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Abstract

Background: Stroke survivors often suffer from mobility deficits. Current clinical evaluation methods, including
questionnaires and motor function tests, cannot provide an objective measure of the patients’ mobility in daily life.
Physical activity performance in daily-life can be assessed using unobtrusive monitoring, for example with a single
sensor module fixed on the trunk. Existing approaches based on inertial sensors have limited performance,
particularly in detecting transitions between different activities and postures, due to the inherent inter-patient
variability of kinematic patterns. To overcome these limitations, one possibility is to use additional information from
a barometric pressure (BP) sensor.

Methods: Our study aims at integrating BP and inertial sensor data into an activity classifier in order to improve the
activity (sitting, standing, walking, lying) recognition and the corresponding body elevation (during climbing stairs or when
taking an elevator). Taking into account the trunk elevation changes during postural transitions (sit-to-stand, stand-to-sit),
we devised an event-driven activity classifier based on fuzzy-logic.
Data were acquired from 12 stroke patients with impaired mobility, using a trunk-worn inertial and BP sensor. Events,
including walking and lying periods and potential postural transitions, were first extracted. These events were then fed
into a double-stage hierarchical Fuzzy Inference System (H-FIS). The first stage processed the events to infer activities and
the second stage improved activity recognition by applying behavioral constraints. Finally, the body elevation was
estimated using a pattern-enhancing algorithm applied on BP. The patients were videotaped for reference. The
performance of the algorithm was estimated using the Correct Classification Rate (CCR) and F-score. The BP-based
classification approach was benchmarked against a previously-published fuzzy-logic classifier (FIS-IMU) and a conventional
epoch-based classifier (EPOCH).

Results: The algorithm performance for posture/activity detection, in terms of CCR was 90.4 %, with 3.3 % and 5.6 %
improvements against FIS-IMU and EPOCH, respectively. The proposed classifier essentially benefits from a better
recognition of standing activity (70.3 % versus 61.5 % [FIS-IMU] and 42.5 % [EPOCH]) with 98.2 % CCR for body elevation
estimation.

Conclusion: The monitoring and recognition of daily activities in mobility-impaired stoke patients can be significantly
improved using a trunk-fixed sensor that integrates BP, inertial sensors, and an event-based activity classifier.
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Introduction
Stroke impacts approximately 17 million people worldwide
every year [1]. Post-stroke survivors are mostly affected by
mobility impairments, due to ataxia or hemiplegia, and
consequences of lesion in the motor cortex following the
stroke. Recovery of motor function requires intensive phys-
ical rehabilitation which must be tailored to the patient for
better efficacy. Currently, therapeutic decisions are usually
based on clinical assessment of motor function using func-
tional tests such as the Berg Balance Scale (BBS) for balance
assessment [2] or Timed Up and Go (TUG) for gait and
balance evaluation [3], or on patient reports including QoL
questionnaires such as the generic Stroke Impact Scale [4]
or Stroke-specific Quality of Life [5]. Although useful and
currently used in clinical practice, it is recognized that these
evaluations may have some limitations. The QoL scores
may be biased by the subjective interpretation of questions
and the patient’s state-of-mind. The clinical functional tests
are performed only in a hospital setting and may not reflect
the actual motor performance of patients in everyday life.
For example, a patient may show good balance and stable
gait during the clinical exam, report good mobility in daily-
life, however in reality he/she might avoid long distance
walking or climbing stairs. Activity monitoring in everyday
life is therefore expected to provide a more comprehensive
assessment of physical functioning and QoL of post-stroke
patients.
The unobtrusive monitoring of basic daily activities in

the real-life environment has been extensively investigated
over the last decade, along with the development and
spread of wearable technologies. Daily activities were
successfully monitored using a set of multiple inertial
sensors (accelerometers and gyroscopes) placed at key body
locations in patients with chronic pain [6], or stroke [7, 8].
Sensors placed on the trunk were used to detect lying and
walking periods, and to characterize postural transfer such
as sit-to-stand and stand-to-sit (STS) transitions [9],
relevant for functional recovery assessment after stroke
[10, 11]. Inertial sensors (accelerometers) on the thigh
allowed distinguishing sitting from standing posture, while
sensors on the shank/foot (gyroscopes) were used for de-
tailed evaluation of the gait pattern. However, placing mul-
tiple sensors on the patient’s body may lead to discomfort
and hence hinder their ability and willingness to perform
normal daily activities. Given this limitation, a number of
studies were dedicated to the development of activity moni-
tors using a single sensor configuration [12–14]. Although
the current activity monitors are accurate in recognizing
dynamic activities (walking and running), their abilities to
classify static postures (standing vs. sitting or sitting vs.
lying) remain limited. For instance, an accelerometer placed
on thigh cannot distinguish accurately sitting from lying
[15, 16]. Furthermore, a trunk-located inertial sensor can
distinguish various basic activities (lying, sitting, standing,

and walking) but with limited performance, due to the vari-
ability of movement pattern across activities and patients
[13, 17]. A possible solution to increase the performance of
these algorithms is to use an additional sensor modality
such as the barometric pressure (BP). BP provides an esti-
mate of the sensor’s absolute altitude, which can be particu-
larly useful for distinguishing transitions between activities
involving altitude/body elevation changes (e.g. up/down
level walking, stair claiming, STS transitions). This ap-
proach can result in detecting additional activities, for ex-
ample the evaluation of patients mobility while climbing
the stairs which is a relevant outcome for post-stroke re-
covery [18]. Lester et al. [19] and Moncada-Torres et al.
[20] proposed activity recognition algorithms including BP-
based stair climbing detection algorithm but the results
were validated only on healthy controls.
In addition to the sensor configuration (number and

placement), a methodological approach to recognize/
classify the activities from the raw sensor data is crucial.
The most common approach is the epoch-based classifica-
tion [21], i.e. sensor data are split into fixed-length epochs,
and based on extracted features machine learning tech-
niques are applied to classify each epoch into an activity.
Another approach is the event-based classification, which
consists in detection and classification of key events such as
postural transitions, start/end of walking and lying periods.
Following this approach, Salarian et al. [22] incorporated
postural transition-specific knowledge into a fuzzy logic
based activity recognition algorithm as a way to improve
the classification performances. This algorithm is based only
on the information from a single inertial sensor fixed on the
trunk therefore, the accuracy of STS classification is limited.
The present work is based on the following hypotheses:

(1) changes in trunk elevation during STS postural transi-
tions, inclined walking and stairs climbing can be detected
by a multimodal sensor including inertial (accelerometers,
gyroscopes) and BP sensing; (2) this information can be
used to devise an improved event-based activity classifica-
tion algorithm. We propose a wearable activity monitoring
system based on single trunk-worn multimodal sensor sys-
tem (Inertial Measurement Unit-IMU and BP) and a fuzzy
logic based activity classifier that exploits fused information
from the sensors. The classifier accounts for behavioral
constraints and, in addition, estimates the body elevation
(flat, up and down) during standing and locomotion.

