
RESEARCH Open Access

Prosthetic energy return during walking
increases after 3 weeks of adaptation to a
new device
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Abstract

Background: There are many studies that have investigated biomechanical differences among prosthetic feet, but not
changes due to adaptation over time. There is a need for objective measures to quantify the process of adaptation for
individuals with a transtibial amputation. Mechanical power and work profiles are a primary focus for modern energy-
storage-and-return type prostheses, which strive to increase energy return from the prosthesis. The amount of energy
a prosthesis stores and returns (i.e., negative and positive work) during stance is directly influenced by the user’s loading
strategy, which may be sensitive to alterations during the course of an adaptation period. The purpose of this study was
to examine changes in lower limb mechanical work profiles during walking following a three-week adaptation to a new
prosthesis.

Methods: A retrospective analysis was performed on 22 individuals with a unilateral transtibial amputation. Individuals were
given a new prosthesis at their current mobility level (K3 or above) and wore it for three weeks. Kinematic and kinetic
measures were recorded from overground walking at 0, 1.5, and 3 weeks into the adaptation period at a self-selected
pace. Positive and negative work done by the prosthesis and sound ankle-foot were calculated using a unified deformable
segment model and a six-degrees-of-freedom model for the knee and hip.

Results: Positive work from the prosthesis ankle-foot increased by 6.1% and sound ankle-foot by 5.7% after 3 weeks
(p = 0.041, 0.036). No significant changes were seen in negative work from prosthesis or sound ankle-foot (p= 0.115, 0.192).
There was also a 4.1% increase in self-selected walking speed after 3 weeks (p= 0.038). Our data exhibited large inter-subject
variations, in which some individuals followed group trends in work profiles while others had opposite trends in outcome
variables.

Conclusions: After a 3-week adaptation, 14 out of 22 individuals with a transtibial amputation increased energy return from
the prosthesis. Such findings could indicate that individuals may better utilize the spring-like function of the prosthesis after
an adaptation period.
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Background
After undergoing a lower limb amputation, individuals
must relearn to walk with a prosthesis that replaces ana-
tomical foot and ankle structures. These individuals
often walk with lower speeds and greater metabolic cost,
in comparison to control populations [1–3]. This dis-
crepancy has been lessened, but not eliminated, with the

advent of modern energy-storage-and-return (ESR) pros-
thetic feet [4–6]. These individuals have a tendency to
exert greater forces on the sound limb [7], and such
over-reliance may contribute to secondary problems,
such as lower back pain, osteoporosis, and osteoarthritis
of the contralateral knee and hip [7, 8].
Since prosthetic structures must replace basic functions

of an anatomical system, such as supplying forward propul-
sion and upright support [9, 10], the way in which a person
utilizes and interacts with a prosthesis may be a key factor
in regaining walking ability. Many contemporary studies
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either analyze prosthesis users in comparison to control
subjects [11–14], or compare gait outcomes among various
prosthetic devices [15–20]. However, few studies have
analyzed adaptation to a prosthetic device over a prolonged
period [21–23]. Here, we refer to ‘adaptation’ as changes
seen over a multi-week timespan in gait outcomes of indi-
viduals with amputation.
A potentially valuable approach for understanding pros-

thetic adaptation is the analysis of mechanical power and
work. Modern designs of prostheses attempt to maximize
positive work output of the devices [24], by either passive-
elastic, active [12], or processor-controlled [25] compo-
nents in efforts to mimic the power generation performed
by the sound foot and ankle during gait. Prior research
including passive-elastic [11] and powered prostheses [12]
has established the importance of positive work gener-
ation during push-off; in particular, its role in increasing
self-selected walking speed [12], decreasing metabolic
energy expenditure [12, 26], and promoting gait symmetry
and balance [11, 27].
For an unpowered ESR prosthesis, the amount of negative

