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Abstract

Background: A prosthetic system should ideally reinstate the bidirectional communication between the user’s
brain and its end effector by restoring both motor and sensory functions lost after an amputation. However, current
commercial prostheses generally do not incorporate somatosensory feedback. Even without explicit feedback,
grasping using a prosthesis partly relies on sensory information. Indeed, the prosthesis operation is characterized by
visual and sound cues that could be exploited by the user to estimate the prosthesis state. However, the quality of
this incidental feedback has not been objectively evaluated.

Methods: In this study, the psychometric properties of the auditory and visual feedback of prosthesis motion were
assessed and compared to that of a vibro-tactile interface. Twelve able-bodied subjects passively observed prosthesis
closing and grasping an object, and they were asked to discriminate (experiment I) or estimate (experiment II) the closing
velocity of the prosthesis using visual (VIS), acoustic (SND), or combined (VIS + SND) feedback. In experiment II, the subjects
performed the task also with a vibrotactile stimulus (VIB) delivered using a single tactor. The outcome measures for the
discrimination and estimation experiments were just noticeable difference (JND) and median absolute estimation error
(MAE), respectively.

Results: The results demonstrated that the incidental sources provided a remarkably good discrimination and estimation
of the closing velocity, significantly outperforming the vibrotactile feedback. Using incidental sources, the subjects could
discriminate almost the minimum possible increment/decrement in velocity that could be commanded to the prosthesis
(median JND < 2% for SND and VIS + SND). Similarly, the median MAE in estimating the prosthesis velocity randomly
commanded from the full working range was also low, i.e., approximately 5% in SND and VIS + SND.

Conclusions: Since the closing velocity is proportional to grasping force in state-of-the-art myoelectric prostheses, the
results of the present study imply that the incidental feedback, when available, could be usefully exploited for grasping
force control. Therefore, the impact of incidental feedback needs to be considered when designing a feedback interface in
prosthetics, especially since the quality of estimation using supplemental sources (e.g., vibration) can be worse compared
to that of the intrinsic cues.
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Background
Humans can effortlessly grasp and manipulate objects of
very different properties, from heavy and robust to deli-
cate and fragile. This is possible thanks to a sophisti-
cated musculoskeletal structure innervated by a network
of sensorimotor nerves, providing advanced motor com-
mands and a comprehensive multimodal feedback (e.g.,
touch, proprioception, force). The studies in human
motor control demonstrate that the somatosensory feed-
back is indeed instrumental for the planning and execu-
tion of grasping [1–3].
After an amputation of the hand, the motor and sensory

functions are lost. The lost motor functions can be re-
stored to a certain degree using myoelectric prostheses.
These systems are controlled by recording the electrical
activity of the user’s muscles to estimate the motion
intention, which is then translated into prosthesis com-
mands [4]. Typically, the wrist and hand flexor and exten-
sor muscles are used to command prosthesis closing and
opening proportionally, thereby resulting in an intuitive
connection between the user’s brain and the artificial de-
vice [5]. However, current prosthetic systems are con-
trolled in open loop, without explicitly providing any
somatosensory feedback on the prosthesis state (e.g., hand
aperture or grasping force) to the user. In order to truly
compensate for the missing biological limb, it is com-
monly assumed that a prosthetic system needs to establish
a bilateral communication to the user’s brain, by restoring
both motor and sensory functions [6, 7].
Intuitive methods to provide somatosensory feedback

have been a research topic for several decades [8], and
substantial progress was made in recent years [9–12].
However, a commercially available solution capable of
improving the prosthesis performance in the activities of
daily living is still unavailable [13, 14]. There is a single
commercial prosthesis (VINCENTevolution 2, Vincent
Systems, DE) equipped with a simple vibratory feedback
on the grasping force, but its clinical and functional util-
ity has not been yet demonstrated. From the technical
viewpoint, the non-invasive artificial feedback can be im-
plemented using relatively simple solutions. A common
approach is to use sensory substitution, where the lost
sensory information is transmitted using alternative sen-
sory modalities that are still spared following the ampu-
tation [15]. To this aim, the prosthesis is equipped with
force and position sensors, and the sensor data are
transmitted to the user by stimulating the skin of the re-
sidual limb to activate the tactile sense. The stimulation
can be delivered using low-intensity electrical pulses [16]
or vibration motors [17], and the information is con-
veyed by modulating the stimulation parameters. For ex-
ample, vibration intensity and/or frequency can be
proportionally associated to hand aperture [18] or grasp-
ing force [18–21]. In addition, the feedback can be

