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Abstract

Background: The dopaminergic (DA) neurons in the ventral tegmental area (VTA) are widely implicated in the
addiction and natural reward circuitry of the brain. These neurons project to several areas of the brain, including
prefrontal cortex (PFC), nucleus accubens (NAc) and amygdala. The functional coupling between PFC and VTA has
been demonstrated, but little is known about how PFC mediates nicotinic modulation in VTA DA neurons. The
objectives of this study were to investigate the effect of acute nicotine exposure on the VTA DA neuronal firing
and to understand how the disruption of communication from PFC affects the firing patterns of VTA DA neurons.

Methods: Extracellular single-unit recordings were performed on Sprague-Dawley rats and nicotine was
administered after stable recording was established as baseline. In order to test how input from PFC affects the
VTA DA neuronal firing, bilateral transections were made immediate caudal to PFC to mechanically delete the
interaction between VTA and PFC.

Results: The complexity of the recorded neural firing was subsequently assessed using a method based on the
Lempel-Ziv estimator. The results were compared with those obtained when computing the entropy of neural
firing. Exposure to nicotine triggered a significant increase in VTA DA neurons firing complexity when
communication between PFC and VTA was present, while transection obliterated the effect of nicotine. Similar
results were obtained when entropy values were estimated.

Conclusions: Our findings suggest that PFC plays a vital role in mediating VTA activity. We speculate that
increased firing complexity with acute nicotine administration in PFC intact subjects is due to the close functional
coupling between PFC and VTA. This hypothesis is supported by the fact that deletion of PFC results in minor
alterations of VTA DA neural firing when nicotine is acutely administered.

Background
The mesocorticolimbic dopamine system, consisting of
the ventral tegmental area (VTA), prefrontal cortex
(PFC) and nucleus accumbens (NAc), is a critical sub-
strate for the neural adaptations that underlie addiction
[1]. The dopamine (DA) neurons in VTA and their pro-
jection areas, including PFC, NAc, and amygdala, are
thought to be very important in the reward driven beha-
vior induced process by the drugs of addiction [1-5].
Nicotine is a biologically active substance that promotes
tobacco use and has caused the global population health

and economical problems. Unfortunately, nicotine
dependence creates problems for smokers to quit. The
mesocorticolimbic dopamine pathways have been shown
to be stimulated by nicotine. The stimulation originates
from VTA and resulting in DA secretion within the
NAc and PFC is essential for the reinforcing effects of
nicotine [6]. Moreover, other neurotransmitter pathways
like glutamatergic neurons projecting from PFC to VTA
are also involved in the motivational effects of nicotine
[7,8]. The important role played by glutamatergic path-
ways in excitation of mesocorticolimbic dopaminergic
neurons by nicotine has been demonstrated by many
previous studies [9].
The firing activities of VTA DA neurons and addictive

behavior of the animals are believed to be controlled by

* Correspondence: makay@uh.edu
Department of Biomedical Engineering, Cullen College of Engineering,
University of Houston, Houston, TX 77204, USA

Chen et al. Journal of NeuroEngineering and Rehabilitation 2011, 8:13
http://www.jneuroengrehab.com/content/8/1/13 J N E R JOURNAL OF NEUROENGINEERING 

AND REHABILITATION

© 2011 Chen et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:makay@uh.edu
http://creativecommons.org/licenses/by/2.0


the glutamatergic synaptic inputs from PFC [10-14]. The
PFC is a key structure for executive functions of the
brain [15,16], and has been shown to regulate the firing
pattern of VTA DA neurons. Therefore, the burst firing
in VTA DA neurons increases with PFC stimulation and
the opposite effect is shown with PFC inactivation
[17-21]. The strengthening of input from PFC to VTA
plays an important role in the behavioral sensitization
development, a well-known model for addiction [22-24].
Evidence has shown the functional input loss from PFC
and/or NAc may reduce the effects of these drugs on
the addiction process [13,25-27]. Studies have demon-
strated that under in vivo conditions, the VTA DA neu-
rons produce single spikes and/or burst firing.
Additionally, they are capable of firing in a slow oscilla-
tory (SO) pattern. The SO generation needs inputs from
other brain area (i.e. PFC) [28,29].
Previous studies show that systemic nicotine injection