and positive work of the prosthesis – equivalent to energy
storage/dissipation and return, respectively – is directly
influenced by the material properties and geometry of pas-
sive ESR feet [28–30]. In addition, mechanical work profiles
may be directly related to how a user loads and unloads the
prosthetic limb, offering unique insights into a user’s inter-
action with a prosthesis. It is currently unclear how energy
storage and return characteristics may change over the
course of adaptation. In this context, assuming that the
mechanical properties of the prosthetic ankle-foot compo-
nents have remained the same, any change in prosthetic
mechanical work should reflect changes in loading patterns
initiated by the individual.
The purpose of our study was to quantify adaptation

to a new ESR prosthesis through analyzing mechanical
work profiles during walking at the ankle-foot, knee, and
hip level over a 3-week period. We hypothesized that
following a 3-week adaptation to a new device, the pros-
thesis negative and positive work would increase, indica-
tive of greater use of the spring-like behavior of the ESR
device. With increased push-off from the prosthesis, we
also hypothesized that positive work output of the sound
limb structures (ankle-foot, knee, and hip) would decrease.
This may reflect a lessened dependence on the sound limb
for locomotion, which may be in line with the goals of gait
training interventions to improve limb symmetry [27, 31].

Methods
Participants
Twenty-two individuals with unilateral, transtibial-level
amputation were retrospectively analyzed from a previ-
ous study [21]. Cause of amputation included traumatic
(n = 14), vascular (n = 5), and other (n = 3). Subject group

demographics are summarized in Table 1. All partici-
pants were indicated as Medicare Functional Classifica-
tion Level K3 or K4 ambulators, and had their current
prescribed prosthesis longer than 30 days.

Procedures
Participants in the study were given a new, passive energy
storage and return-type prosthetic foot to wear for the
duration of the 3 week adaptation period (Fig. 1). The new
prosthesis was based on the participants’ Medicare Func-
tional Classification Level at the time of testing. Partici-
pants used their same socket and suspension system as
their regular prosthesis, and were issued a new foot cus-
tomized by their body mass, height, and foot size. During
their initial visit, participants received a new prosthetic
foot and were aligned by a certified prosthetist on-site.
The alignment prior to the initial gait analysis occurred

Table 1 Subject-level Demographics

Subject Age
(yrs)

Height
(cm)

Mass
(kg)

Years since
Amputation

Original
Prosthesis

Prescribed
Prosthesis

1 42 184.6 125.0 3 OSR Ceterus FI Renegade

2 66 176.5 121.6 8 CPI Soleus OSR Variflex

3 57 186.3 98.6 1 OSR Variflex
Evo

WW Fusion

4 55 163.2 64.1 10 OB Trias FI Senator

5 58 192.7 115.2 6 OSR Variflex WW Fusion

6 61 189.0 108.4 7 OSR Ceterus WW Duralite

7 63 178.0 108.4 5 OSR Ceterus FI Renegade
Torsion

8 76 172.3 92.3 5 EL Echelon WW Fusion

9 62 179.5 86.5 14 OSR Ceterus WW Duralite

10 65 188.0 100.5 8 CPI Soleus FI Senator

11 53 174.5 121.8 2 OSR Talux OSR Variflex

12 33 169.1 66.2 10 OSR Variflex AD Rush foot

13 58 169.0 98.0 2 OSR Flexfoot
Assure

AD Rush foot

14 50 188.7 93.0 11 FI Sierra FI Renegade

15 47 172.0 113.9 8 CPI Trustep FI Pacifica

16 45 166.0 121.8 3 OSR Variflex
LP

FI Pacifica

17 44 182.7 87.3 24 OSR Ceterus AD Rush foot

18 41 173.8 93.4 20 CPI Trustep WW Fusion

19 45 169.2 122.5 4 FI Renegade FI Senator

20 53 178.8 133.8 2 OB Axtion FI Renegade

21 66 177.4 80.7 0.6 OSR Sure-flex EL Elite

22 27 173.8 87.3 11 CPI Soleus FI Renegade

Mean
(±SD)

53.0
(±11.8)

177.5
(±8.2)

101.8
(±19.1)

7.5
(±6.0)

All participants were indicated as Medicare Functional Classification Level
K3 or K4 ambulators, and had their original prosthesis longer than 30 days.
Prosthetic manufacturer abbreviations: AD Ability Dynamics, CPI College Park
Industries, EL Endolite, FI Freedom Innovations, OB Ottobock, OSR Össur,
WWWillowwood.