provided using direct mechanical stimulation through
skin stretch [22], movement on the skin [23], pressure
cuffs/braces [24], or linear pushers [25–27]. More re-
cently, several invasive solutions that directly stimulate
the peripheral nerves [28–33] or somatosensory areas of
the brain [34] have been presented.
Despite several methods have been successfully imple-

mented and tested for restoring sensory feedback, the ac-
tual benefits of the artificial feedback are still elusive.
Some studies showed significant improvements in per-
formance with artificial somatosensory feedback [35–37].
However, these studies were conducted while controlling
a virtual setup [35–37] and/or while blocking the inciden-
tal (visual and auditory) feedback sources [18, 31, 36, 38].
Some recent studies showed benefits of feedback in realis-
tic, clinical settings [32, 39–43]. However, other experi-
ments in realistic settings failed to show functional
improvements in performance [13, 19, 20, 44, 45] or dem-
onstrated some benefits of feedback only in specific condi-
tions [13, 14, 40].
A major confounding issue when studying the effect of

artificial feedback is the existence of incidental sensory
information that is already present in prosthesis control.
The user can observe the prosthesis motion (visual feed-
back) and hear the motor sound, which together with
proprioception has recently been shown to already allow
for a rather good control of grasping force [46]. In
addition, motor vibrations as well as mechanical inter-
action with the object can propagate through the socket
to be felt by the user. The user can exploit these inciden-
tal information sources to close the control loop, even in
the absence of an explicit somatosensory feedback. For
example, in a typical myoelectric prosthesis, the velocity
of closing is related to the resulting grasping force, i.e.,
the faster the hand closes the stronger the force pro-
duced after contact (see Fig. 2 in [47]). Therefore, the
information on the closing velocity can be employed by
the prosthesis user to improve the control of grasping
force, as demonstrated in [48]. Importantly, the closing
speed can be estimated through visual observation or by
listening to the motor sound.
Although it has been demonstrated that human sub-

jects can indeed use such information for prosthesis
control, the psychometric properties of the incidental
sources of feedback have not been investigated yet, in
contrast to psychometric tests of the artificial feedback
methods (electro- and vibrotactile stimulation) that are
thoroughly documented in the literature [16, 17].
In the present study, we systematically investigated the

quality of the incidental prosthetic feedback both object-
ively and subjectively. To this aim, the psychometric
properties of the incidental auditory and visual feedback
produced by prosthesis motion were quantified in a dis-
crimination task (Experiment I) and then compared to
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that of a simple vibration interface in an estimation task
(Experiment II). The task for the subjects was to esti-
mate the velocity of prosthesis closing using incidental
feedback. Vibratory feedback was selected for compari-
son as a common method to provide explicit somatosen-
sory feedback in prosthetics. The results demonstrated
that the subjects could interpret the incidental informa-
tion sources rather well, and even better than the sup-
plemental vibrotactile feedback. These observations
provide insights on possible reasons for the inconsistent
results related to the benefits of sensory feedback in
prosthetics and thereby guide the design of novel, more
effective feedback solutions.

Methods
Participants
Twelve able-bodied volunteers (24 ± 3 years old, between
18 and 27 years, 6 women, 6 men) participated in the
two experiments. The subjects were informed about the
experiments and confirmed that they understood the ex-
perimental procedure. They gave informed consent to
take part in the study and were reimbursed with 10 Euro
per hour of participation. The study was approved by
the ethics committee of the Universitätsmedizin Göttin-
gen. Ten of the participants were right handed, two left
handed. Four had corrected vision. All subjects had
taken part in one previous study on prosthetics [46] but
were otherwise naïve to prosthesis control.

Experimental setup
The current study was divided into two experiments,
which were performed on different days, with Experi-
ment I (Exp I) being at least 2 weeks before Experiment
II (Exp II). The setup was similar in both experiments,
as shown in Fig. 1a. It comprised 1) a prosthetic hand
(Michelangelo prosthetic hand, Otto Bock Healthcare
GmbH, Vienna, AT), controlled via Bluetooth, 2) a
standard desktop PC with a 22″ computer screen (hid-
den from the subject’s view) controlling the prosthesis,
3) headphones playing white noise, and 4) a wooden
block. In Exp II, the setup was extended by 5) two C2
tactors with a control unit (Engineering Acoustics, US)
connected to the PC via a USB port to deliver vibrations,
and 6) a laptop with a mouse used by the subject to indi-
cate answers with the right hand (as explained below).
The subjects were seated in a chair with the prosthetic
hand in a table-top position in front of them at a dis-
tance of approx. 0.5 m, allowing a lateral view on the
prosthesis (thumb-side, see Fig. 1). When closed using
pinch grip, the prosthesis grasped a wooden block,
which was fixed to the table. In Exp II, one C2 tactor
was placed on the ventral aspect of the forearm of the
subject’s left arm. The subject placed the arm comfort-
ably on a sideboard. The second vibrator was hanging

