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Abstract

Background: Anterior cruciate ligament (ACL) injured individuals often show asymmetries between the injured and
non-injured leg. A better understanding of the underlying motor control could help to improve rehabilitation.
Double leg squat exercises allow for compensation strategies. This study therefore investigated motor control
strategies during a double leg squat with the aim to investigate if individuals with ACL rupture (ACLD), ACL
reconstruction (ACLR) and healthy control subjects (CONT) used different strategies.

Methods: 20 ACLD and 21 ACLR were compared to 21 CONT subjects. Participants performed eight continuous
double leg squats to their maximum depth, while kinematic and kinetic data were collected. Outcome measures
were calculated to quantify the behavior of the injured and non-injured legs and the asymmetry between these
legs.

Results: Squat depth was significantly reduced in ACLR and ACLD compared to CONT (p < 0.05; 106 ± 17°; 105 ±
21°; 113 ± 21°). Peak knee extensor moments (Mkn(mx)) were significantly reduced in ACLR and ACLD compared to
CONT in the injured leg only (p < 0.05; 0.045 ± 0.015; 0.046 ± 0.016; 0.059 ± 0.022 body weight.height respectively).
There was no significant correlation between symmetry of the support moment (SYMMsup) and of the % support
moment by the knee (SYM%supkn) in CONT (R2 = -0.07). Data distribution average indicated good symmetry. ACLR
showed a significant correlation between SYMMsup and SYM%supkn (R

2 = 0.561) when two participants who did not
recover as well were excluded. ACLR controlled knee moment magnitude using two strategies; 1) transfer of support
moment to non-injured leg; 2) transfer of support moment from knee to ankle and/or hip of injured leg. These
were combined in different proportions, but with the same effect on the knee moment. ACLD showed no
significant correlation between SYMMsup and SYM%supkn (R

2 = 0.015). Data distribution average indicated reduced
symmetry. ACLD therefore used an avoidance strategy: reducing squat depth and subsequently the support
moment in the injured leg and the knee contribution.

Conclusions: ACLD and ACLR individuals used different squatting strategies compared to controls, with ACLR using
controlled and ACLD using avoidance behavior regarding knee loading. This has major implications for
rehabilitation as these kinetic strategies cannot be observed, but result in the injured leg not being exercised as
intended.
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Background
Anterior Cruciate Ligament (ACL) injury often results in
failure to return to pre-injury activity levels [1-4]. Ap-
proximately 42-65 % of ACL injured individuals who
had reconstructive surgery [1-3] and 18-50 % of those
who were treated conservatively [2,4] do not return to
their pre-injury levels. ACL injury also leads to an in-
creased predisposition of early-onset osteoarthritis [5],
affecting 50 % of ACL deficient individuals (ACLD) [6]
and 33-39 % of individuals with ACL reconstruction
(ACLR) [7,8]. The mechanisms from injury to early on-
set osteoarthritis are unknown, although altered loading
of the knee has been proposed as one important poten-
tial mechanism [9-11]. Better insight into altered kine-
matics and kinetics during functional activities is
therefore needed. Numerous studies have highlighted
that there are asymmetries in kinematics or kinetics be-
tween the injured and non-injured leg in ACL patients
[12-19]. Asymmetries persisted even six months to two
years post-surgery [13,16,17,19]. Such asymmetries could
result in altered loading of the knee joint. Although
asymmetric behavior has been reported, insight into the
motor control strategies behind the asymmetries is lim-
ited. A better understanding of the motor control of
these asymmetries should help to improve rehabilitation
of ACL injured patients.
Double leg squat exercises are used in early rehabilita-