Method and materials
This section first describes the data collection protocol
carried out on mobility-impaired stroke population.
Then, the different steps of activity recognition algo-
rithm, including event and transition detectors and a
Hierarchical Fuzzy Inference System (H-FIS), are de-
scribed. Finally, the assessment of algorithm perform-
ance and the validation procedure is specified.
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Data collection
The data were collected at the Kliniken Valens rehabilita-
tion center (Valens, Switzerland) on 12 mobility-impaired
stroke patients (7 females and 5 males/age = 59.6 ± 13.6
y.o./height = 170.1 ± 9.10 cm/weight = 73.9 ± 14.1 kg) suf-
fering from hemiplegia due to an ischemic or a hemor-
rhagic stroke. Eight out of twelve patients were able to walk
independently but four needed assistance (cane or a
walking frame).
Each patient was equipped with a set of wearable sensors

and performed daily-life activities as instructed by the phys-
ician, for approximately 30 min (33.4 ± 9.4 min), depending
on the patient’s fitness condition. The objective was to
include a set of basic activities of daily living: short and long
walking episodes, walking up and down the stairs, taking
the elevator, postural changes between lying, standing and
sitting with and without arm movements. Various seats
were included in the activity path: arm chair, bed side, sofa,
armless chair, and stool. The set of daily-life activities
included walking along a corridor, watching TV, washing
hands, eating, pouring and drinking water, sleeping, shoe
lacing, reading the newspaper, and putting jacket on and
off. These activities were performed in a semi-structured
protocol to better correspond to real-life situation [23]. In
other words, the activities were suggested in such a way
that flexibility was given on when and how to be per-
formed. For instance, “watching TV” required the patient
to walk towards the TV area, sit down on the sofa, use the
remote control for turning on the TV and relax while
watching TV. Furthermore, the number and order of the
instructed activities were not scripted in advance. During
the trial, each patient was videotaped for algorithm valid-
ation purpose. The study was approved by the ethical
committee “Ethikkommission des Kantons St. Gallen”
(St Gallen, Swiss Canton, Switzerland).

Measurement system and validation reference
The measurement system consisted of a small wearable
sensor module (Physilog® 10D Silver, GaitUP, CH) attached
to the patient’s trunk (sternum) using hypoallergenic
breathable band (Opsite FlexiFix). The device recorded to
an on-board memory card the signals from an inertial sen-
sor (3D accelerometer and 3D gyroscope) at 200Hz, and
from a BP sensor at 25 Hz. The precision of the BP sensor
is 1.2 Pa (~10 cm) according to the manufacturer datasheet
[24]. The signals from sensors were first resampled at the
same frequency of 40Hz to allow for faster processing. This
frequency is sufficiently high to extract activity features
[12, 25]. Moreover, the wearable sensors were aligned
with the body segments by a functional calibration pro-
cedure based on two defined postures: lying down on a
bed and standing upright against a wall. First, the
orientation of the gravity vector in the sensor frame at
these two specific postures was recorded. The rotation

matrix which maps the corresponding frame axes of ac-
celerometer sensor to these vectors was then obtained.
This procedure enabled to virtually align the sensor
frame with the body frame, in order to ensure robust-
ness against sensor misalignment across patients [26].

Activity recognition
Unlike epoch-based classifiers, the proposed event-driven
activity classifier relied on preprocessed events such as the
start/end of walking and lying periods and STS postural
transitions. After detection, these events were processed
through a two-stage H-FIS to classify the basic daily-life
posture/activities: lying, sitting, standing, and walking.
While the first stage (FIS I - Event FIS) was in charge of
translating the detected events into activities, the second
stage (FIS II - Behavior FIS) was designed to apply linguistic
behavioral constraints for improving the recognition of
activities as inferred by the first stage. The standing and
walking activities were further categorized by a decision
tree according to the estimated elevation level: flat level
standing, elevator down (standing with a downward eleva-
tion change), elevator up (standing with an upward eleva-
tion change), flat level walking, walking downstairs, and
walking upstairs. A schematic of the algorithm is illustrated
in Fig. 1.

Preprocessing: Event detection and characterization
Detect lying and walking periods The start/end of lying
periods were identified using the trunk angle with respect
to gravity, estimated from the accelerometer. The start was
defined when the trunk angle drops below a defined thresh-
old θLying = 45° for more than 10 s, and the end when the
trunk angle goes above θLying for more than 10 s.
The start/end of walking periods were detected ac-

cording to the algorithm devised by Najafi et al. [27].
The norm of the trunk acceleration signal was band-
passed from 1 to 5Hz using a second-order Butterworth
filter. From this signal, all the peaks located above the
threshold Δâwalking were selected and considered as po-
tential heel strike events if duration between them was
at least ΔTwalking_steps = 0.25 s. Then, consecutive heel
strikes within the time interval of ΔTwalking_group = 3 s
were grouped to form a walking period. This condition
was defined according to the definition of walking activ-
ity as at least three consecutive steps.

STS transitions detection and classification The STS
postural transition detection and characterization relied on
an algorithm [28] estimating two probabilities for each can-
didate transitions: 1) the probability of a candidate transi-
tion (PTr) to be true; and 2) the probability of a candidate
transition type (PType) to be a sit-to-stand transition. These
probabilities were estimated using the logistic regression.
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Further, the features characterizing the transitions were
used in the next stage to help recognizing the activity type.

