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Abstract

Background: Wheelchair biomechanics research advances accessibility and clinical care for manual wheelchair
users. Standardized outcome assessments are vital tools for tracking progress, but there is a strong need for more
quantitative methods. A system offering kinematic, quantitative detection, with the ease of use of a standardized
outcome assessment, would be optimal for repeated, longitudinal assessment of manual wheelchair users’ therapeutic
progress, but has yet to be offered.

Results: This work evaluates a markerless motion analysis system for manual wheelchair mobility in clinical,
community, and home settings. This system includes Microsoft® Kinect® 2.0 sensors, OpenSim musculoskeletal modeling,
and an automated detection, processing, and training interface. The system is designed to be cost-effective, easily used
by caregivers, and capable of detecting key kinematic metrics involved in manual wheelchair propulsion. The primary
technical advancements in this research are the software components necessary to detect and process the
upper extremity kinematics during manual wheelchair propulsion, along with integration of the components
into a complete system. The study defines and evaluates an adaptable systems methodology for processing
kinematic data using motion capture technology and open-source musculoskeletal models to assess wheelchair propulsion
pattern and biomechanics, and characterizes its accuracy, sensitivity and repeatability. Inter-trial repeatability of
spatiotemporal parameters, joint range of motion, and musculotendon excursion were all found to be significantly
correlated (p < 0.05).

Conclusions: The system is recommended for use in clinical settings for frequent wheelchair propulsion assessment,
provided the limitations in precision are considered. The motion capture-model software bridge methodology could
be applied in the future to any motion-capture system or specific application, broadening access to detailed
kinematics while reducing assessment time and cost.
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Introduction
There are several current methods that have been suc-
cessfully applied to study certain aspects of wheelchair
propulsion outcomes and biomechanics. Laboratory
motion analysis [1–3] is precise and detailed, yet costly
and time-consuming, especially for repeated, frequent
longitudinal assessments. Inertial Measurement Units
(IMUs) are easier to use, but, when wrist-applied as typ-
ical practice [4] lack detailed joint kinematics at the

shoulder, a key joint in assessing injury risk for manual
wheelchair users. Leving et al. [5] has shown promise for
IMUs to detect spatiotemporal parameters of motion,
including activity level, but does not describe movement
kinematics. Similarly, van der Slikke et al. [6–9] have
shown accurate measurements by IMUs in speed, dis-
placement, and acceleration metrics applied to wheel-
chair sports. The referenced IMU studies do not address
the kinematics of individual joints, rather focusing on
gross movement of the wheelchair and spatiotemporal
aspects of arm movement for propulsion. Instrumented
wheels, whether commercially available like the Smart-
Wheel [10] or modified from bicycle wheel power
meters [11] provide power and torque output at the
pushrim, but require a motion capture system to obtain
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kinematics. Standardized outcome measures like the
Wheelchair Propulsion Test (WPT) and Wheelchair
Skills Test (WST) use trained observers and standard
protocols to assess function [12], but lack quantita-
tive, kinematic data.
Based on the available solutions on the market, there

is a significant need for development in this area, tar-
geted toward physical and occupational therapists. The
proposed technology quantitatively evaluates manual
wheelchair mobility in a timely manner and outside of
the motion analysis laboratory. The system output in-
cludes spatiotemporal parameters, joint and muscle
kinematics, and propulsion pattern. The spatiotemporal
parameters, which can tell the clinician how propulsion
speed, cadence, and time change during a patient’s re-
habilitation process, indicate efficiency to the clinician.
It also includes joint range of motion, which is useful in
determining which joints are being utilized, and whether
the patient is progressing toward a more effective strat-
egy, Propulsion pattern is additionally provided as a
qualitative (pattern) and quantitative (size of the pattern)
metric – useful for assessing changes in response to
therapy, and progress toward smoother and more effect-
ive propulsion. This monitoring could provide clinicians

with quantitative data to indicate whether a patient is
stable or deviating from an appropriate pattern during
the course of care. This has a potential to be an early in-
dicator of injury risk, as cadence and propulsion pattern
were identified as predictors of injury risk in manual
wheelchair users with spinal cord injury [13]. Several
technological options have recently become available to
make this development possible, including the Kinect®
for motion capture, OpenSim for musculoskeletal bio-
mechanics, and the Personal Wheelchair Platform to
support the wheelchair and simulate overground resist-
ance. Each technological element of the system will be
introduced and discussed separately.