freely in the air and was activated at the maximum in-
tensity in each trial with vibration feedback, effectively
preventing the subject to use the sound produced by the
first vibrator as potential source of feedback. In addition,
the subject wore headphones playing white noise.
The prosthesis and the tactors were controlled by a

control-loop implemented in Matlab Simulink 2015b
(Mathworks, US) using the prosthetic closed-loop test
bench [49] that operated in real-time at 100 Hz. In this
study, the prosthesis was controlled by a computer, i.e.
the subjects did not control the prosthesis themselves,
making them passive observers. During a single trial, the
prosthesis closed with constant velocity, simulating a
routine-grasping protocol [46]. Across trials, the closing
velocity was changed according to the psychometric test
procedure (explained below). In Exp I, the subjects ver-
bally reported their discrete answers to the experi-
menter, whereas in Exp II they used the mouse to
indicate the answer via a Matlab GUI.

Experiment I: discrimination task
The aim of the first experiment was to assess the just
noticeable difference (JND) in the incidental feedback
using a staircase procedure. The JND is the minimal
change in the amplitude of the feedback variable that
can be perceived by the subject [50], therefore determin-
ing the effective resolution of the feedback channel. In
the context of the present study, the JND corresponds to
the minimal change in the prosthesis closing velocity
that can be perceived by looking at the prosthesis (visual
JND) and/or by listening to the prosthesis sound (audi-
tory JND).
The experiment started with a familiarization phase in

which the subjects watched as the prosthesis closed 10
times. The closing velocities changed from 20 to 100%
of the maximum velocity (in steps of 20%), which corre-
sponds to absolute average closing speeds between 38
mm/s and 324 mm/s (see Fig. 8 in the Appendix). This
sequence was repeated twice. The subjects could see and
hear the prosthesis while it closed.
The JND was assessed using a transformed 1 up / 2

down staircase procedure in a two-alternative forced-
choice (= 2AFC) task, which targets 70.71% correct per-
formance [50]. Each step of the staircase procedure com-
prised two trials of prosthesis closing. The prosthesis
closed once at a fixed predefined velocity (standard
value) and once at a velocity (comparison value) that
was changed adaptively across trials based on the partici-
pant’s previous answers. In each trial, the standard and
comparison value were provided in random order. The
prosthesis stayed for 1 s in the opened or closed pos-
ition, before closing or opening again. The comparison
value was always higher than the standard value. The
subjects observed the prosthesis using the provided
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auditory information (SND), visual information (VIS),
and visual and auditory information (VIS + SND), de-
pending on the condition, and they were then asked
to report in which trial the prosthesis closed faster. If
subjects answered correctly two times in a row, the
comparison value was reduced by 1%. If they made a
mistake, it was increased by 1%. The first five steps
of the staircase were used for reinforced learning,
where the experimenter revealed the correct response,
to make sure that the subjects understood the task.
The initial comparison velocity was set to be 15%
higher than the standard one, which was a large dif-
ference and hence simple to discriminate. After the
reinforcement learning, the normal staircase proced-
ure resumed, i.e., the subjects received no more feed-
back on the correct answer. The staircase procedure

was terminated if 13 reversals occurred, with a rever-
sal being the change of the comparison value from
increasing to decreasing or vice versa (see Fig. 2, VIS
for an example). The JND (staircase outcome) was
then calculated as the difference between the mean of
the last 10 reversals and the standard value. The pro-
cedure was also terminated if the comparison value
was only 1% higher (i.e., as low as possible) than the
standard value 7 times in a row (see Fig. 2, SND and
VIS + SND for an example). In this case, the JND was
set to 1%. To assess the JND at both low and high
velocities, the staircase was performed two times, at
the standard values of 35 and 80%, respectively (order
pseudorandomized across subjects), that correspond
to absolute average closing speeds of 72 mm/s and
231 mm/s (see Fig. 8 in the Appendix).

