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Abstract

Background: Muscle synergies are now widely discussed as a method for evaluating the existence of redundant
neural networks that can be activated to enhance stroke rehabilitation. However, this approach was initially conceived
to study muscle coordination during learned motions in healthy individuals. After brain damage, there are several
neural adaptations that contribute to the recovery of motor strength, with muscle coordination being one of them. In
this study, a model is proposed that assesses motion based on surface electromyography (sEMG) according to two
main factors closely related to the neural adaptations underlying motor recovery: (1) the correct coordination of the
muscles involved in a particular motion and (2) the ability to tune the effective strength of eachmuscle throughmuscle
fiber contractions. These two factors are hypothesized to be affected differently by brain damage. Therefore, their
independent evaluation will play an important role in understanding the origin of stroke-related motor impairments.

Results: The model proposed was validated by analyzing sEMG data from 18 stroke patients with different paralysis
levels and 30 healthy subjects. While the factors necessary to describe motion were stable across heathy subjects,
there was an increasing disassociation for stroke patients with severe motor impairment.

Conclusions: The clear dissociation between the coordination of muscles and the tuning of their strength
demonstrates the importance of evaluating these factors in order to choose appropriate rehabilitation therapies. The
model described in this research provides an efficient approach to promptly evaluate these factors through the use of
two intuitive indexes.

Keywords: Motion performance, Stroke recovery, Electromyography, Muscle synergies, Muscle mirror symmetry,
Muscle effective strength, Motor strength gain

Background
As a consequence of the population aging around the
world, stroke has become a widespread concern [1].
Depending on the brain area and size of the injury, the
consequences of motor impairments vary significantly [2].
It has been widely shown that in order to enhance stroke
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rehabilitation with respect to effectivemotor recovery, it is
necessary to start therapy shortly after the cerebrovascu-
lar accident [3–5]. Therefore, the use of inefficient treat-
ments during early stages of rehabilitation, might result in
an insufficient motor recovery. More than 60% of stroke
survivors have remaining motor paralysis, resulting in
serious social cost and affecting their quality of life for the
rest of their lives [6, 7].
In recent years, the concept of muscle synergies has

been widely discussed to clarify the biological basis for
activating the redundant musculoskeletal system of stroke
survivors [8–10]. According to this model, during motor
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learning, the plastic nature of neurons creates modules or
neural networks (called synergies) that are specialized for
different tasks [10, 11]. Synergies control the contraction
of a set of muscles using a low-dimensional set of control
commands originating from the brain [12–15]. It has been
proposed that use of the remaining neural pathways could
potentiate post-stroke recovery. A study on stroke patients
with affected frontal motor cortical areas shows simi-
lar synergies in both arms (i.e., paretic and non-paretic)
irrespective of their motion performance [16], suggest-
ing a synergetic behavior independent of task constraints.
In addition, another study [17] reveals the natural emer-
gence of new muscle synergies during the learning pro-
cess associated to the control of a myoelectric interface.
However, these findings conflicts with other studies that
show abnormal synergies appearing for the paretic arm
of stroke patients [9, 18, 19]. This phenomenon was fur-
ther evaluated by [20] in 31 stroke survivors. Paretic and
non-paretic upper limb synergies were compared, show-
ing three different behaviors on the non-paretic side:
preservation, merging, and fractionation of synergies.
Each behavior was affected differently by the level of
motor impairment and poststroke duration. These results
predict a wide range of stroke conditions from the per-
spective of muscle synergies, highlighting the importance
of individual patient-by-patient evaluations. In order to
clarify the origin of these results, it is necessary to under-
stand the reasons behind the development of the muscle
synergy approach and contrast them with the main con-
cerns in the field of stroke rehabilitation.
Learned motions are perceived by healthy individuals as