Microsoft® Kinect®
The Microsoft® Kinect® is a markerless motion capture
sensor designed and marketed for the consumer gaming
market. It uses infrared depth sensing to capture 3-di-
mensional imaging and real-time algorithms to process
skeletal position. The validity and research applicability
of the Kinect has been widely debated in current litera-
ture, as summarized in Table 1. Several studies ([14–17],
and [18]) have compared the Kinect against motion cap-
ture systems and have reported that the Kinect-detected

Table 1 Microsoft Kinect in Upper Extremity Clinical Applications [49–68]

Reference Description Key Results

[14] Assessment of validity of Kinect v1.0 against marker-based motion
capture; 48 normal subjects; upper and lower extremity

Similar reproducibility; different ROM detection for the lower
extremity but similar results for shoulder abduction (±3°) and
elbow flexion (±11°)

([45, 46]; [47, 48]) Assessment of validity of Kinect v2 for postural control and
balance against marker-based motion capture; 30
normal subjects;

High reliability and concurrent validity for balance assessment
(trunk, upper and lower extremity kinematics)

[15] Direct comparison of Kinect against Vicon ® clinical
motion capture

Kinect detection is accurate, one order of magnitude less
precise than Vicon

[16] Kinect vs. Vicon for gross and fine movements (controlled study
of Parkinson’s disease); movements included whole-body
coordinated movements and shoulder flexion/abduction
targeted movements

Kinect is highly accurate for gross movement detection, less for
smaller hand movements; repeatable measurements (r > 0.9);
high interclass correlation for gross extremity/body movements;
low correlation for fine hand movements

[19] Shoulder-specific validity and reliability of Kinect; 10 normal
subjects; shoulder joint (flexion, abduction, rotation) assessed
in static poses with Kinect, marker based motion analysis, and
goniometer; the Kinect was tested both in anterior and sagittal
view with insignificant difference in ICC

High reliability, but LOA greater than ±5°, up to 7° for shoulder
abduction; Kinect shoulder measurement is most accurate in
flexion (high ICC with valid measurements), and least accurate
at abduction approaching 90°; note that the analysis focused
on extents of motion, not the entire range of motion

[20] Shoulder ROM by Kinect vs. goniometry; 15 normal and 12
with adhesive capsulitis of the shoulder; Active ROM
compared between standard goniometry and Kinect

High ICC; Kinect is repeatable for shoulder ROM measurements
(ICCs: 0.91 flexion, 0.94 abduction; 0.91 external rotation); Kinect
accurately measures 3D shoulder ROM

[21] Test-retest repeatability of Kinect for UE, both 12 healthy and
18 stroke subjects; focus on shoulder and elbow kinematics,
and spatiotemporal metrics

Study showed acceptable repeatability and sensitivity in both
populations; Shoulder and elbow angle measurements all
showed greater than 0.9 ICC, indicating repeatability

[17] Accuracy and reliability of Kinect v2 for clinical measurements –
compared with Vicon; 19 normal subjects; spatial range of
motion of arm movements evaluated

Most parameters ICC > 0.7; no systematic bias; all joints of the
UE and torso detected by Kinect had Pearson correlation > 0.9
against Vicon; concurrent Kinect and Vicon used

[18] Kinect (anterior) vs. Vicon; 20 normal subjects; balance and arm
sway; Kinect and Vicon data collected separately, analyzed for
variance in movement patterns and marker positions

Study found that broad movements of the upper extremities
had > 90% accuracy, finer hand movements lower accuracy;
activities are standardized (game-directed) for comparison
between the systems