can increase the firing rate and percentage of bursting
firing of VTA DA neurons [30-33]. However, the PFC
transection only excited 28% of the VTA DA neurons
which could be stimulated only by systemic nicotine
activation, but not by the PFC [32,33]. Also, we have
known that VTA DA neurons’ bursting firing mode
needs excitatory inputs. Therefore, we hypothesize that
systemic exposure to nicotine significantly affects the
complexity of firing of the VTA DA neuron and this
alteration should be based on the intact input from
other brain areas. Since PFC is the main source of exci-
tatory inputs to the VTA, the effect of nicotine on the
complexity of VTA DA neuronal firing will be reduced,
when the pathway between PFC and VTA is discon-
nected. To test this hypothesis, we recorded VTA DA
neurons firing and analyzed the data using the advanced
nonlinear dynamical analysis method based on the
Lempel-Ziv (LZ) estimator.
Traditional analysis methods of neuronal firing activity

consist only in measuring spike amplitude and/or
extracting spike frequency information in order to char-
acterize the changes produced in the VTA or other
brain areas by different physiological factors or pharma-
cological treatments [34,35]. However, the use of such
methods often renders comparisons within subject
groups not possible. The amplitude characteristics or
frequency of rhythms may differ from subject to subject.
Additionally, they may not offer any insight on the firing
patterns generated by the neural activity. Therefore,
more robust and meaningful analysis methods need to
be used for the dynamical analysis of neural recordings.
The dynamical analysis is especially relevant in the con-
text of VTA DA neurons, which are part of neural net-
works that receive inputs from several other brain areas.
Therefore, in this study, we have analyzed the dynamics
(complexity) of nicotine-induced neuronal firing pattern

in the VTA DA neurons in both PFC intact and trans-
ected Sprague Dawley (SD) rats using the Lempel-Ziv
(LZ) method. We also estimated the entropy values of
the recorded firing activity and compared the results
obtained from LZ analysis and entropy [36].

Methods
Electrophysiological recordings
All experimental protocols and surgeries were approved
by The Institutional Animal Care and Use Committee
of Arizona State University. We used male Sprague-
Dawley (SD) rats from Charles River Laboratories (Wil-
mington, MA) weighting between 250 and 300 grams.
All animals were anesthetized with chloral hydrate
(400 mg/kg, intraperitoneal (i.p.) injected) and mounted
with stereotaxic apparatus (Narishige, Japan) for extra-
cellular single-unit recording. The extracellular record-
ing pipette was filled with 2 M NaCl (Sigma) and 0.5%
Chicago sky blue (Sigma) solution and placed into the
VTA through a small burr hole in the skull (2.7-3.3 mm
anterior to the lambda and 0.5-0.9 mm lateral to the
midline) by an electro-microdriver. DA neurons, usually
at 6.5-8.5 mm below the cortical surface, were identified
according to the well established electrophysiological
criteria [37-41]. After stable recording was established
for a minimum of five minutes as baseline, (-) nicotine
hydrogen tartrate salt (Sigma Chemical Co., St. Louis,
MO) at a smoking-relevant concentration (0.5 mg/kg,
i.v. via tail vein) was administered and recordings were
continued for at least 15 minutes. Mereu et al [42] stu-
died the influence of various doses of nicotine on Dopa-
mine (DA) neurons in rats either general or local
anesthesia. Their results showed the optimal dose of
nicotine (0.5 mg/kg) that produced a significant increase
in the firing rate of DA neurons. Stolerman et al per-
formed similar studies [43] that confirmed that 0.5 mg/
kg was an optimal and effective dose to study the influ-
ence of nicotine in the neural firings of DA neurons.
Many others [31,44,45] also used 0.5 mg/kg dose of
nicotine to study the behavior of DA neurons. There-
fore, these studies encouraged us to focus on the single,
optimal dose to investigate the influence of nicotine on
the dynamics of neural firings of DA neurons. The body
temperature was maintained at 36 to 38°C. The record-
ing sites were marked by ejection of Chicago sky blue
and examined using standard histology methods at the
end of experiments [32,33,40].