simple and easy, even though they require the complex
coordination of muscles. The concept of muscle synergies
was originally developed to explain the neural processes
that provide the brain with tools to reduce the kinesiolog-
ical complexity behind this coordination. However, after a
stroke, the failure inmotor control occurs not in the spinal
cord but in the brain. Although studying the appearance
of new muscle synergies after brain damage is necessary,
current knowledge on this topic is not enough to choose
an appropriate rehabilitation treatment. Neural recovery
starts at the brain level, and depending on the severity of
the injury will trigger changes at the spinal and muscular
levels [21]. In this scenario, motor recovery relies not only
on the neural process of motor coordination but also on
all the physiological processes underlying motor strength
gaining [22]. It is currently agreed that gains in voluntar-
ily motor strength depend on two main factors: neural
adaptations and muscle hypertrophy [22]. Brain damage
alone does not affect muscle fiber condition; therefore, the
loss of motor strength directly after a stroke is related to
malfunctions of neural adaptations. The current literature
enumerates these issues as malfuncitons of potentiation of
neural connectivity, motor unit synchronization, muscle

coordination, and learning [23]. The study of these neural
adaptations during motion recovery is a challenging task
due to the complexity of the neural system and current
technological limitations on their measurement. However,
it is possible to infer their effects on surface electromyo-
graphy (sEMG) signals by evaluating muscle activation
according to the following two factors. (1) The neural
adaptations in charge of muscle coordination and learn-
ing affect the distribution of electrical power among all
muscles contributing to the motion. (2) Structural and
synaptic neural connectivity and the processes underlying
the recruitment ofmotor units affect the ability to tune the
effective strength of each muscle contraction. Assuming
the symmetrical properties of the healthy human body, a
in this study a model is proposed for evaluating these two
factors during periodic symmetrical motions through the
analysis of sEMG signals.
During motion in healthy individuals, the mechanisms

of muscle coordination and the tuning of effective muscle
strength compensate for each other, thereby creating sta-
ble muscle synergies. In this research, it is hypothesized
that after brain damage, these two factors are affected dif-
ferently (i.e., disassociated), thus generating a wider range
of motor impairments. As these factors are directly related
to the neural adaptations underlying motor recovery, their
measurement will facilitate the prompt identification of
the neural origins of the motor impairment, and therefore
the selection of an effective rehabilitation therapy.

Materials andmethods
Motions and experimental procedure
Subjects were asked to perform two different bimanual
symmetric motions which have been proved not only
efficient tasks to asses stroke [24, 25], but also as a promis-
ing tool for upper-limb motor recovery [26–29]. Both
motions (illustrated in Fig. 1) were chosen to highlight
different patterns of muscle activation. The first motion
consisted of a repeated elbow flexion of approximately 90
degrees between the arm and forearm (Fig. 1a). The sec-
ond motion was supported by a dual steering system and
consisted of motions along half steering cycles from the
lower to upper position of the wheels, as shown in Fig. 2b.
Subjects sat on a chair while performing both motions.
A visual interface consisting of a red circle oscillating at
a constant frequency was used to synchronize partici-
pants’ motion speed with the desired frequency for the
experiment (0.25 Hz, 1 cycle in 4 s). The threshold to set
the motion speed was chosen ad hoc based on previous
experience of the authors to fit the physical conditions
of severe stroke patients so all participants were able to
perform the experiment.
The experimental trial consisted of 20 s of motion fol-

lowed by 20 s of rest. The experimental session was
composed of three 20-s elbow flexion trials and three 20-s
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Fig. 1 Graphical representation of the model. a Basic representation of the proposed model, in which the total electrical power needed to perform
the motions (P) is represented as the summation of the individual electrical powers applied for each contributing muscle (aiP). bModel applied to
bimanual motions

dual steering trials. These trials were presented in a ran-
domized order to reduce possible biases in subjects’ motor
behavior owing to constant repetition of the same task.

Participants
EMG data were recorded from 18 stroke patients (9 men
and 9 women) between the ages of 66 and 96 years
(74.88±9.63). Table 1 summarizes information about the
patients’ paretic side and paralysis level according to the
Stroke Impairment Assessment Set (SIAS) as measured

on their paretic arm [30]. EMG data was recorded from
patients on different session performed in a 6 months
time period. During this time, patients were submitted to
daily rehabilitation therapies which modify their motion.
Data presented on this work belong to stroke patients
that did not show changes in their SIAS level during the
experimental period.In addition, patient data presented
several analysis challenges associated with the availabil-
ity of patients and their capability of performing the
two tasks correctly. Accordingly, Table 1 also shows the