Fig. 1 Experimental setup and protocol. a The prosthesis was commanded to close at different velocities (grasping forces) while the subjects
perceived incidental sound (SND, blue), visual (VIS, red) or combined visual and sound (VIS + SND, green) feedback or vibration feedback (VIB,
orange, in Exp II only). For the three incidental feedback conditions (SND, VIS, VIS + SND), the setup included a prosthetic hand grasping a wooden block.
For SND, the subjects were prevented from seeing the prosthesis by a screen; during VIS, earphones played white noise to block the sound. For VIB, the
setup included two C2 tactors, one strapped to the subjects’ left arm displaying the vibration that had to be interpreted, the other hanging freely in the
air, producing a strong sound to block the sound of the first tactor, together with white-noise playing headphones. b For each experiment (I and II) and
each feedback condition (except VIS + SND), there was a familiarization, reinforcement-learning, and testing phase. CV: Comparison value, SV: Standard
value. 20:5:100 stands for 5% steps from 20 to 100%. See text for details
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The JND was measured in several conditions with dif-
ferent implicit feedback. In SND the vision was blocked
by a screen in front of the prosthesis, which made only
the closing sound available. In VIS, the subjects could
see but not hear the prosthesis since the sound was
blocked by noise-cancelling earphones playing white
noise. In the final condition (VIS + SND), the subjects
could normally hear and see the prosthesis. The order of
the feedback conditions was pseudorandomized across
subjects. Generally, the subjects were encouraged to
focus on every detail of the closing and grasping process
that they deemed could be useful to evaluate the pre-
sented closing velocity. This included the interaction be-
tween the wooden block and the prosthesis, the duration
of the closing process, the frequency and intensity of the
sound, etc. All these possibilities were explained to the
subject beforehand.
The JND was computed for each subject, feedback

condition, and standard-value velocity. As Kolmogorov-
Smirnov tests showed that the data were not normally
distributed, non-parametric tests were used and medians
and interquartile ranges are reported in the manuscript.
To compare the three feedback conditions, the subjects’
JNDs were averaged across the two standard stimuli and
a Friedman test was applied. Upon significance, the con-
ditions were compared pairwise using three Bonferroni-

corrected Wilcoxon signed-rank tests. For comparison
between low and high velocities separately for each feed-
back condition, three Bonferroni-corrected Wilcoxon
signed-rank tests were performed. The threshold for
statistical significance was set to p < 0.05.

Experiment II: estimation task
The aim of the second experiment was to assess how
well the subjects could estimate the prosthesis closing
velocity using different sources of incidental feedback. In
this case, the prosthesis closed at a constant but arbi-
trary velocity and the subjects were asked to provide an
estimate of the closing speed (absolute estimation versus
relative discrimination in Exp I). In addition, the sub-
jects’ ability of estimating the intensity/frequency of
vibrotactile stimulation was assessed, a method which is
commonly used in prosthetics to implement sensory
feedback [10].
The experiment comprised four feedback conditions,

three with implicit (SND, VIS, and VIS + SND), and one
with vibrotactile feedback (VIB). Each condition com-
prised a familiarization phase, a reinforcement-learning
phase, and a testing phase. The only exception was VIS +
SND, where only the test phase was implemented to as-
sess the potential fusion of information from the inci-
dental feedback sources.

Fig. 2 A staircase procedure for one representative subject in Exp I. The time course of the difference (Δ) between comparison and standard
value recorded in Exp I across trials of a staircase procedure for Subject 7 at the high standard-value level (80%) for the three feedback conditions
SND (top, blue), VIS (middle, red), and VIS + SND (bottom, green). The first 5 trials (grey underlay) reflect the reinforcement-learning phase. After
that, wrong answers led to a 1% increase of the comparison stimulus, while two correct answers were needed for a 1% decrease (1 up/2 down
staircase). The 10 reversals (indicated by an up-downward arrow) in the area between the vertical dashed lines (4th to 13th reversal) were used to
calculate the JND, which is indicated by a horizontal dashed line. If the subject’s response was correct 7 times in a row at a 1% difference between
comparison and standard stimulus, the JND was set to 1% and the run was terminated (see SND and VIS + SND)
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During the familiarization phase in SND and VIS, the
prosthetic hand was closed at five velocities (20, 40, 60,
80, and 100%) first in increasing, then in decreasing, and
finally in random order. In the reinforcement-learning
phase, the prosthesis closed randomly five times at each
of these velocities (25 trials). After each trial, the sub-
jects were asked to estimate the closing speed and the
experimenter then informed them about the correct re-
sponse. In the testing phase (correct answer not pro-
vided), the prosthesis closed at 17 velocities (20–100%
with 5% steps), five times per velocity in random order.
Importantly, the subjects were not informed about the
discrete step-sizes (5%) but were told that any velocity
between 20 and 100% might occur, in order to eliminate
a bias towards the 5% steps. After the prosthetic hand
closed, the subjects reported their closing-speed estimate
by a mouse click to an analog scale (20–100%) shown at
the laptop.
For the vibrotactile condition, the protocol was similar

