filters corresponding to the first class, the
other six projection matrices also can be gained
similarly.

2) Multi-GECSP
In this approach, formally, the calculation of
projection matrix W can be solved by maximizing
the Rayleigh quotient, as the following function
[26-28]:

R Wð Þ ¼ WTΣiW

WTΣW
ð9Þ

The maximization of the Rayleigh quotient can be
reformulated as a constrained optimization problem,
which can be solved using Lagrange multiple. The
solution W satisfying the equation (8) can be
achieved by solving the generalized eigenvalue
problem:

ΣiW ¼ λ Σð ÞW ð10Þ
where the generalized eigenvector with
largest eigenvalue corresponds to the
spatial filter matrix W that maximizes the
variance of class i while minimizing the
common variance [28].

3) Multi-sTRCSP
CSP is also known to be highly sensitive to noise
and prone to overfitting [7,8], in order to overcome
this problem, one proposed method based on
Tikhonov regularization (TR) of the objective
function is to add a penalty termPTRCSP (W) =
∥W∥2 =WTW =WT IW in the denominator [27].
Otherwise, the sCSP aims at extracting robust and
stationary features [28], where the penalty term
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PsCSP(W) can be obtained by minimizing the
following function for each class i:

Di Wð Þ ¼ ∑
k
WTΣ kð Þ

i W−WTΣiW
���

��� ð11Þ

where Σ kð Þ
i is the covariance matrix of the kth trial

of class i.
Combining both approaches mentioned above
together, the stationary Tikhonov regularized CSP
(sTRCSP) maximizes the following objective
function:

R Wð Þ ¼ WTΣiW

WTΣW þ αPsCSP Wð Þ þ βPTRCSP Wð Þ ð12Þ

Where a and β are regularization parameter both
chosen among {0, 2-8,2-7,2-6,2-5,2-4,2-3,2-2,2-1,20} by
tenfold cross-validation.
Classification
Support vector machine (SVM) is a classical method for
pattern recognition in BCI systems using the optimal
discriminant hyperplane to identify classes, which is
adopted here for classification of seven kinds of MI pat-
terns. SVM is known to have good generalization prop-
erties, to be insensitive to overtraining and be suitable to
small training sets [29,30]. In this study, we used
LIBSVM software package [31], a freely-available library
of SVM tools, to solve the multi-class classification
problem. The original multi-channel (64) EEG data was
preprocessed firstly (downsampled at 200Hz, common
average referenced, band-pass filtered between 8Hz and
30Hz, time interval starting from 0.5s to 3.5s after cue).
Then whole dataset was divided into a training set and a
testing set. The training set served as the input of multi-
class CSP algorithms in order to achieve CSP filters
which were used to extract features. The classifier calcu-
lated based on the training set was used to classify the
testing set. The estimation of the classification accuracy
was executed by a tenfold cross-validation strategy,
which means each portion S(k)will be used as the test-
ing set once. S(k) = {si,j ∣s∈S,i∈{1,2,,7},j∈J

(k)} is the sam-
ple set of the kth fold, K∈{1,2,,9,10}. S donates the
whole dataset while i is the type of mental task and J(k)

donates the sequence number chosen for each mental
task in kth fold. The final classification accuracy was
then computed by averaging over all results of testing

sets, acc ¼ 1
10

X10

k¼1

acc kð Þwhere acc(k) is the accuracy for

kth fold.
Results
EEG patterns during seven mental tasks
Event-related spectral perturbation
Figure 2 shows the time-frequency maps of seven kinds
of MI tasks (blue indicates ERD) from one subject for
electrode positions C3, Cz and C4. Here, left hand, right
hand, feet, both hands, left hand combined with right
foot, right hand combined with left foot and rest are rep-
resented by LH, RH, F, BH, LH&RF, RH&LF and R. The
maps show obvious long-lasting power decrease in both
alpha and beta rhythm starting almost 500 ms after
stimulus onset for all motor imagery except rest. ERD
patterns in 8-9Hz band can be found at C3 and C4 dur-
ing both hands imagery, but there is no obvious differ-
ence between each other. Quite different patterns are
found during compound limb motor imagery combining
hand with contralateral foot. Compared with simple limb
motor imagery (left hand, right hand, feet), the ERD fea-
ture bands of compound limb motor imagery overlap
with that of the former one but more broad as well, es-
pecially in alpha rhythm (8-11Hz) at electrode positions
C3 and C4 during left hand combined with right foot
imagery and right hand combined with left foot imagery.
To observe the expansion of ERD band during com-