Fig. 2Motions. a For elbow flexion and extension, subjects flexed and extended both arms at an angle of 90 degrees as shown in the image. b For
steering cycles, the subjects moved their hands as guided by the steering wheel system following the trajectory represented in the image. For both
motions, a visual interface showing circles moving up and down was used to synchronize the motion of users at the desired speed (0.25 Hz)
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Table 1 Patient summary

SIAS

5 4 2 1 0

Patient codes and affected side

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

L R L L L R L L L R R L R L L R L R

Number of elbow flexion trials

5 6 3 3 27 2 3 3 3 13 12 10 7 6 5 23 37 15

46 44 13 28 52

Number of steering cycle trials

3 6 3 2 23 9 3 3 3 17 12 11 5 8 5 23 33 10

46 49 13 28 43

Stroke patients participating in the experiment were grouped according to their paretic arm motion performance as measured by SIAS level. The number of trials for each
task is represented for each of the motions evaluated. In addition, the total number of trials for each group of patients is shown

number of trials obtained for each patient and motion.
During experiments with patients there were several fac-
tors affecting the quality of the sEMG signals such as
bad posture or electrodes touching with the clothes and
disconnecting. During measurements sEMG signals were
visualized by the experimenter and trial showing low
signal quality were manually discarded from analysis. In
addition, EMG data from 30 healthy right-handed
subjects were also recorded. To facilitate validation,
healthy subjects were divided into two groups depend-
ing on their age. The first group (healthy young) included
10 subjects (6 men and 4 women) aged between 25 and
44 years (34.88±7.47). The second group (healthy elder)
included 20 subjects (7 men and 13 women) aged between
45 and 87 years (69.63±10.96). For healthy subjects, it was
possible to increase the number of trials to compensate
for the appearance of equipment- and protocol-induced
noise in the sEMG signals. Each healthy elder subject per-
formed three trials of each motion (20 healthy elder ×
3 trials = 60 trials per motion). Finally, each healthy
young subject was asked to perform six trials per motion
(10 healthy young × 6 trials = 60 trials per motion).
Healthy subjects did not present any known diseases and
had no medical record history associated with motor dis-
function. All subjects were previously informed about the
experimental procedure and provided written informed
consent, in accordance with the Declaration of Helsinki.
The experimental procedure was approved by the ethics
committees of the National Center for Geriatrics and
Gerontology and RIKEN.

Data acquisition
Muscle activity was recorded using 18 wireless sEMG sen-
sors (BTS FREEEMG; BTS Bioengineering Corp., Milan,
Italy) symmetrically located on the following nine upper
limb muscles (on both the left and right sides of the body):
brachioradialis, pronator teres, biceps, triceps, anterior
deltoid, posterior deltoid, pectoralis, infraspinatus, and

elector spinae. These muscles were defined according
to the guidelines of the Surface Electromyography for
the Non-Invasive Assessment of Muscle Project [31].
Acquired data were digitalized using a sampling frequency
of 1000 Hz and stored for subsequent processing.

Basic sEMG processing
Raw sEMG data were high-pass filtered at 20 Hz to
remove possible motion artifacts, rectified, and low-pass
filtered at 32Hz to preserve the key frequencies associated
with muscle contractions. In both filtering stages, a fifth-
order Butterworth filter was applied [32]. In addition, all
channel amplitudes were standardized according to the
median values recorded during the experimental session
over the whole set of channels [33].

Motion modeling
Definition
This model describes human motion as the contraction
of muscles supported by a skeletal system that defines the
degrees of freedom. Its main focus is the study of spe-
cific movements with clear starting and finishing points.
From a detailed perspective, during the whole period of
movement, each contributing muscle contracts one or
more times (depending on the complexity of the motion)
in synchrony with the whole set of contributing muscles
[12, 34]. At the same time, to generate muscle con-
traction, a certain amount of electrical current must be
applied for a certain amount of time over themuscle fibers
[35, 36]. Under these conditions, a given movement can
be associated with the amount of electrical power needed
to generate the contraction of the participating muscles
[37]. On the current work, electrical power will be quan-
tized as the Root Means Squares (RMS) of the rectified
sEMG. Total electrical power P is defined as the summa-
tion of the electrical power used by each muscle, Pi, for
i = 1, 2, 3, ...N , with N being the total number of muscles
contributing to the movement (Eq. 1).
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P = P1 + P2 + ... + PN (1)

Figure 2a shows a graphical representation of Eq. 1.
Moreover, each Pi value is redefined according to its
proportional contribution to the total electrical power P
through the use of ai coefficients with i = 1, 2, 3, ...N
(Eq. 2).