tion of ACL injured individuals to strengthen quadriceps
and hamstring muscles and to inform treatment selec-
tion [20-22]. Asymmetric behavior will however limit
the effectiveness of this exercise which allows for com-
pensation strategies because it involves multiple joints
and bilateral leg support. It appears that ACLR patients
adopt such asymmetric strategies during this exercise
[14], with a reduced peak knee extensor moment and a
trend to an increased peak hip extensor moment in the
injured compared to the non-injured leg [14]. The load-
ing response has also been found to be asymmetric in
ACLR patients and reduced in the injured compared to
the non-injured leg [23]. This suggests a compensation
mechanism of reduced effort of the knee and increased
effort of the hip in the injured leg. The sample size in
Salem et al. [14] was however too small to demonstrate
a significantly increased effort of the hip and to investi-
gate the motor control strategies underlying these com-
pensations. The motor control strategies behind the
asymmetries during a double leg squat in ACL injured
individuals therefore remain not well understood. A bet-
ter understanding of such strategies is essential to be
able to address them in rehabilitation. Furthermore, no
studies have investigated double leg squatting strategies
in ACLD patients.
This study therefore investigated motor control strat-

egies during a double leg squat with the aim to
investigate if individuals with ACL rupture (ACLD), ACL
reconstruction (ACLR) and healthy control subjects
(CONT) used different strategies. It was hypothesized
that both ACLR and ACLD would use compensation
strategies during the double leg squat with a decreased
effort of the knee and an increased effort of the hip in the
injured compared to the non-injured leg and that these
strategies would differ between ACLR and ACLD.

Methods
Participants
20 ACLD (height: 1.80 ± 0.08 m, mass: 82.9 ± 12.5 kg,
age: 29 ± 6 years, gender: 3 female, 17 male) and 21
ACLR (height: 1.73 ± 0.07 m, mass: 80.1 ± 9.5 kg, age:
29 ± 9 years, gender: 5 female, 16 male) were compared
to 21 CONT subjects (height: 1.75 ± 0.13 m, mass:
77.6 ± 19.6 kg, age: 27 ± 8 years, gender: 9 female, 12
male). Participant numbers were based on power calcu-
lations; using means and standard deviations from Salem
et al. [14] we calculated an effect size [24] of 0.84, when
using an alpha of 0.05 and power of 0.8 this resulted in
21 participants in each group.
There was no significant difference in characteristics

(p = 0.093, p = 0.506 and p = 0.540 for height, mass and
age respectively) between the participant groups. There
was no significant difference in time since injury be-
tween ACLD and ACLR groups (ACLR: 24 ± 17 months;
ACLD: 19 ± 52 months; p = 0.693; Table 1). All ACLR
participants had a single bundle four strand gracilis-
semitendinosus tendon graft reconstruction and were at
least 6 months post-surgery. All participants provided
informed consent to take part in this study and ethical
approval was obtained from South East Wales Local Re-
search Ethics Committee. Inclusion criteria were that
ACLR and ACLD patients were aged between 18 and
65 years; had an ACL rupture that may or may not be
accompanied with a meniscal tear or collateral ligament
sprain; had a primary ACL reconstruction (for ACLR
group only); had finished their rehabilitation; had no
other pathology which affects their movement; had no
previous knee surgery and were able to provide informed
consent independently. Inclusion criteria for CONT
were that subjects were aged between 18 and 65 years;
had no knee injury, knee surgery or other pathology
which affects their movement and were able to provide
informed consent independently.

Patient rated questionnaires and strength measurement
For ACLD and ACLR subjects knee-specific symptoms,
function and sports activity was scored as a single meas-
ure using the International Knee Documentation Subject-
ive Knee (IKDC) questionnaire [25]. Fear of re-injury was
scored for ACLD and ACLR subjects using the Tampa
Scale of Kinesiophobia (TSK) [26] with adaptations for