pound limb motor imagery more clearly, Figures 3, 4
and 5 show the comparison of power changes in six
groups for electrode C3, Cz and C4. The paired t-test
was used, and the significant differences (p < 0.05) be-
tween two conditions were shaded by grey blocks. From
Figure 3, we can see clearly that the ERD band within
alpha rhythm is broader than right hand imagery during
right hand combined with left foot imagery at C3. In
addition, significant differences are found around 14 Hz,
20Hz and 28Hz. Compared with feet imagery, significant
differences appear within several sub-bands during left/
right hand combined with contralateral foot imagery.
From Figure 4, it also can be seen that compared with
feet imagery, more broad-banded ERD occurs during left
hand combined with right foot imagery at Cz, accom-
panied with significant differences within almost whole
alpha band and 18-24Hz band. In other groups, there
exist significant differences to a variable extent between
compound limb motor imagery and simple limb motor
imagery. Meanwhile, compared with left hand imagery,
we can see from Figure 5 that besides the broader alpha-
band ERD, there also exists a slightly 18-20Hz ERD with
significant difference at C4 during left hand combined
with right foot imagery. Furthermore, several broad-
banded significant differences are observed between left/
right hand combined with contralateral foot imagery and
feet imagery. And there also exists a broader alpha-band
ERD during right hand combined with left foot imagery.
Apart from the EEG signal analysis in time-frequency do-

main, spatial distribution analysis also plays an important



Figure 2 Examples of time-frequency maps for one subject, 7 mental tasks, and 3 electrode locations. LH, RH, F, BH, LH&RF, RH&LF and R
indicate left hand, right hand, feet, both hands, left hand combined with right foot, right hand combined with left foot and rest respectively. Blue
indicates ERD.
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role in exploring EEG patterns of different mental tasks.
The topographical distributions of 7 mental tasks obtained
from one subject are presented in Figure 6. It can be found
that ERD of alpha band occurs on all central electrode posi-
tions during each motor imagination except rest, which
means the spatial distribution of the induced ERD feature
Figure 3 The comparison of power changes in six groups for electrod
while red line indicates simple limb motor imagery. The grey blocks presen
imagery and compound limb motor imagery.
on brain surface mainly focus on the sensorimotor areas
corresponding to human limbs. The ERD feature of both
hands imagery appears on both left and right hand areas,
which is different from the spatial distribution of single
hand imagery, but the ERD is slightly weaker in right
hemisphere as compared to left hemisphere. From the
e position C3. Blue line indicates compound limb motor imagery,
t statistic significant differences (p < 0.05) between simple limb motor



Figure 4 The comparison of power changes in six groups for electrode position Cz. Blue line indicates compound limb motor imagery,
while red line indicates simple limb motor imagery. The grey blocks present statistic significant differences (p < 0.05) between simple limb motor
imagery and compound limb motor imagery.
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distribution during left/right hand combined with
contralateral foot imagery, we can see the strong ERD
on both hand areas and another midcentral ERD,
which is obviously distinct from the distribution of
motor imagery only involving hand (left hand, right
hand, both hands).

Power spectral entropy
Power spectral entropy is applied to better understand
the phenomenon of ERD band expansion during com-
pound limb motor imagery. Figure 7 gives the mean PSE
values across ten subjects for three electrode positions.
Blue bar indicates compound limb motor imagery, while
red bar indicates simple limb motor imagery. It can be
Figure 5 The comparison of power changes in six groups for electrod
while red line indicates simple limb motor imagery. The grey blocks presen
imagery and compound limb motor imagery.
observed that most asterisks appear upon the last four
groups, which indicates the existence of significant
differences on the PSE values during compound limb
motor imagery combining left/right hand with contralat-
eral foot. The result shows the PSE values of left/right
hand combined with contralateral foot imagery are sig-
nificantly higher than that of feet imagery at electrode
positions C3 (p = 0.015 and p = 0.009). In addition, not
only the PSE value of left hand combined with contralat-
eral foot imagery is significantly higher than that of left
hand and feet imagery, but the PSE value of right hand
combined with contralateral foot imagery is significantly
higher than that of right hand and feet imagery as well
at electrode positions Cz and C4.
e position C4. Blue line indicates compound limb motor imagery,
t statistic significant differences (p < 0.05) between simple limb motor