Pi = aiP (2)

Thus, ai represents the percentage of P used by mus-
cle i. Equation 3 is obtained by combining Eqs. 1 and 2
and provides normalized coefficients describing the divi-
sion of total electrical power P among all the muscles
contributing to the movement (Eq. 4). Hence, this anal-
ysis determines which muscles contribute most to the
performance of a given movement.

P = a1P + a2P + ... + aNP (3)

1 = a1 + a2 + ... + aN (4)

Approach applied during symmetric motions
Figure 2b shows a graphical representation of this
approach applied during a symmetric motion. In
equations 5–6, Pr and Pl represent the electrical power
needed to perform the movement on the right and left
sides of the body, respectively. Similarly, ai and bi are the
coefficients representing the power associated with the
muscles on each side of the body.

Pr = a1Pr + a2Pr + ... + aNPr (5)

Pl = b1Pl + b2Pl + ... + bNPl (6)
From this definition, it is possible to extract two param-

eters related to motor performance of symmetrical tasks.
First is effective strength balance (ESB), which is defined
as the comparison between Pr and Pl (Eq. 7). Changes in
this parameter show differences among body sides regard-
ing the effective muscle contractions emerging from
decompensations in the absolute electrical power applied
to them. Second is muscle coordination similarity (MCS),
which is defined as the correlation coefficient between the
values ai and bi extracted from the right and left sides,
respectively (Eq. 8). This parameter compares the simi-
larities between sides regarding how the total power is
distributed among muscles (i.e., capturing the tendency
towards muscle mirror symmetry) [38, 39].

ESB = Pr − Pl
Pr + Pl

− 1 ≤ ESB ≤ 1 (7)

MCS = n
∑1

n aibi −
∑1

n ai
∑1

n bi√
n

∑1
n a2i − (

∑1
n ai)2

√
n

∑1
n b2i − (

∑1
n bi)2

− 1 ≤ MCS ≤ 1

(8)

Parameter extraction
After sEMG processing, the power per second of each
muscle was quantized as the RMS of the rectified sig-
nal. In addition, the indexes defined in the motion
model described in the previous section were computed.
Coefficients ai and bi were extracted to show the bene-
fits of their evaluation in assessing the importance of each
muscle depending on the motion. Sets of ai and bi were
represented as 18 values (associated with the nine muscles
measured on each side of the body). In addition, the values
of ESB and MCS were computed over the three groups of
subjects to assess how different severity levels are affected
by the two groups of neural adaptations that participate in
motor performance.

Results
Muscle activity prints
The muscle activity print associated with each movement
and subject group is summarized in Fig. 3 as a boxplot
of ai and bi. Figure 3a shows the muscle activity associ-
ated with elbow flexion, and Fig. 3b shows those associ-
ated with the steering motion. Moreover, each section is
divided among three graphs (Fig. 3a1-3 and Fig. 3b1-3)
representing the muscle activity print of healthy young,
healthy elder, and post-stroke subjects, respectively. In
this representation, coefficients on the right side of each
graph corresponds to the muscles of the non-dominant
arm of healthy subjects and the paretic arm of stroke
patients. Therefore, coefficients on the left are used to
represent the dominant arm of healthy subjects and non-
paretic arm of stroke patients. The boxplot representation
shows the distribution of these coefficients in terms of
their 1.5 inter quartile ratio, and median values as well as
the first and third quartiles of the distribution and outliers
(as shown in the boxplot legend for Fig. 3).
The healthy young and elder muscle prints show how