Table 1 Participant strength and questionnaire data

Tinj (mths) Tsurg (mths) SKnExt (BW.h) SKnFlex (BW.h) CSAS TSK IKDC

CONT - - 0.105 ± 0.026 0.061 ± 0.014 87 ± 17 - -

ACLR 24 ± 17 13 ± 9 0.096 ± 0.039 0.057 ± 0.017 82 ± 16 32.7 ± 4.9 83 ± 10

ACLD 19 ± 52 - 0.083 ± 0.033* 0.054 ± 0.016* 72 ± 19* 41.0 ± 5.1& 61 ± 12&

Mean time since injury (Tinj), time since surgery (Tsurg), knee extensor (SKnExt and SKnFlex) and knee flexor strength, Cincinnati Knee Rating System Sports Activity
Scale (CSAS), Tampa Scale of Kinesiophobia (TSK) and International Knee Documentation Subjective Knee questionnaire (IKDC) scores with standard deviations.
A * indicates a significant difference (p < 0.05) from CONT, and a & significant difference from ACLR (p < 0.05).
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knee injury specific fear of re-injury as in [27]. Activity
level was scored (general for CONT and post-injury for
ACLD and ACLR) using item 3 (Sports Activity Scale
(CSAS)) from the Cincinnati Knee Rating System [28].
Isokinetic knee extensor (SKnExt) and flexor (SKnFlex)
strength were measured at 60°/s on a Biodex System 4
PRO dynamometer (Biodex Medical Systems Inc, USA).
This was measured through the full range of motion and
over five repetitions without any rest in between. The
subjects were sitting upright with the hip at approxi-
mately 90° flexion and the thigh fixed to the dynamom-
eter chair. Although this was measured on both legs, data
are presented for the injured (ACLR and ACLD) and the
dominant stance leg (CONT) only.

Data collection and processing
Participants were asked to perform eight continuous
double leg squats to their maximum depth. The feet
were placed each on a separate force platform. No fur-
ther instructions were given on foot placement, upper
limb position or squatting technique in order to observe
the participants’ normal behavior. Prior to this a static
anatomical calibration trial was collected. Kinematic data
were collected at 250 Hz using an eight camera VICON
MX motion analysis system (Oxford Metrics Group Ltd.,
UK). Reflective markers were placed using the ‘Plug-in-
Gait’ full body marker set. Two additional markers were
placed on the left and right lateral sides of the iliac crest
(LILC and RILC). Ground reaction force data were col-
lected using two Kistler force plates (Kistler Instruments
Ltd., Switzerland) at 1,000 Hz. Ground reaction force
data were filtered with a fourth order Butterworth filter
and a low pass cut off frequency of 12 Hz, and marker
data with a fourth order Butterworth filter and a low
pass cut off frequency of 20 Hz. In most trials the
markers on the left and right anterior superior iliac
crests (LASI and RASI) were occluded during the dee-
pest point of the squat; these gaps were filled using a
custom written program in Vicon BodyBuilder for Bio-
mechanics (version 1.2, Oxford Metrics Group Ltd., UK)
and the data of the LILC and RILC markers. This pro-
gram reconstructed any of the six marker positions
missing in the dynamic trial by exploiting the redun-
dancy and using the exact position of any missing
markers relative to a pelvis reference frame defined in
the static calibration trial. The knee axes were aligned
using the anatomical calibration trial.

Data analysis
Inverse kinematics and dynamics calculations were per-
formed within Vicon Nexus software (version 1.6.1) and
data were further processed and analyzed in Matlab
R2010b (The Mathworks Inc., USA). Anthropometric
measurements were recorded (height, mass, leg length,
knee width and ankle width and used for the inverse dy-
namic calculations. Output parameters (after Winter
[29]) were calculated in Matlab and were as follows, with
variables with the subscript ending in I relating to the
injured leg and ending in N to the non-injured leg (in
CONT N and I were randomly taken as the left or right
leg): αkn(mx): peak knee flexion angles; Mkn(mx): peak knee
extensor moments; Msup: support moment (sum of the
ankle plantar flexor and knee and hip extensor mo-
ments) at Mkn(mx); Msupank the percentage of Msup pro-
duced by the ankle; Msupkn the percentage of Msup
produced by the knee; Msuphip the percentage of Msup
produced by the hip; SYMαkn(mx): symmetry of the peak
knee flexion angles between the injured and non-injured
legs; SYMMsup: symmetry of the support moment be-
tween the injured and non-injured legs; SYM%supkn:
symmetry of the % support moment of the knee between
the injured and non-injured legs; SYM%supankle: sym-
metry of the % support moment of the ankle between
the injured and non-injured legs; SYM%suphip: symmetry
of the % support moment of the hip between the injured
and non-injured legs. Symmetry was calculated as fol-
lows [29]:

Symmetry ¼ 2 � Injured
Injured þ Non−injured

� 100

Statistical analysis
After checking for normal distribution, a one-way
ANOVA was used for the normal distributed kinematic
and kinetic output variables and a Kruskal-Wallis test
for the not normal distributed symmetry measures to in-
vestigate differences between ACLR and CONT and be-
tween ACLD and CONT. To investigate trends between
the symmetry measures simple linear regression analysis
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was used between SYM%supankle and SYM%supkn, and
between SYM%suphip and SYM%supkn. An alpha level of
p < 0.05 was used to evaluate statistically significant
between-groups difference.

Results and discussion
Participant characteristics
ACLD had significantly lower knee flexor (SKnFlex) and
extensor strength (SKnExt) than CONT (p < 0.001), while
strength of ACLR was not significantly different from
CONT (p = 0.068; p = 0.057) when strength was normal-
ized to body weight and height (Table 1). ACLD had a
significantly lower activity level than CONT (p = 0.020;
CSAS; CONT: 87 ± 17; ACLR: 82 ± 16; ACLD: 72 ± 19),
higher fear of re-injury (p = <0.001; TSK; ACLR:
32.7 ± 4.9; ACLD: 41.0 ± 5.1) and lower knee function
(p = <0.001; IKDC; ACLR: 83 ± 10; ACLD: 61 ± 12) than
ACLR (Table 1). ACLD on average had fear of re-injury
while ACLR did not, as a TSK score above 37 has been as-
sociated with the presence of fear of re-injury. CONT had
a larger proportion of females than ALCD and ACLR.
Data were normalized to height and weight to take away
the main gender effects. Some gender differences have
been reported for limb symmetry, with females being
more asymmetric [30]. The smaller proportion of females
in the ACLR and ACLD group in our study could there-
fore have led to an underestimation of asymmetry com-
pared to CONT. Despite this, we still found significant
differences regarding asymmetry. It is therefore unlikely
that gender differences would have influenced the main
conclusions from our study.

Squatting kinematics and kinetics
A significant difference in performance was shown by a
reduced squat depth in both ACLD and ACLR com-
pared to CONT (αkn(mx)I: ACLD and ACLR p < 0.001
and αkn(mx)N: ACLD p = 0.025 ACLR p = 0.035; Table 2).
In ACLD peak knee extensor moments were signifi-
cantly reduced compared to CONT in both the injured
and the non-injured leg (Mkn(mx)I: p = <0.001 and Mkn

(mx)N: p = 0.041), while in ACLR this was only signifi-
cantly reduced in the injured leg (p < 0.001; Table 2).
Despite the reduced squat depth and peak knee mo-
ments in ACLR and ACLD compared to CONT, their
total support moment was not significantly reduced
compared to CONT (MsuptotI and MsuptotN; p = 0.109
Table 2 Kinematics and kinetics

αkn(mx)I (°) αkn(mx)N (°) Mkn(mx)I (BW.h)

CONT 113 ± 21 113 ± 21 0.059 ± 0.022

ACLR 106 ± 17* 106 ± 17* 0.045 ± 0.015*

ACLD 105 ± 21* 106 ± 19* 0.046 ± 0.016*

Mean peak knee flexion angles (αkn(mx)I and αkn(mx)N), peak knee extensor moments
the injured and non-injured leg respectively, with standard deviations for CONT, AC
and p = 0.152 respectively; Table 2). This suggests that in
ACLR and ACLD the knee contributed to a lesser
amount to the support moment compared to CONT.
This was confirmed by our results as the percentage
contribution of the knee to the total support moment
was significantly reduced in the injured leg only in both
ACLR and ACLD compared to CONT (MsupknI: ACLD
and ACLR p < 0.001; MsupknN: ACLD p = 0.387, ACLR
p = 0.324; Table 3; MsupknI: CONT: 44 ± 12; ACLR:
36 ± 10; ACLD: 36 ± 9). ACLD showed an increased con-
tribution of the ankle to the support moment compared
to CONT in both the injured and non-injured leg, and a
decreased contribution of the hip in the non-injured leg
(MsupankI, MsupankN and MsuphipN; Table 3; p < 0.001).
ACLR showed an increased contribution of the hip joint
only in the injured leg (Table 3; p < 0.001). The reduced
contribution of the knee was therefore mainly compen-
sated for by an increased contribution of the hip. This
was in agreement with findings by Salem et al. [14] in
ACLR individuals. The reduction of the peak knee ex-
tensor moment in the injured compared to the non-
injured leg was similar in ACLR in our study to that by
Salem et al. [14] (we found a reduction of 20 % com-
pared to a reduction of 32.6 % by Salem et al.). No stud-
ies have investigated this in ACLD individuals.