PFC transection
To study the interaction of PFC inputs to the VTA DA
neurons, bilateral transections were made immediate
caudal to the PFC to disrupt the communication
between PFC and VTA DA neuron. A slit was drilled in
the skull 2.0 mm anterior to bregma. Without damaging
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the main artery, a sharp blade was lowered to the base
of skull, to completely interrupt the connections
between the PFC and the rest of the brain. All surgical
procedures were done under anesthetized condition
[32,33,40].

Data acquisition and analysis
The firing activities of VTA DA neurons were recorded
from five SD rats for both PFC intact and PFC transected
rats. Data was acquired and recorded on the same data
acquisition system (Powerlab, ADInstruments). We quan-
tified the neural dynamics using the LZ complexity esti-
mator as detailed below. Two-minute segment of data
before the injection of nicotine was analyzed with LZ com-
plexity method. After firing rate of DA neuron has reached
stable condition in response to nicotine, two minutes of
data with the effect of nicotine was analyzed with LZ com-
plexity to understand the dynamics (complexity) of neural
firing in response to nicotine exposure to VTA DA neu-
rons with and without input from PFC. All values are
expressed as mean ± SEM. Statistical significance was
assessed using paired two-tailed Student’s t- tests.

Lempel-Ziv Complexity
The firing activity recorded from VTA DA neurons arises
from complex feedback networks and nonlinear intercon-
nections, which are characteristic for such neural sys-
tems. Therefore, we used the LZ estimator as a measure
of complexity (regularity) of the firing activities recorded
from VTA DA neurons [46-49]. LZ complexity is closely
related to information-theoretical methods such as
entropy [48] and is able to cope with discrete-time sym-
bolic sequences. It quantifies the rate of new pattern gen-
eration along given sequences of symbols. The symbolic
representations of time series are particularly favored
when low-amplitude noise hampers the data [49].
Therefore, we transformed the neural signals into a

finite sequence in the symbolic space. Each sample in the
time domain was assigned a symbol, and the total num-
ber of unique symbols formed the alphabet of the
sequence. Since the data was composed of a series of
action potentials that form the response of the neurons
to the input, we used a binary alphabet. The time axis
was divided into discrete bins. The action potentials were
detected using an amplitude threshold, and each time the
threshold was crossed, we placed a “1” in the respective
bin of the symbolic representation of our signals. All bins
with values below the threshold were assigned a “0” [49].
Formally, our signal x(n) was converted into a binary

sequence S = s(1), s(2), ..., s(n), where

s i
if x i T

otherwise
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where T is the threshold and can be chosen as 2SD(x
(n)), where SD(x(n)) represents the standard deviation of
the original signal x(n) [49].
For computing the LZ complexity, the sequence S is

parsed from left to right, and a complexity counter c(n)
is increased each time a new subsequence (distinct
word) is encountered. The algorithm followed is:

• Let S(i, j) denote a substring of S that starts at
position i and ends at position j, where i < j. S(i, j) =
si si+1 ... sj and when i > j, S(i, j) = {}. The vocabulary
of the sequence S, V(S), is the set of all unique sub-
strings (words) S(i, j) of S.
• The parsing procedure starts by comparing a sub-
string S(i, j) to the vocabulary that is comprised of
all substrings of S up to j - 1, that is V(S(1, j - 1)). If
S(i, j) is present in V(S(1, j - 1)) then update S(i, j)
and V(S(1, j - 1)) to S(i, j + 1) V(S(1, j)), respectively,
and repeat the previous check. If the substring is not
present, place a dot after S(j) to indicate the end of a
new component, update S(i, j) and V(S(1, j - 1)) to S
(j + 1, j + 1) and V(S(1, j)), respectively, and the pro-
cess continues. The whole parsing operation begins
at S(1,1) and continues until j = n, the total length
of the binary sequence [47].