except that the task was to estimate the intensity/fre-
quency of a vibrotactile stimulus (the prosthesis was not
used). In each trial, a 2.5 s vibration was delivered using
a C2 tactor fixed on the subjects’ left arm. The same
levels and number of trials were used as in VIS and
SND. The levels were implemented by simultaneously
changing the frequency and intensity of stimulation. The
dual-parameter modulation was used to facilitate the
discrimination. The frequency (1–100%) ranged from 30
Hz to 270 Hz, and the intensity (1–100%) was chosen
between 8 and 71% of the maximum intensity. There-
fore, this condition was equivalent to using vibration
feedback to transmit the prosthesis closing velocity via
linear mapping.
The order of the four feedback conditions was ran-

domized between subjects. However, the VIS + SND was
always placed after VIS and SND such that the subjects
received the same amount of learning in each of the two
modalities before the fusion of modalities (VIS + SND)
was tested. To investigate to which extent specific fea-
tures were important when interpreting the feedback in
each condition, the subjects were asked to indicate how
much they relied on each feature using a visual-analog
scale (0–10) in a questionnaire. They indicated how
much they had focused on the speed of closing, duration
of closing, and mechanical interaction between the pros-
thesis and the object for VIS, duration, frequency, and
loudness of sound for SND, and frequency and intensity
of vibration for VIB. In addition, in each condition they
were asked to estimate their average absolute deviation
from the correct value, to assess how confident they
were in their estimation.
For evaluation, the success rate for the reinforcement-

learning phase and the estimation errors in the testing
phase were calculated for each trial, separately for each

subject, level, and feedback condition. Again, non-
parametric statistics were used. For the analysis of the
reinforcement learning, the subjects’ success rate, aver-
aged across the five tested levels, was compared across
the three trained feedback conditions using a Friedman
test and, upon significance, three Bonferroni-corrected
Wilcoxon signed-rank tests were applied. In the testing
phase, the median of the estimated value was computed
for each level and feedback condition, reflecting whether
and how much the subject over- or underestimated the
correct level. For each level (except for the lowest and
highest where over- and undershooting were not pos-
sible, respectively) and feedback condition, Bonferroni
corrected Wilcoxon signed-rank tests were used to
assess whether the subjects consistently over- or under-
estimated the level, by subtracting the estimated from
the correct value and testing whether that value differed
significantly from zero. Then, by pooling the absolute er-
rors of all respective trials, the median absolute error
(MAE) was determined for each subject and feedback
condition, independently of the level. To test for differ-
ences between feedback conditions, a Friedman test and,
upon significance, six Bonferroni-corrected Wilcoxon
signed-rank tests on the MAE were used.
For analysis of the subjective results from the ques-

tionnaire, for both SND and VIS as well as separately for
the acoustic and the visual features in VIS + SND, a
Friedman test was applied and, upon significance, three
Bonferroni-corrected Wilcoxon signed-rank tests were
used for pairwise comparison. For VIB, a single Wil-
coxon signed-rank test was used (only two features avail-
able). Six Bonferroni-corrected Wilcoxon signed-rank
tests compared whether the feature usage differed when
using one-feedback modality (SND or VIS) instead of full
feedback (VIS + SND), e.g., the subjective reliance on the
auditory duration of the prosthesis closing was com-
pared between SND and VIS + SND condition. In
addition, a dominance towards visual versus auditory
features was explored by comparing the amount of reli-
ance on the visual versus auditory features in VIS + SND,
indicating which modality captured more attention when
the full implicit feedback was available. To that end, in
the VIS + SND condition for each subject the most
strongly used auditory and visual features were selected
across the three possible features per modality and these
two were compared via a Wilcoxon signed-rank test.