Two-stage Hierarchical Fuzzy Interference System (H-FIS)
A fuzzy inference system is generally defined by a set of
membership functions to transfer its inputs into fuzzy
(linguistic) variables, a set of “If-Then” rules to fuse the
fuzzy variables and map the antecedents to consequences,
an implication and aggregation operator, and finally a de-
fuzzification method (for more detail please see Appendix).
The H-FIS was initially designed for the control of
complex systems [29] and consisted in a cascade of sev-
eral FISs for which the most influential system variables
are used by the first level, the next most influential var-
iables at the second level and so on [30]. This cascade of
FISs was meant to drastically reduce the number of rules in
the system.

The presented H-FIS was composed of two stages as
described in Fig. 1. The Event stage (Event-FIS) handles
the translation from events to activity and the Behavioral
stage accounts for biomechanical constraints to improve
the recognition of activities classified in the first stage.
They were both implemented as Mamdani-type FISs
[31]. Definitions of the inputs and outputs of the FISs
are listed in Table 1.

Event FIS
The set of information used as inputs were: the previous
activity (PrevAct), the current activity (CurrAct), the
postural transition detection probability PTr (Transition),
the postural transition classification probability PType
(TransitionType), and the altitude difference before and
after transitions, more specifically the difference between
the averaged values during the 10 s before and after

Preprocessing

FIS I (Event FIS)

FIS II (Behavioral FIS)

Body elevation 
processing

Wearable IMU and Barometric Pressure 
Sensor Measurements

Raw detections of lying, 
walking, and Postural transitions

Intermediate 
detected activities 

Previous 
activities

H-FIS
(Hierarchical FIS)

Previous 
activity update

Activity recognition

Activities without body 
elevation information

Activities

Fig. 1 Block diagram of the activity recognition algorithm. Following the acquisition of the IMU and barometric pressure signals from the
wearable device, the acquired signals are then preprocessed to extract key events (postural transitions, steps, lying periods). Then these events
are combined into a hierarchical FIS to output the basic activities. The output of FIS II, i.e. the detected activities were fed into the decision tree
for body elevation estimation and fed back into the FIS I for the detection of next activities
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transition time (AltitudeChange). The output of this stage
was then fed as an input into the Behavior FIS.
The membership functions for the different states of the

fuzzy variables are described in Fig. 2. Six membership
functions were defined for the fuzzy variables PrevAct and
CurrAct depending upon the considered activities (Fig. 2a):
lying, sitting, standing, walking, up and unknown. Two
membership functions were defined for both Transition
(Fig. 2b) and TransitionType (Fig. 2c) similar to [22]. Three
trapezoidal membership functions (Fig. 2d) were defined
for the input AltitudeChange, designed with slopes
accounting for the precision of the barometric pressure
sensor. Prior to the processing of the inputs in the FIS, the

CurrAct was initialized as lying or walking if a lying or
walking period was detected at the preprocessing stage, or
as unknown otherwise.
Furthermore, rules for the lying-to-sitting and lying-

to-standing were added as the logistic regression-based
transition models did not account for these transition
types. Not all possible combinations of fuzzified inputs
were used as antecedents to build the rule base since
firstly, some of them are mutually exclusive due to the
biomechanical constraints. For instance the antecedent
of if the previous activity is lying and current activity is
walking was excluded since a direct transition from
sitting to walking is impossible unless through siting and

Table 1 Definition of inputs and outputs of the H-FIS

Name Description

Inputs

PrevAct Previous activity: the activity preceding the activity being evaluated by the algorithm

CurrAct Current activity: the activity being evaluated by the algorithm

NextAct Next activity: the activity following the activity being evaluated by the algorithm

Transition Transition detection probability: Computed through a logistic regression model, it provides a continuous value (PTr) from 0
to 1 representing the probability for a transition to be respectively “Not Detected” and “Detected”

Transition type Transition type probability: Computed through a logistic regression model, it provides a continuous value (PType) from 0
to 1 representing the probability for a transition to be respectively of a type “Sit-to-stand” and “Stand-to-Sit”

PrevDur Duration of the previous activity being processed

CurDur Duration of the current activity being processed

NextDur Duration of the activity following the activity being processed

AltitudeChange Altitude change corresponds to the change in elevation around the transition time. It is computed on the barometric pressure
signal through transition feature extraction algorithm [28]

AltitudeIQR Altitude Inter-Quartile Range is computed over the duration of the activity on the altitude signal (derived from the barometric
pressure signal)

Outputs

Event activity Event activity represents the output of FIS I (this is the current activity recognized in this stage of classification)

Behaviour activity Behavior Activity represents the output of FIS II and thus the final output of the H-FIS (this is the current activity recognized
at the end of second stage of classification)
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Fig. 2 Definition of membership functions for the first and second stages. For plot a) through f), the horizontal axis represents the input value
(for plots a) through f) whereas, for plot g), it represents the output value. The vertical axis denotes the degree of membership for each of
the inputs/output
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standing events. Secondly, knowing the strengths and
weaknesses of IMUs from previous studies [17, 22] that
indicated the difficulty in detection of transitions com-
paring to walking and lying events, more emphasis was
given to a subset of antecedents to improve this aspect
(more than half of the rules).
The fuzzy rules are presented in Table 2. The steps for

obtaining the output are illustrated in Appendix. A
feedback loop was implemented to update the PrevAct
using the output of the Behavior FIS.

Behavior FIS
The second stage applied behavior-inspired constraints to
the output of the first stage in order to improve the overall
classification performance. The following behavioral con-
straints were considered while building the FIS rules set:

a) It is likely that the activity detected in the Event-FIS
is the true activity.

b) It is unlikely to have a very short walking period
(ΔTwalk) preceded and followed by a long period of
siting. This would be probably moving during siting.

c) It is unlikely that a person walks for a very short
time after lying or sitting, especially if there is no
change of altitude.

d) It is likely that if the detected activity is sitting for a
relatively short time and there is a high change of
altitude during the activity, the activity is standing
(going up/down the elevator). This time constraint
was to avoid known long-term variations of barometric
pressure.

e) It is likely that if a person is standing (and not
moving at all) for a lengthy duration (ΔTstanding), the
activity is actually sitting [32].

