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Uneven terrain exacerbates the deficits of a
passive prosthesis in the regulation of
whole body angular momentum in
individuals with a unilateral transtibial
amputation
Jenny A. Kent1, Kota Z. Takahashi1 and Nicholas Stergiou1,2*

Abstract

Background: Uneven ground is a frequently encountered, yet little-studied challenge for individuals with
amputation. The absence of control at the prosthetic ankle to facilitate correction for surface inconsistencies, and
diminished sensory input from the extremity, add unpredictability to an already complex control problem, and
leave limited means to produce appropriate corrective responses in a timely manner. Whole body angular
momentum, L, and its variability across several strides may provide insight into the extent to which an individual
can regulate their movement in such a context. The aim of this study was to explore L in individuals with a
transtibial amputation, when challenged by an uneven surface. We hypothesized that, similar to previous studies,
sagittal plane L would be asymmetrical on uneven terrain, and further, that uneven terrain would evoke a greater
variability in L from stride to stride in individuals with amputation in comparison to unimpaired individuals, due to a
limited ability to discern and correct for changing contours beneath the prosthetic foot.

Methods: We examined sagittal plane L in ten individuals with a unilateral transtibial amputation and age- and
gender- matched control participants walking on flat (FT) and uneven (UT) treadmills. The average range of L in the
first 50% of the gait cycle (LR), the average L at foot contact (LC) and their standard deviations (vLR, vLC) were
computed over 60 strides on each treadmill.

Results: On both surfaces we observed a higher LR on the prosthetic side and a reduced LC on the sound side
(p < 0.001) in the amputee cohort, consistent with previous findings. UT invoked an increase in LC (p = 0.006), but
not LR (p = 0.491). vLR, and vLC were higher in individuals with amputation (p < 0.001, p = 0.002), and increased in
both groups on UT (p < 0.001).

Conclusions: These findings support previous assertions that individuals with amputation regulate L less effectively,
and suggest that the deficits of the prosthesis are exacerbated on uneven terrain, potentially to the detriment of
balance. Further, the results indicate that a greater demand may be placed on the unaffected side to control
movement.
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Background
The ability to walk confidently on non-level ground is
vital when any activity to be pursued involves ambula-
tion outside a home or institutional environment. Un-
even terrain poses a challenge for people with lower
limb amputation [1], can lead to activity avoidance [2],
and can increase fall risk [3].
Walking on non-level ground, by nature, demands

subtle or marked alterations to movement on a
step-by-step basis, in order to maintain balance and pro-
pulsion in the face of inconsistencies underfoot. For in-
dividuals with a transtibial amputation, appropriate
changes must be made lacking the precise control, active
propulsion and adaptable compliance of a natural ankle,
alongside the tactile and proprioceptive mechanisms that
aid in the determination of the quality and contour of
the ground [4].
In order to maintain balance in addition to moving the

body forward, locomotion requires the effective coordin-
ation of rotations of multiple segments of the body (e.g.
foot, thigh, trunk) about the joints [5], given the external
forces presented by the task and environmental context.
In normal, level walking, the momenta of the individual
segments have been shown to largely cancel out, such that
the angular momentum of the whole body, L, i.e. the total
rotational momentum of all segments combined acting
about their resultant center of mass (Fig. 1a), is close to
zero [6]. The generation and manipulation of L during

locomotion are largely controlled through muscle activity
under the influence of external moments induced via the
interaction of the body with the ground [5, 7]. Large devi-
ations in L, of either external or internal origin, may dis-
rupt balance during locomotion (see e.g. [8]). Importantly,
an inability to rapidly and effectively control L has been
linked to an increase risk of falls [9].
Physically, the time rate of change of L represents the

sum of the external moments acting on the body about
the center of mass [5]. Any alterations of the magnitude
or direction of the ground reaction force that occur
when walking on uneven ground will therefore have an
effect on L. Consequently, muscle activity patterns must
be adapted appropriately to regulate it. As such, L pro-
vides a measure based on whole body dynamics that
may provide insight into the extent to which an individ-
ual can effectively re-orchestrate the rotations of body
segments given changing balance demands [10], pertin-
ent to fall risk [9].
The multiple articulations of the natural foot and