Results
Experiment I: discrimination task
A representative example of a staircase trial is shown in
Fig. 2. In general, at the high level of the standard stimu-
lus, the subjects were able to discriminate the smallest
possible change in prosthesis closing velocity (1%) in
SND and VIS + SND conditions. The staircase sequence
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“saturated” at the difference of 1% in 9 and 10 out of the
12 subjects, respectively. However, this did not happen
for any of the subjects in the VIS condition, and it was
also uncommon at the low level of the standard stimulus
regardless of the feedback condition (i.e., only a single
subject per condition succeeded in saturating the stair-
case). Nevertheless, all feedback conditions resulted in a
small JND with a median value of less than 4%. The
summary results are shown in Fig. 3. The visual feedback
was characterized with slightly higher JNDs. With
median JND of 3.7 and 3.5% for the low and high level,
respectively, VIS led to low but still significantly higher
JNDs compared to SND (1.5 and 1%, respectively; p <
0.001) and VIS + SND (1.5 and 1%, respectively; p =
0.007). The median JND in the latter two conditions was
very close or even equal to the smallest possible change
in velocity (1%). The JND was slightly but significantly
smaller at the high compared to the low standard-
stimulus level for SND (p = 0.006) and VIS + SND (p =
0.004), while no significant difference was observed for
VIS. Generally, these data show a surprisingly good dis-
crimination no matter which type of implicit feedback
was provided to the subjects.

Experiment II: estimation task
During reinforcement learning, the success rates (me-
dian [interquartile range]) were 92% [8%] in SND, 88%
[82%] in VIS, and 74% [18%] in VIB. Hence, the per-
formance in VIB was worse compared to the two other
conditions.
The data from the testing phase of one representative

subject are shown in Fig. 4, where the estimated versus
correct closing velocities (SND, VIS, VIS + SND) and

vibration levels (VIB) are plotted against each other for
all feedback conditions and tested levels. The points are
scattered around the optimal-performance line (black
line), with a slightly worse quality of estimation in VIB.
The overall results are shown in Figs. 5 and 6. The

medians of the estimated values followed consistenly the
optimal-performance line (in black) across levels (Fig. 5).
Statistically significant deviations from the line were not
observed at any level for SND and VIS, at only two levels
for VIS + SND, and at 5 out of 15 levels for VIB, indicat-
ing a general trend to underestimate the levels between
40 and 70% in this condition. Figure 6 shows the box-
plots of the median absolute errors (MAE) across sub-
jects (obtained by pooling trials across tested levels) for
all feedback conditions. The performance was similar in
SND (5.2% MAE) and VIS + SND (5.1% MAE). The esti-
mation error in VIS + SND was significantly smaller than
in VIS (6.7%; p = 0.005) and VIB (8.4%; p < 0.001) and
the error in SND was significantly smaller than in VIB
(p = 0.002). No significant difference in the quality of es-
timation was found between VIS and VIB.
Figure 7 summarizes the results of the questionnaire in

which the subjects reported on the relevance assigned to dif-
ferent features of the feedback sources. Regarding the audi-
tory features, most subjects seemed to focus on closing
duration (median 80% for SND and 70% for VIS + SND) and
frequency (80% for SND and 80% for VIS + SND) instead of
intensity (45% for SND and 35% for VIS + SND). However,
this trend was not significant neither in SND nor in VIS +
SND likely due to high variability across subjects. Regarding
visual features in VIS (Friedman test p < 0.001) and VIS +
SND (Friedman test p < 0.001), the subjects were significantly
more attentive to the duration (90% for VIS, p < 0.001, and

Fig. 3 Overall JNDs for Exp I. The boxplots represent the overall JNDs across subjects for each feedback condition (SND in blue, VIS in red, VIS +
SND in green) at the low (left) and high (right) standard-stimulus level, with the horizontal line indicating the median JND (also given as number),
the box the interquartile range, the whiskers the range, and the pluses the outliers. Statistically significant differences between feedback conditions or
between low and high levels within one feedback condition are depicted by asterisks
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70% for VIS + SND, p = 0.001) and closing speed (60% for
VIS, p = 0.001, and 70% for VIS + SND, p < 0.001) than to
the interaction between prosthesis and wooden block (10%
for VIS and 0% for VIS + SND), which was hardly exploited
at all. No significant differences in used features between full
(VIS + SND) and partial (SND or VIS) feedback were ob-
served, except for a higher focus on the closing duration in
VIS compared to VIS + SND (shown by a black asterisk in
Fig. 7; p= 0.002). In VIS + SND, the subjects concentrated
similarly on visual and auditory features, with none of the
two modalities being rated significantly higher than the other.
For the vibratory task, the subjects clearly focused signifi-
cantly more on the intensity (median 100%) than on the
frequency information (10%; p < 0.001). Concerning the sub-
jective estimation of performance, they reported a subjective
MAE of 10% (IQR 6%) for SND, 17% (IQR 8%) for VIS, 9%
(IQR 7%) for VIS + SND, and 15% (IQR 12%) for VIB.