These behavioral constraints were applied to a set of
fuzzy variables and rules, as displayed in Table 3. Similar
to Event FIS, not all the antecedents were used to build up

the rule base but the biomechanically meaningful rules
were hand engineered. These rules can transfer the result
of the Event FIS (the recognized current activity) to its
output (if and only if its first four rules – labelled as a) in
Table 3 – were activated) or modulate the Event FIS out-
put (through the activation of its next set of rules). The
following inputs were added: NextAct that accounts for
the next activity as computed by the previous stage and
shares the same membership functions as CurrAct.
PrevDur, CurrDur, and NextDur that corresponds to
the duration of the previous, current and next activity,
respectively. Four membership functions were also
defined to account for different types of activities
(Fig. 2e): VeryShort (0 s to ΔTwalk = 7 s) for spurious
activities than may need to be filtered out, Short for
slightly longer activities (0 s to 30s), Long (15 s to 60s)
and VeryLong (30s to ΔTstanding = 120 s) for resting
activities. An additional input was AltitudeChange corre-
sponding to the change in altitude around the transition
as defined for the Event-FIS. Four membership functions
were associated with AltitudeChange: Negative, Neutral
for handling spurious walking activities, and Positive. Fur-
thermore, AltitudeIQR, the inter-quartile range (IQR), was
computed from the altitude signal during the activity and
added as input. Three membership functions were associ-
ated to the AltitudeIQR (Fig. 2f): Low, Med, and Hi depend-
ing on the assumed elevation change during activities. This
latter is used for correcting the possible misclassification of
sitting as standing when taking the elevator for instance.
These fuzzy variables were essentially introduced to prevent
Elevator (standing) activities to be misclassified as sitting.
The association between the constraints and the rules are
also indicated in the Table 3. Note that a “NOT” keyword
preceding the membership function means that the com-
plementary (one minus the original) membership function
is used.
Furthermore, weights, defined based on expert know-

ledge, were associated with the rules to change their

Table 2 Fuzzy rules for the event FIS

Input Output

PrevAct CurrAct Transition Transition type Altitude change Event activity

Lying Lying

Walking Walking

Lying Unknown Positive Standing

Lying Unknown Not Positive Sitting

Sitting Unknown Detected SiSt Standing

Sitting Unknown Detected StSi Sitting

Sitting Unknown Not Detected Sitting

Up Unknown Detected StSi Sitting

Up Unknown Detected SiSt Standing

Up Unknown Not Detected Standing
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contributions according to the confidence level of the rule
in order to favor specific rules against others. For this
stage the mean of maximum is used to defuzzify the rule
outputs. This method was selected instead of the centroid
method as used in the first stage to favor the rule contrib-
uting the most (highest output value). The crisp class of
the Activity was computed after the defuzzification stage
according to Table 4. The effect of weights on the output
is further detailed in the Appendix.

Body elevation classification and altitude fitting
An activity may contain a subset of body elevation. For
instance, walking includes level walking, and non-level
walking such as climbing up the stairs. The BP sensor is
sensitive to body elevation, however, the patient’s slow
dynamics during stair climbing combined with the low
signal-to-noise ratio and the influences of external pertur-
bations of the BP sensor impede the recognition of eleva-
tion without appropriate pattern enhancing techniques
such as signal pattern fitting. The third stage of the algo-
rithm includes therefore a decision tree combined with a
sinus-fitting algorithm built to detect accurately the body
elevation and distinguish level walking from going up-
stairs/downstairs for walking activity; and stand still from
elevator up/down for standing activity.
The BP signal was first converted to altitude (Alt) using

the barometric formula [33] then the pattern of elevation
was enhanced using a sinusoidal fitting model similar to

model used in STS detection [28]. The sinus fitting func-
tion (SAlt) was modeled as follows:

SAlt tð Þ ¼ ΔAlt � E t−Altdelay
Altduration

0
@

1
Aþ Altdrift � t þ Altoffset

with E tð Þ
−1=2 if t ≤−1=2
1=2 � sin πtð Þ; if −1=2 < t ≤ 1=2
þ1=2 t > 1=2

8<
:

ð1Þ

where the model parameters ΔAlt, Altduration,, Altoffset,
Altdrift, Altdelay are depicted in Fig. 3. They represent over
the course of the activity the change in altitude, the
duration of the part of the activity that involves a potential
elevation change, the potential elevation drift and the
elevation offset, respectively. For each activity, the model
was obtained from the altitude data (over the duration of
the activity being processed) using the “Trust-region
reflective” optimization procedure [34].
The parameters ΔAlt, Altduration, and Altoffset were optimized

in order to smoothen the signal. The parameter Altdrift, was
bounded during the optimization with limits calculated from
the datasheet of the BP sensor (MS5611-BA01, Measure-
ment Specialties). This also allows accounting for slow varia-
tions of barometric pressure due to weather changes. Note
that ΔAlt could take positive or negative values depending on
whether the signal was shaped as a rising edge or falling edge
respectively. A decision tree based algorithm was designed to
further classify the standing and walking activities according
to the estimated altitude (Fig. 3a). First, these activities were
classified as flat or up/down using the information from
two variables, the altitude change (AltitudeIQR) and the
duration of the new altitude level (CurrDur). Then, the up/
down class was classified as up or down according to the
sign of ΔAlt and the value of parameter Altduration.. Fig. 3b
illustrates an example of altitude fitting corresponding to
elevator down activity.

Table 3 Fuzzy rules for the behaviour FIS

Rule Input Weight Output

Prev act Curr act Next act Prev dur Cur dur Next dur Alt change Altitude IQR Event activity

a) Lying 0.5 Lying

a) Walking 0.5 Walk

a) Sitting 0.5 Sitting

a) Standing 0.5 Standing

b) Sitting Sitting Not Short Not Short Not Short 0.5 Sitting

c) Sitting Walking Not Positive 0.75 Sitting

c) Lying Walking Not Positive 0.75 Lying

d) Sitting Not Very Long Very Positive 0.75 Standing

e) Standing Very Long 1 Sitting

The letters in the first column indicate the association between rule and the constraint, as listed in this section

Table 4 Output of the H-FIS: the crispation of a defuzzified
output translates a value to a class

Defuzzified output value Activity class (crisp value)

[−2; 1.5) Lying

[−1.5; 0) Sitting

[0; 1.5) Standing

[1.5; 2] Walking
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Benchmarked algorithms
Epoch-based algorithm
The epoch-based algorithm (EPOCH) was inspired by a
recent algorithm [20] which processed the data after split-
ting into Nepoch epochs of ΔTepochs (5 s) and classified
activities based on features extracted from each epoch.
This algorithm was selected as it also proposed to classify
activities using barometric pressure and inertial sensors
and it was validated on an elderly patient population. The
feature set consisted of 120 features including frequency,
amplitude and temporal features derived from the inertial
sensors. To avoid over-fitting, the feature set was reduced
using ReliefF algorithm [35] to K features to form the
minimal feature set Ωepochs = {Nepoch × K features}. These
features were then fed into a machine learning classifier
(Classification tree) [36]. Following the leave-one patient-
out cross validation procedure (described in the validation
section) each epoch was finally classified as either walking,
lying, sitting or standing.