ICC Interclass Correlation Coefficient, ROM Range of Motion, LOA Limits of Agreement; most studies use Kinect in anterior position, noted if different
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data is reproducible, accurate for gross movement detec-
tion but not finer movements, and approximately one
order of magnitude lower precision than the laboratory
standard marker-based systems. Studies focusing on spe-
cific aspects of detection found that shoulder kinematics
and range of motion are reliable [19, 20] and test-retest
reliability is acceptable in both healthy and stroke
patients [21]. Based on these findings, we focus on
shoulder biomechanics in our analysis.
Specifically focusing on the elbow and shoulder

movements most relevant to manual wheelchair pro-
pulsion, several studies have addressed accuracy and re-
liability of the Kinect for this use. Comparing the
shoulder kinematics from Kinect to laboratory motion
capture, Bonnechere et al. found that ROM detection is
within 3 degrees for shoulder abduction and 11 degrees
for the elbow, with the Kinect sensor positioned anter-
ior to the subjects. Huber et al., addressed all ranges of
shoulder movement in three axes, and found that the
Kinect is most valid in flexion (throughout the range of
motion), with an ICC of 0.95 when compared to labora-
tory calibrated measures, and least accurate in extreme
abduction approaching 90 degrees, with ICC of 0.76.
Overall analysis of these results in terms of minimum
detectable difference demonstrates differences by joint
motion, with 7° at the shoulder [14], and 11° at the
elbow [19]. However, these results also show that these
measures are repeatable with high correlation coeffi-
cients [20], which suggests that the data that ultimately
is processed from the Kinect is able to detect kinematic
changes, even if the measurement accuracy is less than
laboratory-grade systems.
In terms of manual wheelchair propulsion, the most

important movement of the shoulder joint is in flexion,
and there is no extreme abduction, so these results sug-
gest that the Kinect is adequate in the ranges of motion
applicable to manual wheelchair use. Huber et al. also
compared shoulder flexion with the Kinect positioned
anteriorly and laterally, and found similar ICC (0.85 and
0.84, respectively) between the positions. This provides a
basis for the experimental assessment contained in this
work, assessing detection accuracy within the specific
workspace of manual wheelchair use and camera posi-
tioning applied.
In past work [22], technical evaluation of the system

using goniometry revealed key findings regarding the
capabilities of the system. The broad movements of the
elbow demonstrate more precision in detection than the
finer movements of the hand, a result expected due to
the limited resolution of the Kinect. Detection accuracy
when comparing Kinect-detected and goniometric mea-
surements is significant enough to allow differentiation
between angles of the joints, and provides sufficient
kinematic data for clinical decision-making. Overall, this

work indicates that the Kinect is accurate in detecting
ROM and joint position of the upper extremities, with a
reduced precision of approximately one order of magni-
tude relative to laboratory systems, and higher accuracy
and precision in the proximal joints relative to the distal
joints. For the purposes of this development, the Kinect
adequately provides the desired level of quantitative
data, but the Kinect’s limitations must be accounted for
when interpreting that data.

OpenSim musculoskeletal model
OpenSim is a free, open-source software package that
allows users to develop musculoskeletal models and per-
form biomechanical analysis [23]. The OpenSim soft-
ware (National Center for Simulation in Rehabilitation
Research) and specific upper extremity model used were
chosen over other alternatives (including SIMM,
Any-Body, and other OpenSim models) in line with the
primary project goals of cost-effectiveness, research val-
idity and acceptance in the literature, and integration
into assessment software. OpenSim has gained a signifi-
cant following in scientific literature, with many studies
published using the software. OpenSim is also computa-
tionally efficient, while providing sufficient data to be
appropriate for this application. Given that the system is
open-source, it is also easily integrated into the auto-
mated assessment software. Several upper extremity
models are available that are applicable to the study of
wheelchair propulsion biomechanics. Holzbaur et al.
[24] developed a complete model designed to accurately
represent musculoskeletal structure. The validated
model was later refined [25] and enhanced for improved
functionality. The newer model also incorporates scapu-
lar kinematics, and a simplified coordinate system for
enhanced computational efficiency, and thus was applied
for this work.

Stationary wheelchair propulsion platform
Roller platforms and similar ergometer devices are often
used in wheelchair propulsion research, placing the
wheelchair in a fixed position during analysis. This is
important because it allows the wheelchair user to reach
a steady-state propulsion. Some laboratories [13, 26]
develop research-specific systems tailored to their needs.
For instance, van der Woude et al. [2] describe a
custom-developed motor-driven treadmill combined with
a weight-and-pulley system to provide resistance, which
they use in parallel with motion capture, energetics, and
instrumented wheels. Recent development has led to the
Personal Wheelchair Platform [27], which provides a safe,
stable, laterally independent, and calibrated platform for
manual wheelchair propulsion research. The platform is
designed based on a dynamic model to provide resistance
consistent with overground propulsion, and does not
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control or limit testing conditions. The design is entirely
mechanical and, if used with the same wheelchair, would
produce the same results.