Discussion
The present study investigated the psychometric proper-
ties of the incidental feedback in prosthetic grasping.
The quality of feedback sources inherent to a prosthetic
device (vision and sound) was assessed by conducting

psychometric tests and it was compared to the quality of
feedback provided by a vibration motor, which is a com-
mon solution to transmit somatosensory feedback in
prosthetics. The experimental results demonstrated that
the visual and auditory feedback of the prosthesis mo-
tion could be used to estimate the closing speed with
high reliability. In addition, the estimation using sound
and vision alone or in combination was significantly bet-
ter compared to the vibration feedback.
With sound and vision combined or only sound alone,

the obtained JND was below 2% at both high and low
closing speeds. With vision alone, the JND was some-
what higher (below 4%), which is in agreement with who
reported that auditory feedback is more useful than vis-
ual feedback for temporal discrimination. The present
study therefore demonstrates that the inherent reso-
lution of the incidental feedback sources is truly remark-
able. Only by relying on the incidental feedback, the
subjects were capable of discriminating changes in the
prosthesis closing velocity that are close to the minimum
increment/decrement in velocity that can be com-
manded to the prosthesis (1%). In addition to detecting
a change in velocity, the subjects could estimate the

Fig. 4 The results from the testing phase of one representative subject in Exp II. The estimated closing velocity (VIS, SND, VIS + SND) and vibration
intensity (VIB) plotted against the correct stimulus value for Subject 8. The black line is the reference that would indicate the perfect performance
(all responses correct)
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absolute value of the closing speed with high precision.
When estimating a closing speed randomly selected
from the full working range, the average error was
around 5% for SND and VIS + SND and around 7% for
VIS. As explained in Introduction, the estimation of
prosthesis closing velocity can be used to control grasp-
ing force [48]. The present study shows that the inciden-
tal feedback can provide such an estimate rather
precisely, and this explains why the incidental sources
can be so useful for prosthesis control [46].
The combined visual and auditory feedback resulted in

the best performance, as indicated by both lowest MAE
and low variability across subjects. This demonstrates
that the subjects could fuse the incidental sources of
feedback to improve the estimation of the prosthesis

state. The studies of human motor control have shown
that human subjects can integrate sensory information
from multiple sources based on their relative uncertainty
[51–53].
The present study demonstrated that the inherent

prosthesis feedback could provide reliable closing-speed
information to the prosthesis user after only a brief
training (< 5 min). When the same information was
transmitted using only vibration feedback, the quality of
estimation was significantly worse (MAE ~ 8%). Import-
antly, the results for VIB condition might be different if
another coding scheme would be used. We have used a
linear mapping since this is a simple and therefore a
common choice in the literature [36, 54, 55]. In reality,
the mapping from the intensity of stimulation to the

Fig. 5 Median estimation per level for Exp II. Estimated value, i.e. estimated closing velocity/vibration, plotted against correct stimulus, i.e. generated
velocity/vibration, with every boxplot representing the median (circle), interquartile range (box), range (line), and outliers (pluses) of all subjects’
medians for one level. Each subpanel represents one of the feedback conditions (see title). The black line is the reference line, which would reflect
perfect responses. Significant differences (p < 0.05) from that line are indicated by asterisks
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perceived intensity follows a power function [17, 56].
And indeed, such a trend can be seen in Fig. 5 (VIB),
where the subjects underestimated consistently in the
middle range of intensities. This effect, although signifi-
cant, was not substantial, possibly because we have mod-
ulated the frequency in addition to the intensity to
further facilitate the discrimination. Nevertheless, better
estimation (e.g., less undershooting) in the VIB condition

might be obtained if a different transfer function would
be used; this remains to be tested.
The above results might indicate that adding vibration

as a supplemental feedback to communicate the vari-
ables that can be already estimated from the intrinsic
sources directly (closing velocity) or indirectly (grasping
force) could have limited impact on performance of
prosthesis control. The intrinsic feedback seems to be
sufficient so that there is not much margin for improve-
ment. Of course, this assumes that the subject can in-
deed observe the prosthesis while closing. Also, the
performance of VIB was worse already in the learning
phase, which was rather short in the present study. It
would be interesting to investigate the trends as well as
the final performance in each feedback modality after a
prolonged learning.
There was a substantial variability in the subjective re-

ports about the relevance of different features of the feed-
back sources. Nevertheless, in all the incidental feedback
conditions, the subjects focused on the temporal aspects
of the feedback stimulus, namely, the stimulus duration.
On the contrary, the cues from the mechanical interaction
between the prosthesis and the object seem not to be
exploited. Finally, although the sound frequency was ap-
preciated by the subjects in the acoustic feedback condi-
tion, when using vibration feedback, they focused
substantially more on the intensity. This could be due to
the frequency range of the C2 tactor, which does not in-
clude low frequencies (< 30Hz), whereas the intensity was
modulated between 8 and 71%. Interestingly, when