Fuzzy-based algorithms
The FIS described in Salarian et al. [22], called here FIS-
IMU, was essentially designed to compensate for classifica-
tion errors in the recognition of postural transitions. It uses
a subset of the previously described fuzzy variables and
membership functions. Although it uses the same events
(start/end of walking/lying and STS transitions), the logistic
regressions used for computing the probabilities PTr

inertial,
PType

inertial relied only on information from inertial sen-
sors. The classifier FIS-IMU did not account for altitude
features in the computation of the probabilities PTr

inertial

and PType
inertial. To fairly estimate the added value of BP

sensor, we used the probabilities PTr and PType instead of
PTr

inertial and PType
inertial, in an augmented classifier FIS-

IMUBP, to account for the effect of classification improve-
ment thanks to the altitude features.

Validation
Strategy and procedure
Activity classification The performances of five algo-
rithms were evaluated and compared: H-FIS (Event FIS +
Behavior FIS), Event FIS, and state-of-the-art FIS-IMU as
described by Salarian et al. and its BP-augmented version
FIS-IMUBP, and EPOCH, a traditional epoch-based model-
ing approach (see Table 5). Furthermore, the output of the
Event FIS was also computed separately from the H-FIS to
estimate the performance improvement by the second stage.

Body elevation With regard to the body elevation classi-
fier, the performance improvement by using a sinus-fitting
algorithm in an event-based activity recognition algorithm
was evaluated using the following comparison strategies:

� H-FIS: the activity output of the H-FIS was combined
with a decision tree classifier as displayed in Fig. 3.
Furthermore, in case an elevated activity was detected,
the portion located inside the sinus fit (red line in
Fig. 3) was labelled as Up or Down depending of the
sign of ΔAlt. Its corresponding activity duration
was consequently set to Altduration. The remaining
portion(s) of the activity (green line in Fig. 3) was
considered as Flat.

� H-FISnoFit: the activity output of the H-FIS combined
with the decision tree classifier. The decision was made
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using a single criterion: whether the maximum
value of the altitude signal is reached before or
after the minimum value of the signal over the
duration of the activity.

� EPOCH-BP algorithm [20]: where EPOCH feature
set was augmented with altitude features, namely
IQR, standard deviation, slope, and range of the
altitude signal during the epoch [20].

Each patient was videotaped during the trial with a
camera synchronized with the wearable system. The
video recordings were annotated to form the reference
activity set, Ωreference.
All FIS-based activity classifiers were validated against

the full dataset (no training/testing dataset split) as no
parameter was required to be learnt from data to build the
FIS in our implementations. The EPOCH classifiers were
cross validated using a similar leave-one-out cross valid-
ation methodology as presented before.

Validation metrics
From the validation procedure described before, a con-
fusion matrix was estimated for each classifier. Various
metrics were extracted from these confusion matrices in-
cluding: True Positive Rate also called Recall or Sensitivity
(SEN), True Negative Rate also called Specificity (SPE),
Positive Predictive Value (PPV) also called Precision,
Negative Predictive Value (NPV), and the Correct Classifi-
cation Rate (CCR) [37]. The F-Score, defined as the
harmonic mean between the sensitivity and the posi-
tive predictive value, was used for overall performance
evaluation [37]:

Fscore ¼ 2� SEN ∙PPV
SEN þ PPV

The performances of the classifiers were compared in
two conditions. First, for each classifier the confusion
matrices across all datasets (Npatients = 12) were aggregated
to calculate the corresponding CCR and F-score; these
overall performance scores were comparatively evaluated
between the classifiers. Second, the performance scores
were evaluated for each dataset/patient.

Non-parametric multiple comparison (Friedman’s test
[38]) was conducted to test for the statistical significance
of difference of the performance scores [39] estimated
with the different classifiers (each time for the same
sample of 12 datasets). The level for statistical significance
was set to p < 0.05.

Results
Overall performance
Activity recognition
The confusion matrices are presented in Table 6 along
with the validation metrics. The H-FIS outperformed the
FIS-IMU by 3.3 %, the FIS-IMUBP by 1.0 %, and the
EPOCH by 5.6 %. This is mostly due to an improvement
of the F-score (from 2.3 % for FIS-IMUBP up to 28.0 %
for EPOCH) for the standing activity, consecutive to an
improvement of PPV (+3.5 %) with respect to FIS-IMUBP
and a 45.1 % drop of sensitivity for the EPOCH (80.6 %
for H-FIS vs. 35.5 % for EPOCH). Furthermore, the
effect of adding behavior constraints improved the
overall accuracy of H-FIS vs. Event-FIS by 8.5 % essen-
tially by providing a better distinction between sitting
and standing posture.

Body elevation
The activity confusion matrices and validation metrics are
presented in the Table 7 for comparison between the
EPOCS-BP, the H-FIS, and H-FISnoFIT. The H-FIS
performed better in terms of overall accuracy (98.2 %)
essentially due to a high F-score which reached 72.6 % on
average for the four activity levels. The average F-score was
64.5 % for the H-FISnoFIT approach and only 50.8 % for
the EPOCH-BP approach.