ankle complex aid the accommodation of changes in ter-
rain [11]. To cope with changing demand, the posture,
rigidity and mechanical behavior of a natural foot and
ankle may be modified during walking, enabling action
to be fit to context [12]. Through biomechanical model-
ling, for example, it has been shown that the ankle plan-
tarflexors play a primary role in sagittal plane control of
L both during early and late stance [5]. It has been
shown that modulation of lower limb muscle activity oc-
curs rapidly, and with even very modest changes (less
than 3°) in surface incline [13].
In contrast, the behavior of a prosthetic lower extrem-

ity is not under direct control of the user, and will de-
pend on several factors related to the design of the
component alongside the manner with which it is uti-
lized [14]. The majority of ankle components prescribed
to users who have, or may be able to attain, the ability to
tackle uneven ground in their daily life are passive de-
vices. These designs have no controllable articulation at
the ankle; instead incorporating cantilever-like keels that
deflect under load, acting as a fixed spring that stores
and returns energy at specific points in the gait cycle
[15, 16]. The inclusion of various design features, such
as a split toe and heel to increase medial-lateral compli-
ance; a rotation unit to permit axial rotation; and a verti-
cal shock absorbing pylon, may aid the user in walking
on uneven surfaces. Essentially, however, the action of
such a foot under different loading conditions, and sub-
sequent nature of the load delivered to the body, will be
largely determined by device design, geometry and ma-
terial properties [17], and is not user-directed.
Individuals with amputation show a greater range of L

in the sagittal plane during level walking [18, 19], and a
smaller reduction in L on declined slopes in comparison

Fig. 1 Sagittal plane rotational dynamics. (a) Whole body angular
momentum, L, as the summed momenta of the individual
segments, i, illustrated in the sagittal plane (b) Influence of uneven
ground on passive prosthesis motion and segmental rotations
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to able-bodied individuals, implying less effective regula-
tion [18–20]. The potential for destabilization may be
exacerbated on a surface that continually fluctuates as
regulation will require an appropriate re-orchestration of
movement on a step-by-step basis.
It is at present unknown how effectively individuals

with amputation walking with passive prostheses orches-
trate their movement on uneven ground, and the extent
to which the residual limb that relies on a prosthetic foot
for contact, support and propulsion contributes to the
regulation of L. We postulate that peaks and dips in the
terrain surface induce changes in external moments dur-
ing prosthetic stance phase (Fig. 1b) due to the fixed
spring constant, leading to inappropriate coordinative
movement strategies and destabilizing interactions as
the sound swing limb contacts the ground.
The aim of this study was to explore the extent to

which L is effectively regulated by individuals with a
transtibial amputation wearing passive devices, when
challenged by an uneven surface. We hypothesized that,
similar to previously reported findings in level walking
[18, 19, 21], sagittal plane L would be asymmetrical on
uneven terrain due to the deficits of the prosthetic limb:
on average a greater range of L would occur during the
prosthetic limb single stance phase due to a reduction in
prosthetic limb braking capacity [21], and a lower mag-
nitude of L would be observed at sound side foot contact
due to a prosthetic side propulsion deficit during late
stance of the affected side [21]. In conjunction, we antic-
ipated that the effect of the uneven terrain would be ex-
acerbated in individuals with amputation due to the
inability to effectively coordinate movement in light of
functional and sensory deficits.
We further hypothesized that uneven terrain would

evoke a greater variability in sagittal plane L from stride
to stride in individuals with amputation in comparison
to able-bodied control participants. More specifically, (i)
L would be more variable at foot contact of the sound
limb, as a reflection of a lack of control of angular mo-
mentum in the preceding prosthetic stance phase, and
(ii) the range of L would be more variable during pros-
thetic stance phase in comparison to sound stance phase
due to the lack of ability to adequately discern and cor-
rect for changing contours beneath the prosthetic foot.