Limb symmetry
These results indicate that even though the total support
moments did not differ between the groups, there were
differences between the injured and non-injured legs
(asymmetries). To look further into these asymmetries,
symmetry measures between the injured and non-
injured leg were investigated. To define whether sym-
metry was near perfect, the decision rule was used that
the rounded symmetry measure had to be 100. From
our own data we have experienced that normal sym-
metry in healthy people fits within 5 % and our decision
rule is meant to be consistent with this [31]. Symmetry
of the peak knee flexion angle (SYMαkn(mx)) was close to
100 in all groups (CONT: 100 ± 3; ACLR: 100 ± 3;
ACLD: 99 ± 3; Table 4) indicating near perfect symmetry
between the injured and non-injured leg, as was ex-
pected in this closed chain exercise. SYMαkn(mx) was not
significantly different in ACLD and ACLR from CONT
(ACLD: p = 0.057; ACLR: p = 1.000). SYMMsup was sig-
nificantly reduced in ACLD (p = 0.001), but not ACLR
Mkn(mx)N (BW.h) MsupI (BW.h) MsupN (BW.h)

0.060 ± 0.022 0.143 ± 0.044 0.144 ± 0.042

0.054 ± 0.014* 0.134 ± 0.042 0.140 ± 0.042

0.061 ± 0.025 0.134 ± 0.036 0.150 ± 0.046

(Mkn(mx)I and Mkn(mx)N) and support moments at Mkn(mx) (MsupI and MsupN) in
LR and ACLD. A * indicates a significant difference (p < 0.05) from CONT.



Table 3 Contributions of the ankle, knee and hip to the support moment

MsupankI (%) MsupankN (%) MsupknI (%) MsupknN (%) MsuphipI (%) MsuphipN (%)

CONT 20 ± 9 19 ± 9 44 ± 12 43 ± 11 38 ± 9 38 ± 9

ACLR 21 ± 11 19 ± 10 36 ± 10* 41 ± 11 43 ± 8* 40 ± 12

ACLD 27 ± 7* 25 ± 8* 36 ± 9* 41 ± 10 38 ± 9 34 ± 9*

Mean percentage contribution of the ankle, knee and hip joints to the total support moment with standard deviations. With MsupankI and MsupankN the
contribution of the ankle, MsupknI and MsupknN the contribution of the knee and MsuphipI and MsuphipN the contribution of the hip in the injured and non-injured
leg respectively. A * indicates a significant difference (p < 0.05) from CONT.
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(p = 0.329), compared to CONT (Table 4). Symmetry of
the support moment (SYMMsup) was close to 100 in
CONT (99 ± 10); the support moment was therefore al-
most identical in both legs. In ACLD SYMMsup was
smaller than 100 (95 ± 12); the support moment was
therefore reduced in the injured compared to the non-
injured leg. SYM%supkn was significantly reduced in
ACLD and ACLR compared to CONT (p < 0.001;
Table 4). Symmetry of the % support moment produced
by the knee (SYM%supkn) was close to 100 in CONT
(99 ± 9); the contribution of the knee to the total support
moment was therefore almost identical in the injured
and non-injured leg. SYM%supkn was lower than 100 for
both ACLR and ACLD (93 ± 16 and 92 ± 13 respect-
ively); therefore the knee contributed less to the support
moment in the injured compared to the non-injured leg.
SYM%supankle was significantly reduced in ACLR (p =
0.030), but not ACLD (p = 0.242), compared to CONT
(Table 4). Symmetry of the % support moment produced
by the ankle (SYM%supankle) was 100 in CONT (100 ±
16); the contribution of the ankle to the total support
moment was therefore identical in the injured and non-
injured leg. SYM%supankle was higher than 100 for both
ACLR and ACLD (105 ± 18and 104 ± 14 respectively);
therefore the ankle contributed more to the support mo-
ment in the injured compared to the non-injured leg.
SYM%suphip was significantly reduced in ACLR (p =
0.005) and ACLD (p < 0.001), compared to CONT
(Table 4). Symmetry of the % support moment produced
by the hip (SYM%suphip) was 100 in CONT (100 ± 11);
the contribution of the hip to the total support moment
was therefore identical in the injured and non-injured
leg. SYM%suphip was higher than 100 for both ACLR
and ACLD (105 ± 15and 106 ± 12 respectively); therefore
the hip contributed more to the support moment in the
injured compared to the non-injured leg. Overall this
Table 4 Symmetry of kinematics and kinetics