Ray et al. Journal of NeuroEngineering and Rehabilitation  (2018) 15:6 Page 2 of 8



consistent with clinical alignment process in less than
10 min. Once the prosthesis was properly aligned, initial
gait analysis (0 weeks adaptation) was performed. After
the first data collection, participants wore their new pros-
thesis home and returned to the lab after 1.5 weeks for
second data collection. Participants then wore the new
prosthesis for 1.5 more weeks and returned again for a
final data collection (3 weeks adaptation).
During each data collection, participants walked over-

ground on an embedded force plate (Kistler, Amherst,
NY) at a self-selected speed. Kinetic data were captured
from the force plate at 600 Hz, while kinematic data were
captured by a 12-camera motion capture system at 60 Hz
(Motion Analysis Corp., Santa Rosa, CA). Kinetic and
kinematic data were low-pass filtered at cutoff frequencies
of 11 Hz and 7 Hz, respectively. The cutoff frequencies
were determined using residual analysis [32]. Twenty
seven reflective markers were placed on various anatom-
ical locations on the lower limbs to allow three dimen-
sional relative joint angle calculations. On the prosthetic
limb, markers were placed on analogous locations as the
sound limb. A minimum of 5 clean force plate steps were
recorded from each leg from each participant for analysis.
A clean step was defined as full foot contact with only one
force plate.

Analysis
A unified deformable (UD) segment analysis [33] was used
to quantify mechanical power profiles of prostheses and
sound ankle-foot structures. While traditional analysis
(e.g., inverse dynamics-based methods) rely on rigid body

assumptions, the UD analysis accounts for the power and
work contributions from deforming structures. The ana-
lysis also does not require a joint definition. Thus, the UD
analysis is well suited to study prostheses that may not
have a true ankle joint articulation, facilitating direct com-
parisons between anatomical ankle-foot structures and
various prosthetic designs [34]. The analysis defines a ‘uni-
fied’ segment, in which the shank is assumed to be rigid,
and everything distal to the shank is deformable. Deform-
ation of distal components is quantified by the transla-
tional velocity ( v!cop), which is the velocity of a point on
the unified segment as it coincides with location of the
center-of-pressure (Eq. 1). v! cop is found using Eq. 1,
where v!cm is the translational velocity of the shank’s cen-
ter of mass, ω! is the rotational velocity of the shank, and
r!cop is the displacement of the center of pressure relative
to the shank’s center of mass.

v!cop ¼ v!cm þ ω! x r!cop
� � ð1Þ

Then, the dot product is taken between v!cop and the

ground reaction force ( F
!

grf ) and summed with the dot

product of free moment (M
!

free) and ω to calculate power
(PUD) (Eq. 2).

PUD ¼ F
!

grf ∙ v!cop þM
!

free∙ω! ð2Þ

We note that all of the denoted vectors (Eqs. 1 and 2)

are three-dimensional vectors, with exception of M
!

free ,
which only acts normal to the ground surface. Integrat-
ing PUD over time quantified total energy (work) of the
prosthesis over a gait cycle due to elastic energy storage
and return. When this technique was applied to the
sound side, it quantified energy profiles of the sound
ankle-foot system as a whole.
Power and work profiles at the knee and hip joints were

quantified by using a six-degrees-of-freedom technique
[35, 36]. This technique quantifies the summed effect of
all structures surrounding a joint, including power contri-
butions from rotational and translational movement.
A one-way repeated measures ANOVA was used to

determine the effect of time (visit) on various outcome
variables, which included total positive work output by
the prosthetic and sound-side ankle-foot, knee, and hip,
as well as the total negative work done by the prosthetic
and sound-side ankle-foot, knee, and hip.