Methods
The purpose of this study was to develop and evaluate
a markerless wheelchair propulsion biomechanical as-
sessment system based on the actual needs of clinicians
and wheelchair users, focused on shoulder and upper
extremity kinematics. The resulting design integrates
consumer technology with open-source musculoskeletal
modeling technology, considering the important value
and technical limitations of each component, to
produce a markerless wheelchair propulsion analysis
platform. The system was designed around three com-
ponents: the Microsoft Kinect sensor, a stationary roller
platform, and OpenSim musculoskeletal model. The
system was configured with the subject and wheelchair
in a stationary position on a roller platform, with
Microsoft Kinect sensors placed anteriorly (for record-
ing the static trial) and laterally on each side (for
recording dynamic trials), as illustrated in Fig. 1.
The system needs two Kinect sensors for minimum

operation. The Kinect produces the clearest tracking
results when the primary motion is perpendicular to the
sensor’s line of sight. Thus, for the static trial an anterior
positioned sensor is used to detect the subject in stand-
ard anatomical position, while for dynamic trials the
lateral cameras are used, since sagittal plane motion is
the primary action of wheelchair propulsion. The lat-
erally-positioned Kinects also minimize occlusion of
wheelchair components and body parts, allowing the
sensors to maintain their view of all upper extremity
segments throughout the propulsion cycle.
The Personal Wheelchair Platform (Fig. 2) supports the

wheelchair, constrains its lateral motion, allows asymmet-
ric propulsion, and provides adjustable resistance to

simulate overground propulsion based on user anthro-
pometry. Maintaining the wheelchair in a static position is
key to using the markerless technology effectively. Main-
taining the static position allows consistent accuracy of
the kinematics and, most importantly, allows the subject
to continually propel forward rather than making repeated
turns within a laboratory setting. This supports commu-
nity and home applications.
The final major component of the system is an

OpenSim-based musculoskeletal model, developed and
validated for upper extremity kinematics [25]. The
model employed a virtual marker set compatible with
the automated algorithms that interpret data from the
Kinect sensors. The model is iteratively fitted to the
motion data, and to increase the simplicity and speed
of the computations, the model is used in its unilat-
eral configuration, with each upper extremity com-
puted separately. Key kinematic data outputs from the
model include triaxial joint kinematics of the arms
and trunk, and musculotendon lengths.
The Microsoft Kinect produces skeletal position,

which is recorded in real-time from the sensors dur-
ing the evaluation, and is subsequently input to the
OpenSim musculoskeletal model. The software pack-
age was developed using MATLAB, which can inter-
face with both the Kinect software and OpenSim
modeling package when appropriately configured.
Figure 3 illustrates the process, and is divided into
three distinct processing phases.
Phase 1 of the process imports and filters the skel-

etal position data, acquired from both static and dy-
namic trials. A low-pass Butterworth filter, with cutoff
frequency of 10 Hz, removes unwanted noise from
the position data. The OpenSim model has been
modified to include a custom virtual marker set that
interfaces with data acquired by the sensors. The final
step in Phase 1 converts position data, consisting of

Fig. 1 Conceptual Design and Configuration of the Markerless Wheelchair Analysis System. Subject is stationary on roller system, with a
single Kinect sensor positioned in the center, anterior to the subject (for static trial), and two Kinect sensors positioned laterally, to the
left and right of the subject (for dynamic trials) – the sensors are moved between trials and a total of two are needed

Rammer et al. Journal of NeuroEngineering and Rehabilitation           (2018) 15:96 Page 4 of 12



joint center locations and segment quaternion orien-
tations, to virtual marker positions.
Phase 2 then includes a second set of algorithms to

process the position data, automatically identifying indi-
vidual propulsions from the data series, and selecting

the ten most similar and consistent propulsions from
those identified. The data is then divided into twenty
individual data sets comprised of ten propulsions each
on the left and right sides and is ready for OpenSim pro-
cessing. Each individual trial is processed separately,