Methods
Participants
All procedures were approved by the University of Neb-
raska Medical Center and the VA Nebraska-Western Iowa
Health Care System Institutional Review Boards. Eleven
individuals with a transtibial amputation were recruited
from local and VA prosthetics clinics and provided written
consent to participate. One participant was later excluded
due to a notably slow self-selected walking speed during

treadmill walking that resulted in gait deviations that were
observably different from over ground walking on the la-
boratory floor. All participants were experienced pros-
thesis users, had no neurological disease or impairment
that might affect gait other than diabetes, and were able to
walk with a prostheses independently, with no walking
aids (Table 1). All participants had suction or pin-lock sus-
pension (6 and 3 of 10 participants respectively), with the
exception of one individual who used a vacuum socket
(Table 1, participant 4) and wore energy storage and
return-type foot components classified as higher activity
devices (Medicare level K3 or above; Table 1). The com-
ponents varied by design, with 4 incorporating a split toe
and/or heel, 2 with torsion adapters and 3 incorporating a
vertical shock-absorption feature. The participants were
age- and gender- matched with unimpaired individuals re-
cruited from the student and staff body of UNO and the
local community. Independent samples t-tests indicated
that the unimpaired individuals were on average shorter
and lighter (p = 0.035 and p = 0.032 respectively; Table 1).

Procedures
Data were collected in a university biomechanics labora-
tory setting. Participants wore their own footwear and
prosthesis (where applicable), a tight fitting athletic suit
for the purpose of motion capture, and a ceiling-mounted
harness for all trials. Passive retro-reflective markers were
placed on the shoes, legs (and prosthesis), pelvis, trunk
and hands (see Additional file 1 for full description).
Walking was captured on two different treadmill sur-

faces - flat (FT); Tandem Treadmill, AMTI, Inc., Water-
town, MA, USA) and uneven (UT); on an uneven
terrain treadmill. The UT treadmill utilized was an
in-house custom-built device (Fig. 2) with a walking sur-
face comprised of 107 wooden slats, manually shaped to
form a repeating pattern that is reflected and offset to
give both feet an equal probability of encountering the
same contours. The pattern was designed to promote a
slightly different interaction on each step unless target-
ing is attempted, but sufficiently shallow to permit
heel-toe gait (4 levels: 0 mm, 7 mm, 14 mm and 22mm).
The device has been previously shown to successfully in-
voke different midstance postures at each step, thus per-
petually changing the direction of action of the ground
reaction force during walking [22].
Participants initially walked for 2–3min on each tread-

mill to determine the walking speed that would be used
for both trials. On the FT treadmill first, participants
began walking with their hands lightly touching the hand-
rails if necessary, and were asked to progress to removing
their hands from the rails if possible, when comfortable.
The treadmill speed was progressively incremented until
the participant stated that a comfortable speed has been
reached. It was then increased until the participant stated
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that it was ‘too fast’, then decreased until ‘comfortable’
again. This speed was maintained for a minute, at the end
of which the participant was asked to confirm that they
were satisfied with it. The process was then repeated on
the UT treadmill. This procedure served two purposes.
First, it allowed us to determine if there were any large dif-
ferences in preferred speed that might lead to a demand
for uncomfortably slow or fast walking in one or the other
of the trials. Second, it enabled participants to familiarize

themselves with walking on both treadmills. Differences
between self-selected walking speeds in the two terrain
conditions were non-significant (mean (SD): FT = 1.1 (0.2)
m/s; UT = 1.0 (0.2) m/s, p = 0.07) and in order to maintain
consistency across terrain conditions, the speed that was
selected during the uneven terrain treadmill
familiarization was used for both test trials. Participants
walked for two minutes at their set walking speed on FT,
and then on UT after a rest period lasting at least two mi-
nutes. Order of testing was not randomized to avoid po-
tential carry over effects from walking on the uneven
terrain. Kinematic data were captured at 100Hz using a
12-camera optical motion capture system (Raptor, Motion
Analysis Corporation, Santa Rosa, CA, USA).