Results
The mechanical power profiles of the prosthetic ankle-
foot structures showed evidence of energy storage and
return (Fig. 2). Immediately following heel strike, the pros-
theses showed negative power, exhibiting either energy
storage or dissipation. During mid-stance, the prostheses

Fig. 1 Experimental Protocol. N= 22 subjects were prescribed a new
prosthetic foot at their current functional level by a certified prosthetist.
Fitting and alignment were performed on the subject’s first visit to the
gait laboratory, after which the first data collection was performed
(0 weeks). Subjects then wore the prosthesis at home and in the
community, and came back for data collections after 1.5 weeks and
3 weeks. Each collection consisted of kinetic and kinematic data from
overground walking trials at a self-selected speed. Subjects were retro-
spectively analyzed from a previous study conducted [21].
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again showed negative power. During terminal stance, the
prostheses exhibited positive power – indicative of energy
return during push-off.
Following a three-week adaptation, the prosthesis posi-

tive work increased (p = 0.041), including a 6.1% increase
at week 3 compared to week 0 (0.114 J/kg vs 0.121 J/kg)
(Fig. 3). There was no significant change in prosthesis
negative work (p = 0.155). On the sound ankle-foot, there
was a significant increase in positive work (p = 0.036),
including a 5.7% increase at week 3 compared to week 0
(0.182 J/kg vs 0.193 J/kg). There were no significant
changes in sound ankle-foot negative work (p = 0.202).

There was no significant effect of adaptation period on all
other joint work profiles, including knee and hip positive
and negative work.

Discussion
The purpose of this study was to quantify adaptation to
a new prosthesis through analysis of mechanical work
profiles. Assuming that the prosthesis does not change
its mechanical properties during the 3-week adaptation
period, any changes in prosthetic mechanical work pro-
files should be directly related to how a user loads and
unloads the prosthetic limbs. These changes may reveal

Fig. 2 Mechanical power of lower extremity over gait cycle. Ensemble mean mechanical power curves are shown for the prosthetic foot (solid lines) and
sound ankle-foot system (dashed lines). Curves are plotted as a percentage of prosthetic limb stride, with sound limb heel strike happening at approximately
51%. Mechanical power at the ankle-foot was calculated using a Unified Deformable segment model, and eventually integrated to calculate mechanical work.
Knee and hip powers were calculated using a six-degree-of-freedom power analysis. Vertical lines indicate gait events: STO= Sound limb Toe-Off, SHS =
Sound limb Heel Strike, PTO= Prosthetic limb Toe-Off
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unique insights regarding the individual’s interaction
with the prosthesis. In line with our hypothesis, prosthesis
positive work (i.e., energy return) increased after 3 weeks of
adaptation. From a mechanical perspective, these changes
in prosthetic energy return could be a beneficial change, as
prosthetic ankle-foot structures commonly have reduced
push-off in comparison to sound limbs, which may be
related to gait asymmetry [11] or increased metabolic cost
of transport [12]. Increasing prosthetic energy return is also
in line with the design goals of energy-storage-and-return
(ESR) feet [1, 4], which seek to increase push-off from the
prosthesis side. It should be noted, however, that positive
work values are still well below sound limb levels – after
3 weeks, positive work from the prosthesis was only 62.8%
of the sound ankle-foot.
One potential explanation behind the increased pros-

thetic energy return (following the 3 week adaptation) is
an increase in self-selected walking speed. In this study,
we did not control for the overground walking speed
across the three testing sessions, and we found a 4.1%
increase (p = 0.038) in self-selected speed after 3 weeks.
Furthermore, a significant linear relationship (R2 = 0.399,
p = 0.002) was found between 3-week changes in positive
prosthesis work and 3-week changes in speed (Fig. 4a).
As ankle-foot work profiles are sensitive to increases in
walking speed [37], it is currently unclear whether the