Fig. 2 Personal Wheelchair Platform. Used to support the wheelchair and provide anthropometrically correct resistance

Fig. 3 Block Diagram of Markerless Kinematic Processing Algorithm. Phases 1, 2, and 3 of processing referenced in text are denoted by boxed regions
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producing an individual set of kinematic data for each
trial. OpenSim processing is conducted by customized
MATLAB algorithms. First, the model is scaled using
data from the static trial and measurements provided by
the evaluator. The scaling is proportional and uses the
anatomical scaling capability of OpenSim, adequate for
gross kinematic analysis in clinical research. The joint
kinematics and musculotendon lengths from the static
trial are recorded as the baseline, normal values. Next,
each dynamic trial is processed using the subject-specific
model. The iterative inverse kinematics method fits the
model to the motion data at each time point. Then,
muscle analysis is conducted, using geometric mapping
to compute the musculotendon length changes.
Phase 3 in Fig. 3 computes spatiotemporal parameters,

joint ranges of motion, and musculotendon excursions,
and average and standard deviation values for each par-
ameter. A formatted output is created in MATLAB to
display all relevant parameters and outputs of the evalu-
ation. This output is displayed automatically on-screen
and saved as an image file for printing. All raw and proc-
essed data and parameters are saved in a MATLAB
archival data file for future research and processing.
The clinical wheelchair propulsion analysis output from

the markerless system is two printable pages, created by

the automated software. This format mimics reports pro-
duced for clinical gait analysis with marker-based systems
and includes both kinematic plots and spatiotemporal
parameter data in a standardized, easily interpreted format
for clinical use. This work expands on the contributions
to the field made by de Groot et al. [28]‘s WHEEL-I
system and the OptiPush instrumented wheel, described
in Kwarciak et al. [29]. Figure 4 gives an example of the
kinematic outputs for a 15-year-old subject with spina
bifida, provides kinematic plots of the joint motion of each
key upper extremity joint and thoracic motion. Each plot
of upper extremity joint motion presents the left (blue)
and right (red) kinematics, with thin lines representing
individual trials and thick lines representing the mean of
all trials. The vertical blue and red lines on each plot indi-
cate the point when the hand leaves the pushrim, which
identifies the transition from propulsion phase to recovery
phase. The first segment, from 0% to the vertical line, is
the propulsion phase, where the hand is in contact with,
and actively propelling, the pushrim. The second segment,
from the vertical line to 100%, is the recovery phase,
where the hand returns to its starting position. The transi-
tion between push and recovery phase is computed with
an automated MATLAB script, which compares the
hand’s position with the known semicircular arc of the

Fig. 4 Example Clinical Outputs. Joint Kinematics and Spatiotemporal Parameters for exemplar subject, age 15, with spina bifida – Joint kinematics
(top), musculotendon excursion (bottom, left) and propulsion pattern (bottom, right). The subject propelled using the same wheelchair and settings
used for everyday mobility, at a self-selected speed and propulsion pattern. The thin lines represent individual trials, and thick lines are average of all
trials for left and right extremities
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pushrim at each time point, and is then able to estimate
which data points have hand contact with the pushrim
and which points are recovery phase. In the lower left cor-
ner of the first page, values are tabulated for range of mo-
tion, peak angular velocity, and peak angular acceleration
of key joints. The values are averages across all trials, with
left and right extremities presented separately.
To analyze the sensitivity of the model for the wheel-

chair propulsion task, sensitivity analysis was used to re-
late shoulder and elbow joint motion to musculotendon
excursions for the muscles which cross the respective
joints. The purpose of this analysis is to mathematically
determine the effect of changing joint angle on musculo-
tendon motion. This was performed by perturbing the
model throughout the range of shoulder and elbow mo-
bility expected in wheelchair propulsion and recording
the musculotendon response length response for each
measurement. Then, a linear regression model was used
to determine the musculotendon sensitivity to joint mo-
tion. This method of using sensitivity analysis to assess
the model performance is adapted from the formulas of
Rump et al. [30], and while it has not yet been widely
applied in the field of biomechanics, it has been a useful
procedure in several other scientific fields, such as auto-
motive injury prediction [31–35].
To more specifically address the sensitivity of the model