For example, the sequence S = 1011110100010 is
parsed as 1 .0 . 11 . 110 . 100 . 010. Therefore, the voca-
bulary of S is six. Similarly, a sequence S =
0001101001000101 would be parsed as 0 . 001 . 10 . 100 .
1000 . 101, and hence yields a vocabulary sized six [46].
LZ complexity is defined as the total number of words

in the decomposition, c(n). The normalized LZ complex-
ity is defined as

C
c n

n nLZ = ( )
/ log

.
2

(2)

More details on the LZ method and its implementa-
tion are given elsewhere [46-50].

Entropy
In addition to the LZ estimator, we also analyzed the
same data set using the approximated entropy (com-
plexity) since it has been widely used for the analysis of
biomedical signals. The entropy estimates can be com-
puted as follows [36]:

H p n p n
n

= − ⋅∑ ( ) log ( )2 (3)

Where p(n) is the probability of observing n spikes in
the time window. The time resolution was 10 ms and
entropy was computed on segments of 20 s length.
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Results
To evaluate the firing pattern changes of VTA DA neu-
rons to systemic nicotine exposure, the extracellular sin-
gle-unit recordings were performed in DA neurons in
anesthetized rats as described in methods section. Two
minutes of data was divided in 20-second windows for
analysis purposes. LZ complexity was estimated for each
20-second window and the values were averaged. The
same procedure was applied for segments before and
after nicotine exposure. The data analyzed for nicotine
effect was taken after firing rate of DA neuron has
reached stable condition in response to nicotine
administration.
Figure 1 shows an example of 20-second segment

action potential recorded from PFC intact VTA DA
neuron before and after nicotine injection. Figure 2
shows an example of 20-second segment action poten-
tial recorded from PFC transected VTA DA neuron
before and after nicotine injection. Both firing rate and
firing pattern look similar when observed with naked
eye. The left panel of Figure 3 shows the averaged LZ
complexity values from five PFC intact SD rats before
and after nicotine administration. The right panel of
Figure 3 shows the averaged LZ complexity values from
five PFC transected SD rats before and after nicotine
administration.

The LZ complexity values were 0.2079 ± 0.0075 before
nicotine administration and were 0.2454 ± 0.0067 after
nicotine administration for SD rats with PFC intact. As
shown in Figure 3, there is significant increase in the
complexity values in DA neurons after nicotine expo-
sure (p < 0.01) for PFC intact rats. Figure 3 indicates
that nicotine plays an important role in affecting the fir-
ing of DA neurons in VTA. Considering that the excita-
tory input to VTA DA neurons is mainly originated
from the PFC, the above results suggests a possibility
that systemic nicotine-induced changes of VTA neuron
firing might be mediated through an alteration in PFC
neural function. To test this hypothesis, we interrupted
the PFC and VTA interaction by acute PFC transection.
The transection was done mechanically immediate cau-
dal to the PFC by acute transecting both sides of PFC as
described in methods. The LZ complexity values were
0.2273 ± 0.0099 before nicotine administration and were
0.2248 ± 0.0101 after nicotine administration for SD
rats with PFC transected. As shown in Figure 3, there is
no significant difference (p = 0.8085).
In addition to LZ complexity analysis method, we also

calculated entropy estimates of the same neural recordings
for comparison purposes. The entropy values were 0.2179
± 0.0078 before nicotine administration and were 0.2766 ±
0.0100 after nicotine administration for SD rats with PFC
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Figure 1 Example action potential recorded from PFC intact VTA DA neuron of SD rat before and after nicotine injection.
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Figure 2 Example action potential recorded from PFC transected VTA DA neuron of SD rat before and after nicotine injection.
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Figure 3 The mean LZ complexity values ± SEM of five intact SD rats and five transected SD rats before and after nicotine exposure (**
indicates p < 0.01, paired two-tailed Student’s t-test).
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intact. As shown in Figure 4, there is a significant increase
in the entropy values in DA neurons after nicotine expo-
sure (p < 0.01) for PFC intact rats. The entropy values
were 0.2382 ± 0.0107 before nicotine administration and
were 0.2396 ± 0.0118 after nicotine administration for SD
rats with PFC transected. As shown in Figure 4, there is
no significant difference (p = 0.9319).