Figure 6 The topographical distribution for 7 mental tasks from one subject. The maps are made based on ERSP values of each electrode.
Blue regions indicate the involved areas when ERD occurs during mental tasks.
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Spatial distribution coefficient
Spatial distribution coefficient is introduced to quantify
the difference in spatial distribution between simple limb
motor imagery and compound limb motor imagery.
Figure 8 shows the comparison of spatial distribution
coefficient among six groups. The result presents exist-
ence of significant differences on the spatial distribution
coefficients during compound limb motor imagery com-
bining left/right hand with contralateral foot. It can be
observed that not only the spatial distribution coefficient
of left hand combined with contralateral foot imagery is
significantly higher than that of left hand and feet imagery,
but the spatial distribution coefficient of right hand com-
bined with contralateral foot imagery is significantly
higher than that of right hand and feet imagery as well.
The topographical distributions based on the q values

for 6 mental tasks are presented in Figure 9. It shows
the relatively equalizing activation of bilateral hand areas
during both hands imagery, which is different from
the obvious contralateral dominance during single hand
Figure 7 The comparison of PSE values in six groups for C3, Cz and C
indicates simple limb motor imagery. Condition pairs that significantly diffe
asterisks (p < 0.01).
imagery. Although activated areas are mainly concen-
trated in the contralateral hand regions, more areas are
activated during left/right hand combined with contra-
lateral foot imagery, especially the frontal location and
bilateral regions in the occipital location.

Classification performance
For each subject, the CSP filters for each mental task
were achieved on the training set. Then the log-
variances of the spatially filtered EEG data were used as
the extracted features. Moreover, for each direction of
imagined movement, only the eigenvectors correspond-
ing to first k eigenvalues could be used as spatial filters
to extract features which are most suitable for classifica-
tion. k = argmax(accCV(k)) is the number of spatial filters
used in the classification with the highest average accur-
acy during tenfold cross-validation. To validate the
separability of seven types of mental tasks, and compare
three kinds of multi-class CSP algorithms in this study,
we analyzed the classification accuracy by SVM. Table 1
4. Blue bar indicates compound limb motor imagery, while red bar
r from each other are indicated by an asterisk (p < 0.05) or two



Figure 8 The comparison of spatial distribution coefficient among six groups. Blue bar indicates compound limb motor imagery, while red
bar indicates simple limb motor imagery. Condition pairs that significantly differ from each other are indicated by an asterisk (p < 0.05) or two
asterisks (p < 0.01).
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shows the classification accuracies of ten subjects
obtained on the test sets with highest accuracy of 84%
and mean accuracy of 70%. From the results, we can see
that the best multi-class CSP algorithm on data of seven
mental tasks is Multi-sTRCSP with the highest mean ac-
curacy. Taking a close look at the classification result,
S2, S6 and S7 perform best under the Multi-sTRCSP ap-
proach with the accuracy above 75%. Both Multi-CSP
and Multi-sTRCSP are significantly better than Multi-
GECSP which is outperformed by about 2% in mean
classification accuracy, at the 5% significance level using
t-test (p = 0.0374 and 0.0078). However, Multi-sTRCSP
preforms only slightly better than Multi-CSP, and there
is no significant difference between each other.

Discussion
Characteristics of compound limb motor imagery
From the result, a contralateral dominance is not observed
during left hand imagery. The similar ERD pattern and
spatial distribution during left hand motor imagery were
also revealed by an investigation of four different MI tasks
[17], which is probably due to the right handedness. The
imagination of feet movement desynchronized the alpha
band over not only the feet but also the hand representa-
tion area, which is similar to that revealed by ERD maps
on a realistic head model during voluntary foot movement
[32]. Movement imagination desynchronizes lower mu
Figure 9 The topographical distribution based on q values for 6 men
motor imagery.
components somatotopically unspecific, which means
desynchronization is present in all sensorimotor areas
(in target attended and non-attended body part areas). But
this widespread foot area ERD in alpha band was not
found in every subject [17].
Mean power spectral density provides a more intuitive

and convenient approach to observe the changes of ERD
bands. Besides clear expansion of ERD band within
alpha rhythm, beta band is also affected to some extent
around 20Hz and even more high frequency compo-
nents during compound limb motor imagery combining
left/right hand with contralateral foot. However, the in-
duced ERD mainly impacts on the narrow bands within
beta rhythm during both hands imagery. As we know,
the most reactive mu components of ERD with hand im-
agery are not exactly same as that with foot imagery
[17], which means that the ERD band range of each
other within alpha rhythm may exist deviation to some
extent, so does the ERD band within beta rhythm prob-
ably. Meanwhile, the ERD components within alpha
rhythm are different between voluntary hand and foot
movement [32]. Therefore, the induced ERD may affect
more broad-banded components within both alpha and
beta rhythms at a certain degree during left/right hand
combined with contralateral foot imagery.
In this study, PSE was used to evaluate the spectral dis-

tribution of EEG signals during imagination of different
tal tasks. Red regions indicate the activated areas during six types of