at key points of interest in manual wheelchair propulsion,
the shoulder joint is assessed at the start (hand contact)
and end (hand release) of a typical wheelchair propulsion
cycle, since these transition points represent the most
significant potential for injury, as suggested by Rankin et
al. [36], who found peak power output at the transition
points. To set up the analysis, the model is fixed to the
start and end points (based on typical values collected
from subjects), and the other joints not being perturbed
are fixed at those values. Thus, only the joint of interest is
being perturbed for the sensitivity analysis. Analysis is
performed using a dimensionless sensitivity coefficient.
This is computed as:
((MTL + 5%)-(MTL -5%))/(Initial MTL)]/[((JA +

5%)-(JA-5%))/(Initial JA)
Where MTL =musculotendon length, and JA = joint

angle.
Inter-trial measurement repeatability was analyzed

using correlation analysis to provide scatterplots and
Pearson correlation coefficients describing the repeat-
ability of the measurement system, to test the hypothesis
that the system reliably measures parameters between
trials. Thirty wheelchair propulsion assessments of
pediatric manual wheelchair users were conducted as
part of an institutional review board-approved study.
The subjects ranged from 6 to 17 years of age with 6
females and 24 males, 12 with spina bifida, 3 with
Charcot-Marie-Tooth disorder, and 15 with cerebral

palsy, all of whom use a manual wheelchair as a primary
means of daily mobility.
The assessment included spatiotemporal parameters,

such as push time, cycle time, frequency, contact angle,
and proportion of push and recovery, similar to those
used in Vegter et al. [37]. Additionally, joint range of
motion and musculotendon excursion were analyzed,
which differs from the kinetic analysis of Vegter. Each
assessment was performed twice, and the two assess-
ments are statistically compared – each subject’s data
from the first assessment was compared to the same
subject’s data from the second assessment. The subjects
were instructed to perform the same manual propulsion
task during each assessment. Speed and power output
were results of the subject’s standard, self-selected pat-
tern. A Lilliefors test of normality was performed on the
differences between the data sets to ensure that the nor-
mality assumption of the parametric Pearson correlation
analysis was satisfied.

Results
Application and kinematic results
The system developed during this project has been
rigorously assessed in both laboratory and real-world
applications. The cost-effectiveness, at approximately
$8000 for the complete system, and simplified assess-
ment protocol make the system viable in several key
environments. Our pilot experience in field-testing
the system suggested that assessments typically can
be completed in under 15 min and training clinicians
to use the system is feasible and can be accomplished
in 30–45 min.

Sensitivity analysis
Sensitivity analysis was performed on the musculoskel-
etal model to determine the relationship between joint
motion and musculotendon excursion. For shoulder
elevation, the anterior and posterior deltoid musculo-
tendon complexes (− 0.08%/degree and 0.15%/degree,
respectively), along with the coracobrachialis (− 0.09%/
degree), have high sensitivity to shoulder elevation and
rotation when compared to the other musculotendon
complexes studied, mostly in the range of 0.01–0.03%/
degree. Sensitivity analysis describing musculotendon
response to shoulder elevation shows a clear transition
to a point where the joint is not moving very much, but
the muscles are quickly changing in length. The high
linear velocity of the musculotendon complexes
strongly suggests a high potential for injury during the
wheelchair propulsion cycle.
Thus, each coefficient presented in Table 2 below is

dimensionless, and the higher the coefficient, the more
sensitive the muscle is to joint angle changes within the
specified propulsion area. These coefficients are then
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categorized as moderately sensitive (0.40 < s < 0.75) or
highly sensitive (s > 0.75).
The results in Table 2 show several key points. Muscu-

lotendon complexes are most sensitive at the beginning
of the propulsion cycle (hand contact), with fewer mus-
culotendon complexes showing high sensitivity at the
end of the propulsion cycle (hand release). Further, sev-
eral muscles exhibit significantly higher sensitivity than
others, including the posterior and lateral deltoid, teres
major, latissimus dorsi, coracobrachialis, and biceps bra-
chii. These results suggest that there is a higher risk of
injury during initial hand contact over hand release, and
that at the hand contact these key muscles are most sen-
sitive to the angular changes, and thus at risk for injury.
The longer muscles overall appear to have lower sensi-
tivity, and hypersensitivity in the shorter musculoten-
dons suggests a higher risk of injury. These results may
be limited due to the use of only data from a representa-
tive subject for this model analysis. Future work is sug-
gested to confirm these results in a larger population.