Data processing
Kinematic data were tracked in Cortex software (Motion
Analysis Corp., Santa Rosa, CA, USA) and exported to
Visual 3D (C-motion, Germantown, MD, USA) for fur-
ther processing. A model consisting of 10 segments
(lower limb, pelvis, trunk and hands), based on Cali-
brated Anatomical Systems Technique [23], was applied
(see Additional file 1). Marker position data were filtered
using a 7 Hz 4th order low pass Butterworth filter, deter-
mined from preliminary data using power spectral

Table 1 Study cohort

Group

Amputation No impairment

# Side Etiology Age
(yrs)

Height (m) Mass (kg) Yrs Amp Prosthetic foot
(Company)

Age
(yrs)

Height (m) Mass (kg)

1 M R Diabetes 65 1.78 109.8 5 Reflex Rotate
(Ossur)

64 1.77 89.8

2 F R Arthritis 70 1.66 100.7 8 Panthera
(Medi)

73 1.56 78.5

3 M R Trauma 64 1.90 109.3 10 Duralite
(Ohio Willow Wood)

60 1.66 90.7

4 M R Trauma 57 1.80 112.9 5 Thrive
(Freedom Innovations)

59 1.81 74.0

5 M R Trauma 68 1.80 118.8 9 Rush 87
(Ability Dynamics)

62 1.70 104.2

6 M R Trauma 69 1.87 99.7 12 Rush 87
(Ability Dynamics)

73 1.71 88.2

7 M L Diabetes 53 1.83 102.5 7 Variflex
(Ossur)

55 1.83 10.7

8 M L Congenital 33 1.78 93.4 32 Rush 87
(Ability Dynamics)

32 1.76 68.0

9 M L Trauma 49 1.80 83.5 7 Silhouette VS
(Freedom Innovations)

47 1.76 131.1

10 F L Trauma 37 1.70 66.2 14 Rush 87
(Ability Dynamics)

36 1.66 59.0

Mean 56.5 1.79 99.7 10.7 56.1 1.72 79.4

SD 13.3 0.07 15.5 8.0 14.0 0.08 31.4

Ten experienced transtibial prosthesis users age- and gender- matched to unimpaired individuals (in italics)

Fig. 2 Uneven terrain treadmill. Manually shaped wooden slats were
affixed to the belt of a standard treadmill to provide the uneven surface
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analysis as described by Winter [24, 25]. The filtered
preliminary data were visually inspected against raw data
trajectories to confirm that attenuation due to filtering
would be negligible. Foot contact events (foot on, foot
off) were estimated using a kinematic algorithm [26] and
visually inspected for erroneously identified occurrences.
Lower limb segment positions and velocities were com-

puted in Visual3D. The center of mass of the body was ap-
proximated from segment positions and estimated
segment masses of the feet, lower legs, thighs, pelvis and
trunk using inertial values from Hanavan et al. [27]. Based
on the general model of Ferris et al. [28], the segment
mass of the prosthetic shank was reduced from 4.65 to
3.3% body mass, the center of mass position to 21% of the
segment length and the moment of inertia about an axis
through the origin parallel to the flexion-extension axis of
the limb to 17% of the segment length. Although an ap-
proximation, this generalization has been shown to give
good approximations of more stringently measured, indi-
vidualized, inertial parameters [28].
L was calculated as the summation of the angular mo-

menta of each segment within the model about the body
center of mass in the sagittal plane [6, 29]:

L ¼
Xn

i¼1

Iiωi þ ri �mivi½ �

where, for each segment i, Ii is the individual moment of
inertia based on the designated geometrical approxima-
tion [27], ωi is angular velocity, ri is the distance from
the center of mass to the whole body center of mass, mi

is the mass and vi the linear (translational) velocity (Fig.
1a). L was calculated and reported within the global co-
ordinate system [6, 29], i.e. about the horizontal axis or-
thogonal to the direction of progression of the treadmill
belt. Values were normalized to body mass, height and
walking speed to facilitate comparisons across individ-
uals and with previously reported values [18, 19].
The first 60 strides of walking within which complete

marker data were available were selected for analysis.
For all but one control participant this was the first 60
strides consecutively. Two angular momentum measures
were calculated bilaterally within each walking trial.
First, to capture the condition the new stance limb ac-
cepts on loading, L at the estimated instance of foot
contact (Lc) was extracted. As peak values of L in the sa-
gittal plane tend to follow the instance at which the foot
contacts the ground it may be this time point at which
balance requires the greatest control [30], dynamic bal-
ance is at its most vulnerable, and the sound limb en-
counters its greatest control challenge. The range, i.e.
maximum minus minimum value, of L during the first
50% of the gait cycle (LR) was calculated as a measure of
L regulation [18, 22]. This corresponds to the period

between ipsilateral foot contact and approximate contra-
lateral foot contact, and incorporates the peak value fol-
lowing foot contact and the minimum at midstance. The
average values of LC and LR and their standard devia-
tions (vLC and vLR) were calculated to test our first and
second hypotheses respectively.

Statistical analysis
For each control participant, the ‘prosthetic’ side was se-
lected to be consistent with the amputated side of the
matched participant, essentially randomizing the side.
This resulted in 4 left and 6 right ‘prosthetic’ sides.
Mixed 3-factor ANOVAs with repeated measures factors
of limb (2 levels; sound and prosthetic) and terrain (2
levels; FT and UT), and between-subjects factor of group
(2 levels; amputation and no impairment), were used to
test our first hypothesis, i.e. that L would be asymmet-
rical on uneven terrain using the variables Lc and LR,
and our second hypothesis, i.e. that uneven terrain
would evoke a greater variability in L, using the variables
vLC and vLR. Post hoc pairwise comparisons with Bon-
ferroni correction were performed when significant dif-
ferences were identified. Significance for all comparisons
was set at 0.05. Partial eta squared (ηP

2) was calculated
as a measure of effect size. Eta squared (η2) measures
the proportion of the total variance in a dependent vari-
able that is associated with the membership of different
groups defined by an independent variable, with values
of 0.01, 0.06 and 0.14 considered small, medium and
large effect sizes, respectively [31]. ηP

2 is a similar meas-
ure in which the effects of other independent variables
and interactions are partialled out.

Results
Average (mean) sagittal plane whole body angular
momentum at foot contact (LC) and during stance phase
(LR) (hypothesis 1)
As anticipated, and consistent with previous findings
[18, 19], sagittal plane L was asymmetrical in the individ-
uals with amputation (Fig. 3a), typically with a greater
range from the positive peak to the negative peak during
the first half of the prosthetic side gait cycle in compari-
son to the sound side.
Average Lc results revealed that normalized angular

momentum was greater (more positive) at foot contact
on UT in comparison to FT, through a main effect of
terrain (F = 9.631; p = 0.006; ηP

2 = 0.345). Individuals
with amputation had a greater (more positive) LC when
stepping onto the prosthetic side (p < 0.001) in both FT
and UT conditions, but there was no inter-limb differ-
ence in the unimpaired participants (p = 0.161) (Fig. 4a),
illustrated by a significant limb*group interaction (F =
14.065; p = 0.001; ηP

2 = 0.439).
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For average LR a group*limb interaction (F = 91.872; p
< 0.001; ηP

2 = 0.836) indicated a higher angular momen-
tum range on the prosthetic side of the amputee group
(p < 0.001; Fig. 4b). There was no main effect of terrain
(F = 0.494; p = 0.491; ηP

2 = 0.027).

Variability (standard deviation) of LC and LR
The angular momentum at foot contact showed higher
variability on UT than on FT in both limbs of the ampu-
tation group (p < 0.001), but only reached significance
on the matched sound limb of the unimpaired group
(matched sound – p = 0.09; matched prosthetic side – p
= 0.067) (Fig. 5a) indicated by a terrain*limb*group inter-
action for vLC (F = 8.765; p = 0.008; ηP

2 = 0.327).
The angular momentum range was more variable on

UT in comparison to FT and more variable in the ampu-
tation group in comparison to the no impairment group,
suggested by main effects of terrain (F = 49.104; p <

0.001; ηP
2 = 0.732) and of group (F = 12.458; p = 0.002;

ηP
2 = 0.409) for vLR. Inter-limb comparisons were

non-significant (p > 0.05; Fig. 5b).