increase in prosthetic energy return was due to the
process of adaptation or due to the increase in self-
selected speed. From regression analysis, we can reason
that changes in gait speed could be partially, but not wholly
explained by changes in prosthesis work. Furthermore, it is
currently difficult to assess whether an increase in pros-
thetic energy returned caused an increase in self-selected
speed, or vice versa. Future controlled experiments may be
needed to parse out the influence of walking speed and
prosthetic energy return over the course of a prolonged
adaptation period.
Since passive ESR prostheses can only return a portion

of mechanical energy that they store, we had hypothe-
sized that an increase in prosthetic positive work would
coincide with an increase in negative work. Magnitude
of negative work of the prosthesis increased by 3.5% over
the 3-week period, however, this difference was not
significant (p = 0.155) and thus did not support our
hypothesis. This is not to say that the prostheses gener-
ated more positive work than they absorbed. Rather,
there was a greater percentage of the negative work that
was returned by the prosthesis. For example, the work-
ratio (positive work/negative work) slightly increased
from 0.482 at Week 0 to 0.495 at Week 3, though this
difference was not statistically significant (p = 0.193, see
Additional file 1). One possible way to increase

Fig. 3 Mechanical work changes over 3 week period. Group mean (± 1 SD) joint-level positive and negative work values are shown for 0 weeks (black),
1.5 weeks (gray), and 3 weeks (red) of adaptation to a new prosthetic device. * = denotes significance as revealed by one-way repeated measures
ANOVA for effect of time on mechanical work (p < 0.05). Prosthetic ankle-foot positive work (i.e., energy return) increased after adaptation (p = 0.041),
including a 6.1% increase at 3 weeks compared to 0 weeks. Sound limb ankle-foot positive work also increased after adaptation (p = 0.036), including a
5.7% increase at 3 weeks compared to 0 weeks. No other work changes were statistically significant. All passive energy-storage-and-return feet did not
and cannot exceed 100% energy return, but an increase in positive work generation was observed without a corresponding increase in negative work,
contrary to our hypothesis
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prosthetic energy may be to change the loading regions
of a prosthesis. For example, individuals could have loaded
less on the dissipative heel of the prosthesis and more on
the flexible keel made to return energy. Due to the nature of
our calculations, energy storage and dissipation are both
quantified as negative work, and further experiments and
analyses may be needed to examine the localized mechanical
work distributions within prosthetic foot subregions.
Alongside the increased energy return from the pros-

thetic ankle-foot structures following a 3-week adaption,
we had hypothesized that the positive work production
from the sound limb (either ankle-foot, knee, or hip)

would decrease (i.e., a more symmetrical work distribu-
tion). While there was no change in knee or hip work,
the sound ankle-foot positive work increased (Fig. 3),
thus rejecting our hypothesis.
While there was a significant group mean increase in

prosthesis and sound limb ankle-foot work, a subject-
specific analysis revealed highly variable mechanical work
and self-selected speed profiles following adaptation. Such
subject-specific analyses may offer valuable information of
how an individual is integrating a new ESR prosthesis. As
an example, data for 4 subjects is shown highlighting the
variable patterns. Subject 1 in Fig. 4b showed an increase

b

a

Fig. 4 Regression analysis and inter-subject variations. a: A significant linear regression (R2 = 0.399, p = 0.002) was found between change in positive
prosthesis work and change in self-selected speed. Changes in speed can be partially explained by changes in prosthesis positive work, but the two
may not be entirely interdependent. Furthermore, there was a large amount of inter-subject variation in our results, as four highlighted subjects show.
b: Subjects 1-4 on a are plotted again on b, showing each subject’s prescribed prosthesis, as well as changes in prosthesis positive work, sound ankle-
foot positive work, and self-selected speed after 3 weeks adaptation. Percentage changes for each variable are shown above and below the corresponding
bar graph. Some subjects increased prosthesis work while decreasing sound limb work as hypothesized (subject 1), while others increased sound limb work
while decreasing prosthesis work (subject 2). This strategy may indicate that a patient is growing too reliant on their sound limb for locomotion. Some
subjects increased sound limb work disproportionately to prosthesis work (subject 3), and even others decreased all variables (subject 4), which may
indicate nonresponse to a newly-given prosthetic device
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in prosthesis work with a decrease in sound limb work,
and subject 2 showed a decrease in prosthesis work with
an increase in sound limb work. Subject 3 showed an
increase in all outcome variables, including self-selected
speed, while subject 4 showed decreases in all variables.
These changes may hold insight into a subject’s adoption
to a new prosthesis. For instance, a user who exhibits a
decrease in prosthetic limb work and speed (subject 4)
may indicate a rejection or nonresponse to a new device.
In other individuals, a user could increase speed, com-
monly seen as a beneficial outcome, but not increase pros-
thetic limb work. This result may mean a patient is
depending too much on their sound limb for locomotion,
further increasing gait asymmetry. It is important to view
the individual’s walking speed in the context of limb work
distribution, as only observing gait speed could lead a pa-
tient to continue overusing their sound limb, creating
complications in the future.
In this study, the participants were not necessarily