SYMαkn(mx) (%) SYMMsup (%) SYM

CONT 100 ± 3 99 ± 10 100

ACLR 100 ± 3 97 ± 11 105

ACLD 99 ± 3 95 ± 12* 104

Mean symmetry of the peak knee flexion angles between the injured and non-injur
and non-injured legs (SYMMsup), symmetry of the % support moment of the ankle (S
and non-injured legs with standard deviations for CONT, ACLR and ACLD. A * indica
means that in CONT the total support moment was
evenly distributed over the injured and non-injured leg
and the ankle, knee and hip contributed to the total sup-
port moment in similar amounts in the injured and non-
injured legs. In ACLR the total support moment was
also similar distributed over the injured and non-injured
leg, however the contribution of the knee was reduced
and the contribution of the ankle and hip was increased
in the injured compared to the non-injured leg. For
ACLD the total support moment was reduced in the in-
jured compared to the non-injured leg, also the contri-
bution of the knee was reduced and the contribution of
the hip was increased in the injured compared to the
non-injured leg. This suggests the use of different motor
control strategies in the different groups.

Squatting motor control strategies
The two main components that were varied in the differ-
ent motor control strategies were SYMMsup and SYM%
supkn. We therefore further investigated these motor
control strategies in the different participant groups by
looking at the relationship between SYMMsup and SYM%
supkn (Figure 1). There was no significant correlation be-
tween these variables in CONT (adjusted R2 = -0.007,
p = 0.946; Figure 1A). Data were randomly distributed
around a point close to IV (100,100; representing perfect
symmetry in both legs, Figure 1). This variability would
be expected in normal unconstrained performance.
ACLR showed a small but significant correlation be-
tween SYMMsup and SYM%supkn (adjusted R2 = 0.098, p
< 0.001; Figure 1B). There were however two subjects
that were behaving differently from the other ACLR sub-
jects (circled data in Figure 1B). When these data were
not included ACLR showed a significant and strong cor-
relation between SYMMsup and SYM%supkn (adjusted
R2 = 0.561, p < 0.001; Figure 1B) and were distributed
%supankle (%) SYM%supkn (%) SYM%suphip (%)