Statistical analysis
The improvement of the overall performance score
(F-score) is also emphasized in Table 7, that presents
the median and the inter-quartile range of F-scores and
CCR over the 12 datasets.
When analyzing the statistical significance of differences

of CCR metric between the compared classifiers, a signifi-
cant difference (p < 0.05) was found between H-FIS and
the models not featuring barometric pressure (FIS-IMU:
p = 0.02, and EPOCH: p = 0.004). No significant difference

Table 5 Classifier validation procedure for activity recognition: summary table

# Classifier Acronym Sensors Validation

1 Event + Behavior FIS H-FIS Inertial and barometric Full dataset

2 FIS Salarian et al. FIS-IMUBP Inertial and barometric Full dataset

3 Event FIS Event-FIS Inertial and barometric Full dataset

4 FIS Salarian et al. FIS-IMU Inertial Full dataset

5 Epoch-based model EPOCH Inertial Cross validation
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was found between H-FIS and the other models (FIS-
IMUBP: p = 0.24, and Event-FIS: p = 0.06). However, the
H-FIS contributed in improving the CCR for most of the
patients: CCR improvements were observed in 8 out of 12
patients for the FIS-IMUBP and 6 out of 12 patients for
the Event FIS. For this latter, the CCR remained unchanged
for 5 patients and decreased for the remaining one.
Furthermore, no significant difference was found between

FIS-IMUBP and FIS-IMU (p = 0.24) and between Event-
FIS, FIS-IMU and EPOCH (p = 0.56). Similar significance
values were observed for the F-score of the sitting and
standing activities, except that the F-Score of H-FIS
approach had greater significance (p = 0.03) with respect to
the FIS-IMU. For lying, no significant difference was
observed across all the models. With respect to walking,
the H-FIS’s F-score was significantly different (p = 0.01)
with respect to the other classifiers.

Discussion
This study presents a new activity recognition algorithm
able not only to recognize the basic daily-life activities
(lying, sitting, standing, walking) but also to distinguish the
body elevation using barometric pressure: Up and Down
the elevator for standing and Up and Down the stairs for
walking. The recognition of daily activity was carried out by
a double-stage hierarchical fuzzy logic inference system.
While the first stage processed the events such as the start/
end of lying or walking periods, and detected postural tran-
sitions, the second stage improved the activity recognition
by providing a simple way to integrate the typical behavior
of the subject and biomechanical constraints. Five algo-
rithms were benchmarked on a dataset containing daily-
living activities from 12 patients suffering from post-stroke
mobility impairments. The validation was performed using
the conventional classification metrics, i.e., SEN, SPE, PPV

Table 6 Confusion matrices for the recognition of the activities along with the corresponding validation metrics for the five
classifiers expressed in percent

Classification

Lying Sitting Standing Walking SEN SPE PPV NPV F-score CCR

H-FIS

Reference Lying 1022 37 2.8 12.2 95.2 99.7 94.5 99.8 % 94.8 (96.9 ± 5.0) 90.4 (91.4 ± 6.6)

Sitting 37.3 11975 737.1 286.1 91.9 95.5 96.0 90.8 % 93.9 (95.7 ± 8.4)

Standing 22.2 245.3 2066 228.9 80.6 94.3 62.7 97.6 % 70.5 (71.4 ± 11.3)

Walking 0 211 490.9 6667.5 90.5 96.8 92.7 95.8 % 91.6 (91.0 ± 6.0)

FIS-IMUBP

Reference Lying 1022 21.1 17.1 13.8 95.2 99.7 94.5 99.8 % 94.8 (96.9 ± 5.0) 89.4 (89.8 ± 5.9)

Sitting 37.3 11729.9 940.9 327.4 90.0 95.4 95.9 88.9 % 92.8 (93.6 ± 7.0)

Standing 22.2 249.8 2060.6 229.8 80.4 93.4 59.2 97.6 % 68.2 (68.2 ± 14.7)

Walking 0 230.1 461.7 6677.6 90.6 96.6 92.1 95.9 % 91.4 (91.0 ± 6.0)

Event-FIS

Reference Lying 1022 33.4 4.8 13.8 95.2 99.7 94.5 99.8 % 94.8 (96.9 ± 5.0) 81.9 (84.4 ± 12.0)

Sitting 37.3 9829.6 2841.2 327.4 75.4 96.9 96.7 76.9 % 84.7 (86.4 ± 29.5)

Standing 22.2 139.3 2171.1 229.8 84.7 84.3 39.2 97.9 % 53.6 (65.8 ± 36.7)

Walking 0 167.9 523.9 6677.6 90.6 96.6 92.1 95.9 % 91.4 (91.0 ± 6.0)

FIS-IMU

Reference Lying 1022 6.1 32.1 13.8 95.2 99.7 94.5 99.8 % 94.8 (96.9 ± 5.0) 87.1 (86.8 ± 6.2)

Sitting 37.3 11231.1 1439.7 327.4 86.2 95.4 95.7 85.3 % 90.7 (90.2 ± 8.0)

Standing 22.2 301.7 2008.7 229.8 78.4 90.9 50.6 97.2 % 61.5 (62.4 ± 23.0)

Walking 0 201.9 489.9 6677.6 90.6 96.6 92.1 95.9 % 91.4 (91.0 ± 6.0)

EPOCH

Reference Lying 892 120 28 24 83.8 99.3 84.5 99.3 % 84.2 (90.7 ± 12.4) 84.8 (84.0 ± 5.4)

Sitting 124 11980 608 484 90.8 83.1 86.5 88.3 % 88.6 (88.3 ± 10.6)

Standing 40 1264 908 348 35.5 96.3 53.0 92.7 % 42.5 (39.6 ± 15.9)

Walking 0 484 168 6752 91.2 94.9 88.7 96.1 % 90.0 (91.3 ± 6.0)

Each confusion matrix is expressed in seconds
For the CCR and the F-score, the median and interquartile range are provided (computed across patients)
SEN Sensitivity, SPE Specificity, PPV Positive Predictive Value, NPV Negative Predictive Value, CCR Correct Classification Rate