Repeatability analysis
For each pediatric manual wheelchair propulsion assess-
ment, two separate kinematic trials were recorded for
each subject. Statistical correlation analysis was per-
formed to determine inter-trial measurement repeatabil-
ity of the system, with the results summarized in
Table 3. Figure 5 shows that the Pearson correlation

coefficients for spatiotemporal parameters, joint range of
motion, and musculotendon excursion were high and
correlations were significant for all parameters, demon-
strating inter-trial measurement repeatability of the sys-
tem. An additional finding of note is that the metrics
with higher Pearson correlation coefficients are the met-
rics with the least standard deviation in the data, and
vice versa. This may suggest that within-subject variabil-
ity is inversely related to the repeatability of inter-trial
measurements.

Discussion
The system developed in this project uses a combination
of consumer-grade hardware and open-source musculo-
skeletal modeling software to create a unique, cost-effective,
efficient, and appropriate analysis technique for clinical
research in manual wheelchair biomechanics. The
Microsoft Kinect was chosen because of its low cost and

Table 2 Sensitivity of Musculotendon Complexes to Shoulder Motion at Start and End Points of Propulsion

Muscle Shoulder Elevation
(Start Point)

Shoulder Elevation
(End Point)

Shoulder Rotation
(Start Point)

Shoulder Rotation
(End Point)

Ant Deltoid 0.435* −0.185 0.243 0.810**

Lat Deltoid −1.409** 0.039 −0.779** −0.175

Post Deltoid −2.038** 0.288 −1.137** −1.268**

Supraspinatus 0.118 −0.041 0.068 0.183

Infraspinatus 0.466* −0.025 0.257 0.112

Subscapularis −0.494* 0.028 −0.273 −0.124

Teres Minor 0.828** 0.038 0.456* −0.169

Teres Major 1.493** 0.191 0.819** −0.840**

Pectoralis Major 0.701* −0.038 0.385 0.169

Latissimus Dorsi 1.369** 0.103 0.751** −0.453*

Coracobrachialis 1.719** −0.155 0.952** 0.683*

Triceps-Long 0.372 0.088 0.203 −0.385

Triceps-Medial −0.287 −0.103 − 0.156 0.454*

Biceps-Long 0.778** 0.029 0.406* −0.131

Biceps-Short 1.874** 0.008 1.010** −0.037

Brachialis 0.318 0.077 0.172 −0.341

Values presented as dimensionless sensitivity coefficients with +/− 5% perturbation at the start and end points of propulsion; Shoulder thoracohumeral
angles describe the arm position – consistent with the coordinate system used in the musculoskeletal model. The start point represents initial contact of
the hand with the pushrim, and end point is the instant when the hand leaves the pushrim
* = Sensitive (coefficient magnitudes > 0.40); ** = Highly sensitive (coefficient magnitudes > 0.75)

Table 3 Inter-Trial Measurement Repeatability
Metric Type Pearson Correlation Coefficient Significance (p)

Spatiotemporal Parameters 0.792 0.001*

Joint Range of Motion 0.853 0.001*

Musculotendon Excursion 0.931 0.001*

Results of correlation analysis. Each individual subject was tested twice under
self-selected conditions with no control of speed or power output, and
the two measures for each subject are compared
* p-value significant at α = 0.05
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ease of use. The OpenSim upper extremity model brings
significant computational power to the system, and the
interface allowing its use with the Kinect and automating
the protocol is the key development of this work.
Characterization of the system in several settings has dem-
onstrated its effectiveness for its intended applications.
The system adds value to clinical assessments by extract-
ing metrics that other methods, such as standardized out-
come tools, cannot.
Comparison of the markerless wheelchair propulsion