trained or instructed on how to maximize prosthetic
energy return; yet most participants (14 out of 22 partici-
pants) chose to walk in a way that increased prosthetic
positive work and self-selected speed. In the future, it may
be interesting to see whether targeted interventions, such
as using real-time propulsive force feedback [38], could
further engage individuals to utilize the spring-like func-
tion of ESR prostheses. Also, the correlation between
prosthetic energy return and walking speed (Fig. 4a) may
indicate that interventions that encourage fast walking
could be another way to enhance prosthesis mechanics.
The current study is not without limitations. As stated

previously, speed-matched trials were not performed post-
adaptation, however this has led to a deeper level of ana-
lysis than previously anticipated. Some subjects’ speed
changes could be below previously-reported minimum
detectable thresholds for walking velocity [39]. However,
we believe the concepts developed in the current study
still hold merit and are applicable to the subjects exhibit-
ing dramatic changes in walking speed. The mechanical
work analysis performed in this study can reveal how
much energy a prosthesis can store and return; yet, such
analysis may not identify how the energy is being trans-
ferred from the user to the prosthesis, and vice versa.
Additional analyses, such as a power flow analysis [40, 41]
may be better equipped to understand how mechanical
energy flows throughout the body, and could further
elucidate the interaction between the user and the pros-
thesis. In addition, it should be mentioned that the sub-
jects appearing in the current study are all experienced
prosthesis users, with an average of 7.5 years post-
amputation. As such, drawing conclusions to initial gait
retraining of people with amputations is limited. Lastly, it
is currently unclear whether 3 weeks is sufficient to allow
individuals to fully adapt to a new prosthesis. We felt that

3 weeks was appropriate based on recommendation from
English et al. [42], and in light of the study design which
included exchanging only one aspect/component of the
prosthesis rather than the entire prosthesis setup (i.e.,
socket and suspension system remained unchanged). It is
possible that a longer adaptation time could result in
further changes in gait outcomes, but we opted to keep
the adaptation period to 3 weeks to minimize potential
drop-outs from the participants.

Conclusions
After 3 weeks of adaptation to a new prosthetic device,
users exhibited an increase in positive prosthesis and
sound ankle-foot work, as well as an increase in self-
selected speed. Increased prosthesis work could reflect a
greater step-by-step utilization of a prosthesis’ spring-like
property, suggesting that prosthesis users can change their
gait mechanics to better interact with their prosthesis.
Analyzing mechanical work profiles may be desirable for
tracking gait rehabilitation or response to a prosthesis over
time. Future directions for this work could entail analyzing
new prosthesis users to fully understand the process of
prosthesis adaptation, correlating mechanics-based mea-
sures to patient-reported outcomes (such as comfort, ease
of use, appearance, and sound), and determining whether
targeted interventions could further increase prosthetic
energy utilization.

Additional file

Additional file 1: Ankle-foot work ratio (positive/negative work), stride
length, and stance time were examined during the 3 week adaptation
period. One factor repeated measures ANOVA was used to examine the
effects of visits on the outcome variables. *denotes statistical significance
(p < 0.05). (PDF 201 kb)
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