Discussion
Sagittal plane L is asymmetrical in individuals with
amputation (hypothesis 1)
The average results, LC and LR, as predicted, support
those from previous studies [18, 19]; a lower LC when
stepping onto the sound side and a greater LR on aver-
age during the first 50% of the prosthetic limb stride.
Similar findings have been previously attributed to a re-
duced propulsion capacity and braking ability of the
prosthetic limb [18, 19], and this explanation holds given
the results of the present study. On uneven ground, in-
dividuals with amputation retained the features seen on
level ground, and an increase in LC was observed on the
UT, potentially indicating a greater demand to arrest

Fig. 3 Whole body sagittal plane angular momentum, L. Values normalized to mass, height and speed, and time normalized to the right stride
(dimensionless). Values are positive in the clockwise direction. Individual participant profiles: (a) prosthetic side gait cycle of 65 yr. old male with right
unilateral amputation (b) matched prosthetic side gait cycle of 64 yr. old male with no amputation. Mean of 60 strides ±1 standard deviation. FT – flat
terrain, UT – Uneven terrain. LC – Value of L at foot contact; LR – Range of L over first 50% of the gait cycle (within non-shaded region)

Fig. 4 Average (mean) sagittal plane angular momentum. Values (a) at foot contact, (LC) and (b) during ipsilateral stance phase (LR), normalized to
mass, height and speed (unitless). Individuals with (n = 10) and without (n = 10) amputation walking on flat (FT; blue bars) and uneven (UT; gray bars)
terrain. Solid and dashed bars represent prosthetic and sound (or matched prosthetic and sound) limbs respectively. Pairwise comparisons: ‘*’
significant difference between limbs (prosthesis vs sound); ‘¥’ significant difference between groups (amputation vs no impairment); all at p = 0.05
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momentum in early stance to prevent a forwards fall.
The changes in LC due to the UT appear moderate in
comparison to this inter-limb disparity, however. Simi-
larly, no difference in LR across terrain conditions was
observed. It was anticipated that the sensory and mech-
anical deficits of passive prosthesis use would lead to an
exacerbation of the effect of uneven terrain in the ampu-
tee group, given that any profound changes in move-
ment strategies would disrupt the balance of segmental
momenta. Although LC increased, no interaction effect
reached significance, so our first hypothesis was only
partially supported.

Variability of L is greater in individuals with amputation
on uneven terrain (hypothesis 2)
The uneven terrain surface evoked increases in the vari-
ability of angular momentum profiles in comparison to
flat treadmill walking, as anticipated. In comparison to
the average results, the effect of terrain on L variability
was more apparent.
The variability of LC and LR was greater on UT in in-

dividuals both with and without amputation, however it
was higher on average in the former group, in support of
our second hypothesis. The higher variability of LC at
sound foot contact is consistent with the proposition
that a reduced ability to control movement over the
prosthetic side stance phase results in greater fluctua-
tions in whole body angular momentum at the foot con-
tact of the swing limb. This would emphasize a greater
demand on the sound side for correcting movement to
maintain balance whilst walking on the uneven surface.
The increase in vLC only reached significance unilat-
erally in the control group; a finding that may be related
to limb dominance. Although it was not measured

explicitly, there were more right than left ‘prosthetic
sides’ which may have introduced a bias given the ten-
dency for similarities in lateral preference amongst the
general population [32]. Such a finding would corrobor-
ate previous work that exposes a difference in functional
roles taken on by the two limbs during gait tasks, with
respect to propulsion and control (see [33] for a review).
It was anticipated that LR on the prosthetic side would