Discussion and conclusion
In this study, we used nonlinear dynamical analysis meth-
ods based on the LZ method and the approximated entropy
to analyze VTA DA neuronal firing activity induced by sys-
temic administration of nicotine on PFC intact and trans-
ected rats. The analyses allow us to quantitatively
distinguish the firing patterns dynamics of VTA DA action
potentials. These patterns may reflect different status of
neuronal network synchronization. Nonlinear dynamical
analysis of neural patterns demonstrated that nicotine only
significantly affects PFC intact rats and this may be due to
the close connection between PFC and VTA.
The neural activity recorded from VTA DA neurons

arises from complex networks and non-linear intercon-
nections, which are neural systems characteristics. The
fact that the neural activity arises from such complex
systems, as well as the symbolic-like features of the
recorded data, make the use of the LZ complexity mea-
sure suitable in the context of the present work [51-68].
Provided by its robustness over other complexity/

entropy measures, the LZ complexity has been applied
extensively in biomedical signal analysis as a metric to

estimate the complexity of discrete-time physiologic sig-
nal. For example, LZ has been used for recognition of
structural regularities [54], for complexity characteriza-
tion of DNA sequences [57-59], to develop new meth-
ods for discovering patterns in DNA sequences by
applying it to genomic sequences of Plasmodium falci-
parum [59], and to estimate the entropy of neural dis-
charges (spike trains) [48,60]. LZ complexity has also
been used to study brain function [62], brain informa-
tion transmission [63], EEG complexity in patients with
Alzheimer’s disease [64], epileptic seizures [65], ECG
dynamics [66], and to evaluate the nature and dynamics
of hippocampal neuronal oscillations [50,69,70].
In recent studies the performance of the LZ estimator

was compared to other entropy measures for the analy-
sis of the biomedical signals [49,71]. Although LZ com-
plexity was shown to be related to entropy [48,68], it
proved to be less sensitive to the length of data [71]. Its
better performance in terms of sensitivity to signal
bandwidth changes was also reported, when compared
to Shannon entropy [71].
All these previous studies encouraged us to use this

nonlinear dynamical analysis method, based on the LZ
complexity method, to gain insights into the VTA DA
neuronal activity induced by systemic administration of
nicotine to both PFC intact and transected subjects. The
results obtained when using the LZ estimator were con-
firmed by those obtained when the entropy of the neu-
ronal firing was estimated. Therefore, our results
confirm our hypothesis that nicotine significantly affects
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Figure 4 The mean entropy values ± SEM of five intact SD rats and five transected SD rats before and after nicotine exposure (**
indicates p < 0.01, paired two-tailed Student’s t-test).
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the firing of VTA DA neurons and that this effect is
based on the intact input from PFC.
The increase of the excitatory drive onto the DA neu-

rons is activated by presynaptic terminals of glutamater-
gic afferents induced by nicotine [31,72,73]. This
potentiated glutamatergic drive causes DA neurons to
fire more in a burst or phasic mode [30,31], since the
firing rate and pattern of VTA DA neurons change with
nicotine exposure. We speculate the increased complex-
ity in PFC intact subject is due to a close functional
coupling between PFC and VTA and the increased
neural activity in VTA DA neurons. Our analysis
demonstrated that the complexity/entropy values of
neural activity after nicotine exposure were significantly
increased when the connection between PFC and VTA
is intact. On the other hand, the complexity/entropy
values have no significant change when the input from
PFC to VTA is disconnected. The reason for the
increased complexity and entropy is the increased neural
activity resulted from nicotine exposure.
The PFC and VTA have close functional coupling. Sti-

mulation of PFC increases burst firing in VTA DA neu-
rons, while deletion of PFC induces the opposite effect
[17-19,21,74]. Gao et al [40] reported that under non-sti-
mulation conditions, the activity of VTA DA neurons co-
varied with PFC neuronal activity, suggesting a close func-
tional coupling between PFC and VTA [40]. Evidence indi-
cates a key control of VTA neuronal function by PFC [38].
Our analysis indicates that the LZ estimators and

entropy are useful tools for the characterization of the
dynamical changes in VTA DA neuronal activity. As
demonstrated in our analysis, such changes could be
quantitatively represented as an impairment of neuronal
firing during nicotine exposure and PFC transection.
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