the important muscles involved in voluntarily motor
control differ between the movements performed. During
elbow flexion (Fig 3a), biceps and anterior deltoid muscles
are dominant but strongly supported by brachioradialis,
pronator teres, triceps, and pectoralis muscles. For the
steering motion (Fig 3b), anterior deltoid and pectoralis
muscles are the main carriers of the movement, while the
remaining muscles contribute less power. This is expected
as the dual steering system provides partial gravity sup-
port, which compensates for the power of supporting
muscles used in the same task. Moreover, the rarity of
outliers (red dots) among the healthy subjects indicates
less variability on the sEMG data analyzed and therefore
suggests the existence of stable muscle behaviors among
healthy subjects associated with the specific motions eval-
uated. For stroke patients, even similar muscle trends can
be observed on average (and for both motions), but the
expected muscle prints are more difficult to distinguish.
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Fig. 3Muscle activity print. Muscle activity represented by the coefficients of dominant and non-dominant arms for the three groups of subjects:
healthy young subjects (first column), healthy elder subjects (second column), and stroke patients (third column). The activity of each muscle is
shown as a boxplot representing the 1.5 inter quartile ratio and average values (whiskers and red line) as well as the first and third quartiles of the
distribution (top and bottom limits of the box) and outliers (red crosses). a Results associated with elbow flexion. b Results associated with the
steering motion. BR, brachioradialis; PT, pronator teres; B, biceps; T, triceps; AD, anterior deltoid; PD, posterior deltoid; PEC, pectoralis; IS, infraspinatus;
ES, elector spinae

In addition, the number of outliers was drastically higher
among patients, which is expected for the stroke popula-
tion. Depending how the brain injury affects the neural
processes controlling motion, each patient developed
different control strategies manifested as muscle
asymmetries. For example, in the case of elbow flexion,
outliers demonstrate the tendency of some patients to use
their posterior deltoid muscles to compensate for the lack
of movement of the main muscles (i.e., anterior deltoid
and biceps).

Effective strength balance andmuscle coordination
similarity
The scatter plots in Fig. 4 show the ESB values (x-axis)
and MCS values (y-axis). Each point corresponds to the
ESB and MCS values computed from a single experimen-
tal trial. In this representation, points with values close
to x = 0 are related to movements in which the left and
right sides of the body require equal electrical power to
contract the muscles. Depending on the level of domi-
nance of one side of the body over the other, the value of
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Fig. 4MCS–ESB representation. Graphs a-d: Bidimensional representation of motion performance according to the parameters MCS (x-axis) and
ESB (y-Axis). Each row represents elbow flexion and steering motions, respectively. In the first column, healthy young and elder values are shown. In
the second column, patient data are represented in different colors depending on the SIAS level. Graphs e-f: Intra-day variability of both parameters
was measured from the standard deviation of the metrics obtained within single daily sessions. Values are represented for each group of subjects to
show the average variability of MCS and ESB computed on consecutive trials. Values enclosed by red dotted circles on graph d represent examples
of two patients whose motor impairment are classified at the same SIAS level even though their neurological origins are quite different

the x-axis varies from -1 to 1, with -1 and 1 representing
total dominance of the left and right sides, respectively.
On the other hand, the y-axis shows theMCS values: y = 1
represents the situation in which muscles are coordinated
on the left and right sides of the body following the same
strategy, that is, a situation of perfect muscle mirroring;
y = 0 implies a loss in the correlation of muscle activity
between sides; and y < 0 indicates the appearance of an
asymmetrical correlation, which implies that symmetric
muscles have switched roles, consisting of high activity on
one side and poor activity on the other. This is a rare situa-
tion that must be considered to evaluate motion in severe