± 16 99 ± 9 100 ± 11

± 18* 93 ± 16* 105 ± 15*

± 14 92 ± 12* 106 ± 12*

ed legs (SYMαkn(mx)), symmetry of the support moment between the injured
YM%supankle), knee (SYM%supkn) and hip (SYM%suphip) between the injured
tes a significant difference (p < 0.05) from CONT.
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around a point close to IV (100,100). This was a negative
correlation; therefore ACLR participants with the highest
SYMMsup presented the lowest SYM%supkn and vice versa.
Whilst performing maximally, ACLR seemed constrained
by the knee moment on the injured side. ACLR controlled
the knee moment magnitude by using two strategies in
combination; 1) transfer of support moment to the non-
injured leg; 2) transfer of support moment from the knee
to the ankle and hip of the injured leg. Different subjects
combined these strategies in different proportions. The
use of the strategies showed a negative correlation along
the diagonal (dashed line in Figure 1B); therefore the in-
creased use of one strategy would reduce the use of the
Figure 2 Double leg squat compensation strategies (graphical repres
produced by the ankle (light grey), knee (red) and hip (dark grey). The sizes
the same size on the injured and non-injured side (I and IV) indicates an ev
injured side (II and III) indicates a reduced support moment in the injured
support moment in the injured and non-injured leg but reduced contribut
II) reduced support moment in the injured leg but similar contribution of t
(some ACLD individuals and ACLR), III) reduced support moment and redu
injured leg (some ACLD individuals only), IV) similar support moment and s
(some ACLD and some ACLR individuals and CONT).
other. The effect on the knee moment was therefore the
same among subjects. ACLD showed no significant cor-
relation between SYMMsup and SYM%supkn (adjusted R2

= 0.015, p = 0.080; Figure 1C). The data were distributed
around a point below 100 for both SYMMsup and SYM%
supkn. ACLD therefore used an avoidance strategy where
they reduced squat depth and subsequently the support
moment in the injured leg and the contribution of the
knee to this moment. The lack of correlation could be be-
cause some subjects were functioning better than others.
From these results a general performance strategy of

reducing depth of squatting and four different motor con-
trol strategies could be identified. These are graphically
entation). The slices represent the percentage of support moment
of the circles refer to the magnitude of the total support moment;
en distribution between the legs, while a smaller size circle on the
leg. The strategies I-IV therefore represent the following: I) similar
ion of the knee in the injured leg (some ACLD individuals and ACLR),
he knee to the support moment in the injured and non-injured leg
ced contribution of the knee in the injured compared to the non-
imilar contribution of the knee in the injured and non-injured legs
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demonstrated in Figure 2: I) similar support moment in the
injured and non-injured leg but reduced contribution of
the knee in the injured leg (some ACLD individuals and
ACLR), II) reduced support moment in the injured leg but
similar contribution of the knee to the support moment in
the injured and non-injured leg (some ACLD individuals
and ACLR), III) reduced support moment and reduced
contribution of the knee in the injured compared to the
non-injured leg (some ACLD individuals only), IV) similar
support moment and similar contribution of the knee in
the injured and non-injured legs (some ACLD and some
ACLR individuals and CONT).

Conclusions
Despite having completed rehabilitation both ACLR and
ACLD showed reduced double leg squat performance
compared to CONT and used compensation strategies
that would reduce loading of their injured knee. Differ-
ent adaptation of motor control strategies were identi-
fied. ACLR demonstrated constrained behavior during a
double leg squat to control knee moment magnitude.
ACLD used an avoidance strategy with reduced perform-
ance, support moment and contribution of the knee to
this moment in the injured leg. They both compensated
with an increased contribution of the hip and ACLR also
with an increased contribution of the ankle. The behav-
ior in ACLD could potentially be explained by their re-
duced knee extensor and flexor strength and their
increased fear of re-injury. The double leg squat is often
used in early rehabilitation. This study demonstrated
that ACLD and ACLR used different strategies com-
pared to CONT. Attention needs to be paid as these pa-
tients may not exercise the injured leg as intended and
squat depth on its own may not be adequate as a clinical
outcome measure. By observation the exercise can ap-
pear normal, while the ACL injured individual may use
kinetic compensation strategies. Therefore tools are
needed to be able to use biomechanical information in
assessment and treatment. These tools could involve
manipulation of the support moment or ground reaction
forces by means of kinematic adjustments which would
be accessible to the clinical setting. The different strat-
egies also highlight that individualized rehabilitation is
essential. The long term implications of these findings
are unknown. Clearly ACL injured individuals are not
recovering movement strategies on early rehabilitation
exercises. It could therefore be questioned whether re-
habilitation should progress to more demanding exercis-
ing before this has been addressed and whether different
types of exercises that directly address motor control
should be included earlier in rehabilitation.
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