assessment system against other common outcome
measurement protocols reveals several key differences.
When compared to laboratory marker-based motion
analysis techniques [1] the markerless system requires
less space (due to the stationary wheelchair platform),
reduced training requirements, and allows faster assess-
ment. However, the marker-based systems have higher
precision, and include kinetic assessment and EMG data.
Inertial measurement units [4] and instrumented wheels
([11], and [10]) have similar ease of use when compared
to the markerless system, and require less time and
training to implement than marker-based systems. How-
ever, inertial measurement units and instrumented
wheels do not provide complete kinematic outputs, but
only partial or supplemental data. Inertial measurement
units and instrumented wheels are possible future ex-
pansion options for the markerless system to permit kin-
etics to be included in the model. Standardized outcome
measures [12] have fewer equipment and technological
requirements, but do require trained observation. It is
these evaluations that the markerless system is intended
to supplement, by adding objective, quantitative out-
comes, while adding minimal time and expense.
Manual wheelchair skills capacity is a key therapeutic

outcome and can affect quality of life [38]. Assessments
using standardized outcome tools in a community
setting have documented improvements in response to
therapy [39], and shown that levels of physical activity
can impact the risk of shoulder pain [40]. Additionally,
clinical guidelines suggest monitoring propulsion
pattern and technique employed, daily activities, and
exercise or therapeutic activities, as a means to assess

risk of upper limb pain or injury [41]. This monitoring
is important to continuing research in the field, given
the paucity of research into therapeutic outcomes of
manual wheelchair users [42]. The system proposed
here has several key benefits and limitations relative to
both standardized outcome tools and complex labora-
tory motion capture. Clinically, a physical therapist can
use the system to assess the UE kinematics and propul-
sion pattern of wheelchair users as part of routine ther-
apy visits, to track progress. The system provides
reliable quantitative data to track patient progress,
which is rarely available in current physiotherapeutic
clinical assessments. Propulsion pattern, for instance,
impacts upper extremity muscle power and stress in
manual wheelchair users [43], and is produced by the
system. The system enhances the capability of thera-
pists to obtain quantitative data without requiring
overly complex and detailed analysis, such as laboratory
motion capture [1]. Basic data includes speed, cadence,
and propulsion pattern, which are difficult to measure
accurately by video or other techniques. The system is
effective in this role because it requires minimal train-
ing – the software is largely automated and therapists
can be trained to use it in a short time.
Several limitations of this work exist and should be ad-

dressed. The present system does not include power out-
put, which would require kinetic detection hardware,
and is a common metric presented in wheelchair bio-
mechanics literature [37, 44]. The present system also
does not measure wheel speed directly, but an algorithm
has been implemented to estimate ground speed based
on a known wheel diameter and hand motion. Cadence
is measured by the system and the resistance level is
adjustable based on wheelchair wheel diameter. The lack
of speed and power output data reduces the ability to
control testing conditions for these metrics, which
would be desirable for consistency, such as tracking
changes among preferred cadence, wheelchair specifica-
tions, and personal differences over time. The addition
of speed and power output would increase usability of
the system, allowing tracking of changes in preferred
cadence, wheelchair styles, and personal performance.

Fig. 5 Inter-Trial Pearson Correlation for Categorical Metrics
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Inter-trial repeatability was significant for spatiotem-
poral parameters, joint kinematics, and musculotendon
excursions. This suggests that the markerless wheelchair
propulsion kinematic assessment system is a repeatable
measurement tool for pediatric manual wheelchair users,
and detects changes that are greater than the inherent
normal variability in the population. Given inter-trial re-
peatability with significant correlation, the system is
recommended for further quantitative assessment use in
pediatric manual wheelchair users. However, it should
be noted that the markerless technology has limitations
in precision of kinematic detection, and more advanced
technologies may be required to obtain higher precision.

Conclusions
There is a significant deficit in current literature on
manual wheelchair propulsion biomechanics and
physiotherapeutic treatment for this population. The
system is suggested for immediate implementation in
novel research to resolve these key deficiencies in
current literature, leading to more effective point-of-
care clinical outcome assessments for manual wheel-
chair users, provided the limitations of markerless tech-
nology are taken into account. In the future, home use
and telerehabilitation development are suggested as
possible directions for the project.
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