Massé et al. Journal of NeuroEngineering and Rehabilitation  (2015) 12:72 Page 10 of 15



and F-score estimated for each activity and overall for the
ensemble of activities.
The results presented in this study demonstrate the

efficiency of the event-driven algorithms featuring the
BP sensor. This is essentially because the event-driven
architecture of H-FIS and the FIS-IMUBP enables to
leverage the full potential of the barometric pressure
at the postural transition time, i.e. the body altitude
change. Furthermore, the H-FIS results were statistically
compared with other methods across patient-specific data-
set. A statistical significant difference (p < 0.05) was always
found between H-FIS approach and the inertial-based
approaches, highlighting an improvement in the recogni-
tion across all patients (Npatients = 12). Even if the difference
between H-FIS and the evaluated state-of-the-art algo-
rithms (FIS-IMU and EPOCH) in terms of overall CCR
may appear minor, it results in a superior performance in
classification of standing activity (minimum 9.0 % increase
between H-FIS and these algorithms). Better performance
for standing classification (distinction from sitting) was one
of main objectives of the present study, since this informa-
tion is important for the clinical assessment of patients’
recovery (standing is a ‘dynamic’ activity related to physical
capacity [40]).
The dataset used in this study was composed of daily ac-

tivities performed at the clinic in naturalistic conditions.
Ganea et al. [13] highlighted a lowering of recognition

performance when algorithms were applied to data col-
lected in “real” daily-life context, mostly due to a decreased
ability in recognizing STS transitions. The addition of the
BP sensor in the present study allowed to overcome this
limitation. The pressure-based STS recognition is less
prone to pathology related changes of trunk movement
patterns.
The ability of negotiating stairs is an important com-

ponent in stroke patients’ physical recovery process
[41]. The body elevation was therefore computed to
distinguish different ambulatory strategies: taking the
stairs or the elevator as opposed to (flat) level walking
or standing. The CCR of the three considered approaches
(H-FIS, H-FISnoFIT, EPOCH) was superior to 96.8 % for
all algorithms, due to the high F-Score (>98.4 %) in the
Flat class where most of the instances were located. This
class unbalance characterized by more sample data for the
Flat class yielded to very high CCR, despite moderate clas-
sification performance in the other class. Nonetheless, the
H-FIS outperformed the benchmarked algorithms in
terms of F-Score for all the other classes. The difference
between the H-FIS and the H-FISnoFIT in terms of CCR
can essentially be explained by the improvements in F-
score over the non-level activity detection (72.6 % for H-
FIS vs., 64.5 % for H-FISnoFIT). This was essentially due
to the narrowing of the non-level activity duration
using the sinus fitting functions which can be observed

Table 7 Confusion matrices after the classification of the activity levels along with the corresponding evaluation metrics

Classification

Flat Elevator down Elevator up Stairs down Stairs up F-score CCR

H-FIS

Reference Flat 23093.8 39.3 31 111.7 70.1 99.0 (99.0 ± 1.3) 98.2 (98.0 ± 1.5)

Elevator Down 40.8 108.6 13.1 0 0 70.0 (83.7 ± 10.5)

Elevator Up 79.5 0 190.4 0 0 75.5 (82.9 ± 12.1)

Stairs Down 33 0 0 166.3 0 69.7 (78.4 ± 33.3)

Stairs Up 52.8 0 0 0 188 75.4 (78.3 ± 15.2)

EPOCH-BP

Reference Flat 23144 68 40 140 152 98.8 (98.9 ± 0.1) 96.9 (97.2 ± 0.2)

Elevator Down 32 88 52 0 0 45.8 (66.7 ± 54.1)

Elevator Up 32 56 76 0 0 45.8 (67.6 ± 27.7)

Stairs Down 48 0 0 124 4 56.2 (57.1 ± 31.3)

Stairs Up 48 0 0 0 124 55.3 (61.5 ± 15.8)

H-FISnoFIT

Reference Flat 22682.6 18.7 25.7 57.6 37.7 98.4 (98.5 ± 1.7) 96.8 (96.5 ± 2.1)

Elevator Down 188.5 129.2 13.8 0 0 53.9 (71.3 ± 27.0)

Elevator Up 189.6 0 195 0 0 63.0 (72.4 ± 29.0)

Stairs Down 119 0 0 208.6 0 68.9 (60.7 ± 11.9)

Stairs Up 120.2 0 0 11.8 220.4 72.2 (73.6 ± 13.8)

Walking and standing activities are separated in the confusion matrix to further characterize the error. Each confusion matrix is expressed in seconds. For the CCR
and the F-score, the median and interquartile range are provided (computed across patients)
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by the increase in PPV (66.8 % for H-FIS vs. 38.5 % for
H-FISnoFIT). The exact time of elevator start-off
movement was difficult to track using the video record-
ing and may explain the few seconds wrongly-classified
as Flat for the Elevator Up/Down activities.
Similarly, due to slow dynamics of trunk movement, the

annotation around an activity transition was difficult and
this may have worsened the results. Furthermore, each
period containing more than three consecutive steps were
annotated as walking. However, the walking detection
algorithm was initially developed for healthy/fit elderly
subjects [27] without mobility impairments. When applied
for mobility impaired stroke patients, the algorithm might
consider a slow walking period as standing (F-Score of
70 % for H-FIS). These factors may have adverse effects
on results. Nonetheless, an F-score greater than 90 % was
obtained for walking. Another limitation, occurring during
the slow motion period within walking, is the lack of sen-
sitivity at recognizing level walking from stair climbing.
This was essentially because a patient climbing the stairs
might stall for few seconds, which would then end the
current walking session and start a new standing session
followed by a walking episode. These periods may not
reach the required amplitude threshold ΔAltlevel and
hence not be classified as climbing activity. A solution
could be either to have different thresholds according to
the climbing activities or to group a sequence of consecu-
tive standing and walking activities.
The benefit of applying behavior-inspired constraints was

observed by comparing the H-FIS with the Event-FIS in
terms of CCR (90.4 % for H-FIS vs 81.9 % for Event-FIS).
This difference greatly lies in the rule related to the correc-
tion of very-long (ΔTstanding = 2 min) standing postures
(rule e). The removal of the corresponding rule (rule e)
from the fuzzy rule set (listed in Table 3) led to a 7.2 %
decrease of the H-FIS’ CCR. A similar constraint was
applied by Salarian et al. (FIS-IMU) [22] to improve the
recognition. This threshold (ΔTstanding) can be fine-tuned
according to different pathologies based on the analysis of
behavioral data collected in free-living environment [42].
Furthermore, the behavioral rule (rule d) enables only
a short sitting activity to be considered as standing if a
large and sudden change of altitude is detected. This
timespan limit prevents specific actions such as sitting
in a car moving on a mountain road to be wrongly
classified as standing. It also blocks any interference
stemming from daily-changes in atmospheric pressure
due to their very low dynamics.
In this study, we selected one epoch-based machine

learning algorithm (decision tree) which was more descrip-
tive due to the use of decision tree. However, we tested as
well various machine learning algorithms using Weka soft-
ware [43] on the same feature-reduced dataset and with the
same leave-one-patient-out cross-validation procedure