be directly related to the contours encountered, given a
reduced capacity to brake during prosthetic single limb
stance, and the potential for the passive component to
hinder or exaggerate shank progression. Thus, the vari-
ability would be increased further on UT on the pros-
thetic side in comparison to the sound side. The
variability of LR was greater on UT, however values were
similar on both sides, and therefore our second hypoth-
esis was only partially supported. As the first 50% of the
stride incorporates both the single limb stance of the ip-
silateral limb and an initial double support period it is
possible that corrections are made by the sound side
during push off to redirect the ground reaction force
and attenuate potential fluctuations in L during pros-
thetic single leg stance [9]. It is also possible that this is
related to differences in prosthetic step length or time.
The analysis of the single and double support phases of
gait in isolation may provide further insight into the
relative contributions of the sound and prosthetic limbs.
Given the variability observed, it is plausible that the

lack of a large change in average L is a result of aver-
aging across several steps, during which the ground re-
action force due to the surface profile might either act
to increase or reduce angular momentum. For example,
it may be only the steps that contacted a descending
contour or lower level that lead to an increase in angular

Fig. 5 Variability (standard deviation) of sagittal plane angular momentum. Values (a) at foot contact (vLC) and (b) during ipsilateral stance phase
(vLR), normalized to mass, height and speed (dimensionless). Individuals with (n = 10) and without (n = 10) amputation walking on flat (FT; blue
bars) and uneven (UT; gray bars) terrain. Solid and dashed bars indicate prosthetic and sound (or matched prosthetic and sound) limbs
respectively. Pairwise comparisons: ‘*’ significant difference between limbs (prosthesis vs sound); ‘¥’ significant difference between groups
(amputation vs no impairment); ‘ ’ significant difference between terrain conditions (flat versus uneven); all at p = 0.05
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momentum. Pearson’s correlations, performed post-hoc
to explore this further, revealed only a minority of par-
ticipants with a significant relationship between the
step-to-step change in surface height and LC (further de-
tail provided in Additional file 2). However, inconsisten-
cies in the extent and direction of the relationship across
participants indicated the lack of a uniform, definitive
response.
Overall, our findings point to a greater potential for

destabilization in the individuals with amputation, and a
greater demand on the sound side for controlling move-
ment. However, it is unclear to the extent to which these
effects of UT may be ameliorated by appropriate inter-
vention, either via rehabilitation or prosthetic technol-
ogy. Unimpaired individuals have been shown to refine
their movement on uneven terrain over a short period of
time [22]. Participants in this study were only examined
over a very short time period and were given limited
time to familiarize with the terrain prior to testing; ne-
cessary in order to avoid excessive fatigue. It is possible
that more efficient movement strategies may have been
adopted with further exposure to the terrain surface.
This would suggest that problems experienced on un-
even ground by individuals with an amputation may be
due to a lack of practice and familiarity rather than solely
a deficit of the prosthesis.
This study was restricted to the assessment of individ-

uals using passive prostheses. The provision of positive
net work during stance to address the propulsion deficit
of passive devices has been shown to reduce, although
not completely normalize, the range of L on slopes [34].
Microprocessor control of powered and non-powered
devices may produce more appropriate lower extremity
behavior in different loading contexts and aid the user in
negotiating uneven terrain (see [16] for a relevant re-
view). It is likely, however, that the extent to which such
a device will facilitate walking on uneven terrain will de-
pend on the effectiveness of the control algorithm
employed. For example, should the push-off of a pow-
ered device be inappropriately timed due to changes in
contact patterns of the foot with the ground, increases
in vLC and vLR might be observed on UT. Such findings
may be of high utility for the identification of the deficits
of control algorithms and potential solutions for their
refinement. However, regardless of the extent to which
the foot replicates biological action, there will be unpre-
dictability introduced by the component itself if the user
is not directing its motion. Electromyographic control
(see [35] for an example) that increases the influence of
the user on device behavior may lead to an improvement
in whole-body coordination on non-level surfaces, per-
mitting safer and more efficient walking.
There were a number of limitations to this study. It is of