stroke patients who are barely able or completely unable to
move their paretic arms. Figure 4a–b show the results for
parameters associated with elbow flexion while Fig. 4c–d
represent those related to steering. The first graph for
each motion (Fig. 4a and c) shows the data points corre-
sponding to healthy young (black) and elder (blue) sub-
jects. In the second graphs (Fig. 4b and d), the values
obtained from stroke patients are represented by circles
that differ in color according to their SIAS level. As all
healthy subjects where right-handed, their ESB values
were positive, in accord with the dominance of the right
sides of their bodies. For stroke patients, the dominance of
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Fig. 5MCS and ESB versus SIAS level. In a–d, MCS and ESB values were compared among seven groups (with five SIAS levels from stroke patients,
healthy elder subjects, and healthy young subjects). a and b show the parameters for the elbow flexion motion, while (c) and (d) show them for the
steering motion. A Wilcoxon sum-rank test with a confidence interval of 95% was conducted to compare the healthy young group with the
remaining groups and the healthy elder group with stroke patients. A Bonferroni–Holmes correction was applied to the confidence interval to
control for the multiple comparisons of the presented analysis. Significance tables on each graph show in blue the pairs of results with significance
differences and in red those without significance. Over each graph, the standard deviations measured from the set of data for each group was
represented to show the evolution of these parameters according the severity of the injury

these parameters is directly associated with their paretic
side (Table 1).

SIAS versus MCS and ESB
In Fig. 5, the y-axes represent MCS (A and C) and ESB
(B and D) values for each SIAS level shown along the x-
axes. Results are also represented in the form of boxplots
showing the first and third quartiles as well as the 1.5 inter
quartile ratio average, and outliers of each distribution.
The results for healthy elder and healthy young subjects
are also included to demonstrate the differences between
these groups of subjects. The absolute value of ESB was
used to assess these results in order to highlight how

the SIAS level influences the side balance independently
of the paretic arm. To evaluate the significance among
groups, an all-vs-all statistical comparison was applied
to each graph, namely, a Wilcoxon sum-rank test with a
confidence interval of 95% [40] followed by a Bonferroni–
Holms correction for multiple comparisons [41]. Multiple
comparisons are represented in the form of tables that
compare pairs of groups. Statistically significant pairs are
coloured in blue while non-significant pairs are coloured
in red. Furthermore, the standard deviation of each group
was represented at the top of each graph to show the
evolution of this parameter for each injury level. Results
show, in general, significant differences between stroke
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and healthy groups. However, muscle coordination of
SIAS 5 patients during elbow flexion show higher average
value than healthy groups (although there is no statis-
tical difference), suggesting better motion performance.
This result might be related to the facts that elbow flexion
was a task performed by these patients during their daily
rehabilitation and SIAS 5 patients show, in many cases,
motions undistinguish from healthy subjects.

Discussion
It was initially argued that the mere evaluation of mus-
cle coordination in patients recovering from strokes is
insufficient to elucidate all neural processes involved in
motor recovery. Even though the proper coordination of
muscles is an important factor that contributes to the per-
formance of an efficient motion, the ability to properly
tune the effective strength of muscle contractions also
plays an important role. By exploiting the symmetry of
the human body, the model described in this work pro-
poses two indexes directly related to the factors involved
in motor recovery. The computation of these indexes for
subjects ranging from healthy individuals to severe stroke
patients provided interesting muscle performance results
in terms of the factors involved in motor recovery.
For the healthy young and elder subjects, there were

clear similarities between body sides both in muscle
coordination (MCS) and muscle effective strength (ESB)
(Fig. 4a-c). Also, the statistical comparison performed
between these two groups on Fig. 5 shows no significant
differences, suggesting the absence of age dependence on
these factors during simple symmetrical motions. The
ability to efficiently coordinate muscles and tune their
contraction strength creates a perfect scenario for the
study of muscle synergies. Healthy subjects are able to
maintain stable synergies throughout a range of varia-
tion within a task by increasing or decreasing motor unit
recruitment, thereby tuning the strength of individual
muscles.
However, in the case of stroke survivors, the ability to

coordinate muscles and tune their effective contraction
strength are affected differently depending on the area and
size of the lesion. This is clearly represented by MCS and
ESB indexes in Fig. 4b–d. Even within patients classified
with the same paralysis level, their performance regarding
these two factors hugely differs. The comparative exam-
ple highlighted in Fig. 4d shows how a patient with almost
healthy muscle coordination (dashed-circle 1) is classi-
fied as SIAS 1 owing to their inability to balance strength
among sides of the body. At the same time, another
patient, also classified as SIAS 1, shows no problems bal-
ancing the strength among sides but completely lacks
the ability to coordinate their muscles properly (dashed-
circle 2). Moreover, by evaluating the standard deviations
shown in Fig. 5, it can be seen that both MCS and EBS