Table 1 Classification accuracies of seven mental tasks for each subject

Subject S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 mean

Multi-CSP 70.82 81.79 63.14 64.28 67.85 74.11 71.61 68.93 71.96 66.25 70.07

Multi-GECSP 70.00 80.54 63.14 62.32 65.00 73.75 73.39 66.07 72.50 60.54 68.73

Multi-sTRCSP 73.67 84.11 62.07 64.64 66.07 75.00 75.00 68.75 71.07 63.93 70.43

Highest accuracy in each column is in bold font.
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movements. A high PSE implies a uniform distribution
spectrum of EEG signal within 5-35Hz, namely in terms
of the ERD phenomenon studied here, more broad-
banded ERD contributes to higher PSE values. As showed
in Figures 3, 4 and 5, compared with simple limb motor
imagery, more broad-banded ERD within both alpha and
beta rhythms are observed during left/right hand com-
bined with contralateral foot imagery. Correspondingly,
the PSE values are indeed significantly higher than that of
simple limb motor imagery in ten comparison groups at
electrode positions C3, Cz and C4. Therefore, PSE can be
regarded as a parameter to assess the ERD bandwidth in
motor imagery paradigm.
Moreover, because of the simultaneous imagination of

both hands, the bilateral hand areas are activated simul-
taneously. However, the situation, the ERD is slightly
weaker in right hemisphere as compared to left hemi-
sphere during both hands imagery, is probably attributed
to the right handedness, namely more neurons have
been activated in the right hand region. Besides, simul-
taneous imagination of upper limb and contralateral
lower limb certainly contributes to the simultaneous ac-
tivation of contralateral hand area and midcentral foot
area, at the same time, the homolatertal hand area is also
activated due to the influence on non-attended areas
within lower mu components [17]. Such phenomenon
implies the probability of the application of compound
limb motor imagery to rehabilitation for the patients
suffered from severe motor injury.
The topographical distribution from one individual

shows us the existing differences on spatial distribution
among seven mental tasks, additionally, spatial distri-
Figure 10 The spatial patterns obtained with different multi-class CSP
based on the spatial patterns. High weight locations were represented by r
bution coefficient was proposed for further investigation
over all subjects. As showed in Figure 8, the spatial dis-
tribution coefficients of left/right hand combined with
contralateral foot imagery are significantly higher than
that of simple limb motor imagery, which means that
the power distribution on the scalp is more uniform dur-
ing left/right hand combined with contralateral foot im-
agery. Correspondingly, compound limb motor imagery
combing left/right hand with contralateral foot indeed
activate more function areas on cerebral cortex as well
as sensorimotor areas. Therefore, spatial distribution
coefficient can be regarded as a parameter to evaluate
activation degree of the areas on cerebral cortex in
motor imagery paradigm.
Phase synchronization study suggested that there

probably existed a closer collaborative relationship be-
tween the SMA and M1 during the motor imagination
combining body with limb action [11]. As mentioned
above, due to the involvement of upper and lower limbs
together, corresponding regions accompanied by neigh-
boring cortical areas are activated simultaneously. So dif-
ferent function areas probably influence and cooperate
with each other during the imagination of left/right hand
combined with contralateral foot, which results in the
changes on ERD bands and activated regions.

Spatial patterns in CSP
The spatial patterns of seven kinds of mental tasks
obtained with different multi-class CSP algorithms are
visualized in Figure 10, which can be used to verify the
neurophysiological plausibility of ERD/ERS for different
types of motor imagery [27]. We can see that the spatial
algorithms for one subject. Topographical distributions are made
ed for each task.
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patterns of Multi-CSP appear as messy such as left hand
imagery, with large weight in unexpected electrode loca-
tions on brain surface. The location with high weight is
opposite to the right hand representation area in spatial
patterns of Multi-GECSP during right hand combined
with left foot imagery. On the contrary, the Multi-
sTRCSP spatial patterns are physiologically more rele-
vant and neurophysiologically more plausible from a
neurophysiological point of view.
In terms of the classification result, the modified multi-

class CSP algorithms applied in this study are verified to
be feasible to discriminate compound limb motor imagery
among seven kinds of mental tasks. Indeed, the purpose of
TRCSP algorithm is to generate better filters to diminish
the influence of artifacts and avoid overfitting, otherwise
sCSP is intended to guarantee stationary features [28]. In
terms of the performance, benefiting from combining
Tikhonov regularization and stationarity together, Multi-
sTRCSP outperforms both Multi-CSP and Multi-GECSP.
So multi-class motor imagery and the feature extraction
method studied in this paper could be expected to provide
technical support to expand the instructions of MI based
BCI systems effectively.

Conclusions
This study investigated the differences of the EEG pat-
terns between three kinds of simple limb motor imagery
and three kinds of compound limb motor imagery
designed here by event-related spectral perturbation,
power spectral entropy and spatial distribution coeffi-
cient. Moreover, three modified multi-class CSP algo-
rithms were used to extract feature of seven mental
tasks. The work implies that there exist the separable
differences between simple limb motor imagery and
compound limb motor imagery, which can be utilized to
build a multimodal classification paradigm in motor im-
agery based BCI systems.
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