note that foot contact timings were based on kinematic

features, specifically the relative velocities of the feet with
respect to the pelvis [36]. They therefore may not have
captured the true moment of interaction of the foot with
the ground, affecting the L values extracted at heel con-
tact. LR and vLR, in contrast, would likely be unaffected.
The potential effect of incorrectly identifying the correct
contact event was explored in the 60-stride time series of
two unimpaired participants. Shifts of 0, 1 and 2% of the
gait cycle, corresponding to up to 2.5 frames, were intro-
duced to the foot contact event timings with a uniform
random distribution across strides. LC and vLC were
re-calculated and compared to the original values. Differ-
ences in average LC between the manipulated and original
time series were less than 10% of the grand mean LC and
comparable across terrains, increasing confidence in our
comparisons. The differences in vLC were considerably
higher; between 20 and 100% of the grand mean. When
the walking surface fluctuates, however, it seems likely
that the variability in foot contact timings would be
under- rather than overestimated when based on kine-
matic patterns alone. In this case, the differences in vLC
between FT and UT would actually be greater. Neverthe-
less, more precise identification of contact events through
the use of foot switches or accelerometers could lead to
our results for vLC being refuted.
The exclusion of the arms, hands and head from the

model may have led to inaccuracies in estimation of L,
however, the contributions of these segments to sagittal
plane L have been shown to be negligible in comparison
to those of the other segments [6]. The calculation of
the inertial parameters of the lower limb of the affected
side might be more influential. In the absence of geo-
metrical information and precise center of mass values
for the residual limb and prosthesis we chose to modify
the inertial properties of the shank segment according to
the generic correction presented by Ferris et al. [28]. A
brief examination into the effect of computationally ma-
nipulating inertial values revealed that considerable dif-
ferences in the range of L could be attributed simply to
a difference in the mass and center of mass position
values of the lower leg input into the model. In fact, ap-
plying no correction for the prosthesis resulted in some
cases in no observable difference in L between the sound
and prosthetic sides. It is possible that the use of more
precise estimates of inertial properties through reaction
board and oscillation techniques [37] could refute the
results of our study, however within-limb findings would
likely hold.
Along similar lines, height, mass and preferred walking

speed were not matched across groups, all of which have
a bearing on absolute values of angular momentum. Al-
though normalization to these factors improves the ap-
propriateness of comparisons across individuals and
studies, the results should be interpreted with caution.
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Participants were asked to maintain the hand posture
they had adopted during familiarization on the uneven
terrain, i.e. either no use of handrails, or light touch on
handrails. More participants in the amputation group
used the handrails, and three participants changed their
hand position when they returned to the UT after the
FT trial due to a lack of confidence. With the inclusion
of hand position as a covariate, no effect of hand pos-
ition was found (p > 0.05 for all main effects and inter-
actions), however, suggesting that this did not confound
our results. Further, the greater use of rails in the ampu-
tation group would more likely induce a reduction ra-
ther than an increase in variability, and without rails the
differences between groups would be larger.
The use of handrails by the majority of participants

precluded the assessment of coronal and transverse
plane L, and medial-lateral dynamics, both of which may
provide complementary insight into the deficits of the
prosthetic limb and the control strategies employed in
light of them. The lack of a subtalar joint, for example,
may limit inversion and eversion, with implications for
lateral stability [38, 39]. That most participants were un-
able to perform the task without handrail use is in itself
of interest. Future work focused on whether the source
of this inability is due to a mechanical or a perception
deficit is warranted.

Conclusion
The less effective regulation of L in individuals with am-
putation in comparison to unimpaired individuals ap-
pears to be challenged further on uneven ground. Our
results point to a greater onus being placed on the
sound limb to control movement and regulate L in light
of the changing surface underfoot, due to the deficien-
cies of a passive prosthesis. The employment of an inter-
vention paradigm during which individuals are exposed
progressively to uneven terrain may determine whether
it is possible for individuals with amputation to arrive at
more efficient movement solutions in light of these
deficits.
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