present increasing dispersion for patients with lower SIAS
levels. This suggests that muscle coordination and mus-
cle strength tuning are less coupled in severe patients,
contributing to an explanation of the appearance of a wide
range of synergistic abnormalities when evaluating them.
Accordingly, the application of models that explain

motor control based on neural processes in charge of
motor coordination is incomplete in studying motor
recovery. In this scenario, other neural processes often
related to recovery of motion strength also play an impor-
tant role. The identification of the neurological origins
of post-stroke motor impairment is a relevant factor for
the assignment of effective rehabilitation therapies. In
that regard, as supported by the data analyzed, it appears
that the model described and the indexes inferred from
it have the potential to distinguish among the different
factors affecting motor recovery based on the analysis of
sEMG signals. In addition, the reduced setup and simplic-
ity of calculating these indexes make them easy tools for
standardizing rehabilitation therapies.

Conclusions
This research focused on the development of a model
for extracting information from sEMG signals to quan-
tify the neural mechanisms behind motor recovery. Given
the physiological properties of sEMG signals and current
knowledge about the neural processes in charge of recov-
ering motor strength [22, 23, 23], motion performance
was defined as the combination of two main factors:
(1) coordination of muscles (representing the synergetic
behaviors observed in healthy subjects) and (2) tuning of
strength through individual muscle contractions (repre-
senting the neural processes underlying recruiting motor
units and strengthening neural synaptic and structural
connections). The model-inferred indexes MCS and ESB,
which represent these factors, were validated using sEMG
data recorded from three different groups of subjects
during two different motions. Even though these factors
seemed closely related during healthy subject motion,
results obtained from stroke patients suggest that brain
damage contributes to decoupling both factors, thereby
creating a range of motor impairments that are com-
mensurate with stroke severity. Current standard stroke
rehabilitation therapies are focussed on the improvement
of muscle coordination [42, 43], however our results show
that some patients with poor motor performance show
good muscle coordination (MCS). This fact suggest that
a direct use of the metrics developed could be used to
choose between a muscle coordination or muscle strength
oriented therapy.
Finally, it is important to note that the present method is

based on a comparison between paretic and non-paretic
body sides. Even though this is a commonly accepted
methodology in stroke research, it assumes a healthy
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condition of the non-paretic side. To avoid the misinter-
pretation of results, researchers using these parameters
should confirm the condition of the non-paretic area used
as the empirical expectation. However, the current work
is not intended to study the rehabilitation benefits of the
specific motions evaluated. The recorded sEMGdata were
used only to validate the model proposed and show its
potential as a tool to evaluate motor recovery. The model
consistency should be also further analyzed by including
a wider range of tasks to those evaluated on this work. It
should be also mention that the methodology proposed
do not intend to provide ultimate solutions to all cur-
rent challenges in the field of motor rehabilitation. For
instance, many daily tasks are unimanual or require inde-
pendent actions on each limb. The system proposed, as
happens also with many other rehabilitation techniques,
cannot be used on a daily environment. However, it allows
the use of the non-paretic areas of the body, within a con-
trolled clinical environment, in order to potentiate the
recovery of the paretic areas by exploiting the symmetrical
structure of human body. In fact, the recovery of spe-
cific motions on the paretic limb using feedback from the
non-paretic side is a common technique on rehabilitation
[44]. Nevertheless, the use of our model for unimanual
task could be discussed for future studies focused on
increasing patients’ motion dexterity.
This work is the beginning of a wider research pro-

gram that is intended to increase the current understand-
ing of motor recovery in order to improve rehabilitation
therapies. Accordingly, the next research stages include
the following objectives: (1) development of a system
that provides real-time feedback about ESB and MCS
to patients during rehabilitation; (2) integration of ESB
and MCS with the study of muscle synergy develop-
ment during rehabilitation to better understand the neural
processes following recovery; and (3) development of a
rehabilitation protocol adaptable to specific patient con-
ditions and neural recovery strategies based on the results
obtained in the this and future studies.
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