applied. They all resulted in an overall performance for ac-
tivity recognition similar to EPOCH, i.e. CCR smaller than
87.1 % (Decision Table: 82.5 % CCR; Naïve Bayes: 81.6 %;
Random Forest, #Trees = 10: 87.1 %; K-Nearest-Neighbors,
K = 10: 85.6 %) confirming the advantage of the event-
driven algorithmic approach.
The goal of this study was not to optimize the fuzzy

rules and operators for H-FIS classifier, but to intro-
duce a methodological approach that incorporates BP
sensors alongside with the inertial measurement as a
way to improve the activity classification. The fuzzy
rules were therefore hand-engineered in this investiga-
tion. However a global optimization algorithm or any
hybrid-Fuzzy system with adaptation can replace each
of the fuzzy blocks to improve the performance. Fur-
thermore, fusing the epoch-based algorithm with the
H-FIS could also improve the performance of the pre-
sented system. For instance, for a prolonged activity,
an epoch-based algorithm could split this activity into
multiple epochs and then infer the activity by combin-
ing the results across the epochs using a meta-
classifier such as plurality voting [44].
Splitting the activity classifier into three blocks, event

processing, behavior constraints, and body elevation recog-
nition enabled a great modularity. Each of these blocks can
be tuned according to the studied pathology.
The impact of the study design on the development and

evaluation of an activity-type classifier is a topic that was
recursively addressed in the last years [13, 17, 45]. These
studies showed that data collected in a protocol involving
scripted activities under confined laboratory conditions
may not reflect real-life situations. This may be particularly
critical for activity-type classifiers based on machine-
learning approaches (discrepancy between features ex-
tracted from ‘lab’ and ‘real-file’ data). In this study, we tried
to minimize this issue by first designing a measurement
protocol as similar as possible to the real-life context, i.e.,
self-paced various activities performed in an extended phys-
ical space (different locations in the hospital area). Second,
an “expert-based” activity-classifier was designed based on
biomechanical models/constraints and behavioral rules;
this approach is expected to be robust in different con-
texts since the biomechanical/behavioral rules still stand.
Although it remains to be proven, our expectation is that
performances of the proposed algorithm will not change
significantly with data collected from patients in home
environments.
This study has however few limitations mainly due to

the data available for validation. One limitation is related
to the non-uniformity of the number of data samples for
the different activities. The number of samples in static
activities (Sit) and at Flat body elevation (i.e., more flat
walking than up/down stairs) was greater due to the re-
duced physical capacity of patients, fatigue and fall-risk
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concerns (4 of 12 patients needed walking assistance).
However, collected data corresponds to real-life con-
text, both in terms of protocol design (different self-
paced activities in an extended area of the hospital)
and patients’ clinical condition. Another limitation of

this study included the small sample size which may
have led to an under-powered statistical analysis. An
extension of this work could thus be to validate this
approach on a greater number of stroke patients or on an-
other patient population impaired by mobility restriction
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such as patients suffering from Parkinson’s disease or
chronic pain.

Conclusion
This work reported on the development of an activity mon-
itoring system based on a single trunk-fixed multimodal
sensor that includes IMU and BP, and on an algorithm to
estimated basic postures/activities. The main feature of
the developed algorithm is the hierarchical fuzzy infer-
ence system; it provides a versatile activity classifier
where both detected event and behavior rules can be
deliberately combined to improve the activity recogni-
tion. The proposed approach showed improved perfor-
mances over all other state-of-the-art fuzzy logic based
algorithm and epoch-based classifiers, mainly due to an
improvement in the recognition of the standing activity.
Furthermore, it was possible to accurately classify body
elevation by a decision tree and a sinus-fitting algo-
rithm. The high CCR values for activity classification
and body elevation recognition, confirms our hypoth-
esis that the system could be useful for unobtrusive
monitoring and reliable assessment of daily-life activity
in stroke patients.

Appendix
Fuzzy logics
A fuzzy inference system is generally defined by a set of
membership functions to transfer its inputs into fuzzy
(linguistic) variables, a set of “If-Then” rules to fuse the
fuzzy variables and map the antecedents to consequences
and, an implication and aggregation operator, and finally a
de-fuzzification method. As an example, the first rule from
Table 2 should be read as: “If the PrevAct is sitting AND
CurrAct is unknown AND Transition is Detected AND
TransitionType is SiSt THEN EventActivity is standing”. As
another example, a fuzzy inference system (used for
classification) and its fuzzy rules are presented in
Fig. 4. This fuzzy inference system works as follows.
The first step is to fuzzify the input using the mem-
bership functions. In this example, we assumed follow-
ing values: PrevAct = −0.75 (fell into sit, unknown and
stand activities with decreasing membership values
respectively); CurrAct = 0 (fell into unknown, sit and
stand activities); Transition = 0.7; TransitionType = 0.6.
Their degrees of membership are computed through
the membership function as showed in Fig. 4 for the
associated rules (e.g. TransitionType with SiSt). The
corresponding degree of membership for each variable
is denoted by the shaded area in each graph of the
input variables. They are for example: 0.88 for the
PrevAct to be sitting, 1 for CurrAct to be member of
Unknown, 0.83 for the Transition to be Detected and
0.66 for TransitionType to be SiSt. To compute the
contributions of each variable to the rule, an

implication operator is used: the minimum computed
across each variable. The result of each rule is re-
ported as a fuzzy output with a degree of membership
corresponding to this minimum value. In this example
and for the first rule, the minimum is 0.66 (from
TransitionType). For the second and third rules, the
fuzzy output of these rules (minimum values) were
also computed: 0.33 for the 2nd rule and 0.12 for the
3rd rule. The next step is to bring together the contri-
butions from each rule: the aggregation step. In our
case, the maximum operator was used to merge the
contributions and a polygon shape is therefore ob-
tained as shown in Fig. 4. The last step, call the defuz-
zification step, computes the output of the FIS from
this polygon. For the Event-FIS, the output correspond
to the (x-axis value of the) centroid of polygon. Fur-
thermore, weights were associated with the rules to
change their contributions according to the confidence
level of the rule. This provides an opportunity for to favor
one rule with respect to another. An example of a
weighted rule output is presented in Fig. 5.
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