Fig. 6 Overall median absolute estimation (MAE) error for Exp II. The
MAE between estimated stimulus and correct stimulus with every
boxplot representing the median (horizontal line), interquartile range
(box), range (dashed line), and outliers (pluses) of all subjects’ MAE
(obtained after pooling the absolute errors over all respective trials).
Significant differences (p < 0.05) between feedback conditions are
indicated by asterisks

Fig. 7 Subjective feature evaluation for Exp II. Boxplots reflecting the subjectively estimated reliance on the different available feedback sources
for task completion in the four feedback conditions (colour-coded with blue for SND, red for VIS, green for VIS + SND, and orange for VIB). Possible
feedback sources for closing-velocity estimation were the duration of a stimulus (visual and/or auditory), the speed (visual), frequency (auditory),
and intensity (auditory) of the closing hand, and the interaction between the fingers of the prosthesis and the wooden block (visual), while for
vibration estimation the frequency and intensity of the tactor could be used. Every boxplot represents the median (circle), interquartile range
(box), range (line), and outliers (pluses) of all subjects’ responses. Significant differences within feedback conditions are shown by asterisks in the
respective color, black asterisks show differences between single-modality and full feedback tasks
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estimating their own performance, the subjects ranked the
conditions according to the objectively measured results
(i.e., SND and VIS + SND performed better than VIS and
VIB). However, they reported a higher subjective uncer-
tainty, i.e., the perceived estimation error was greater than
experimentally observed.
The present study is an important initial step towards

understanding the interaction between incidental and
explicit feedback in closed-loop prosthetics. In another
prosthesis, the vision and sound feedback would be dif-
ferent in quality and/or quantity (e.g., sound pitch and
loudness), but the main principle would still hold (e.g.,
the movement speed and therefore sound associated to
force).

Limitations
In real life scenarios, the usefulness of incidental (visual
and auditory) feedback can decrease in the presence of
overlaying and distracting sensory inputs, e.g. in noisy
environments or when the visual attention is diverted
from the prosthesis. Also, wearing a cosmetic glove over
the prosthesis, which is usual in clinical applications,
might decrease the loudness and discriminability of the
auditory information. In this case, supplemental vibro-
or electrotactile feedback might be beneficial since it is
transmitted through a different sensory channel (sense
of touch).
The experimental task in the present study resembled

routine grasping, in which the prosthesis closes at a con-
stant velocity to produce proportional force upon con-
tact. However, modulating the force after the prosthesis
has closed around an object is a different task, in which
supplemental force feedback, delivered using vibration
or other methods, is likely to be useful. In this case, dif-
ferent sources of feedback might be relevant. For ex-
ample, if the prosthesis holds a compliant object while
closing, the subjects could estimate the grasping force
from the amount of object deformation.
In the present experiment, the computer sent a com-

mand to the prosthesis to close at a constant velocity. In
real-life application, the prosthesis will be controlled by
a user generating myoelectric commands. The myoelec-
tric signals are known to be variable and this is likely to
cause variability in the prosthesis closing speed (even if
the user would like to produce a constant velocity). This
can challenge the estimation of prosthesis variables from
the incidental sources. Nevertheless, recent studies show
that incidental feedback can be useful despite this uncer-
tainty [46, 48]. However, it would be useful to measure
the psychometric parameters in this context, namely,
during realistic proportional control and feedback. In
this case, a proprioceptive information from the sense of
muscle contraction could be used additionally to vision
and audition [46]. Finally, the results reported here were

observed in naïve able-bodied subjects; the implications
obtained, however, should be even more relevant for ex-
perienced prosthesis users, who had enough time and
practice to learn to interpret the prosthesis sound and
movement.

Conclusion
The present study shows that the implicit feedback com-
ing from a hand prosthesis can be an important source
of information when estimating the prosthesis state. The
subjects were able to accurately discriminate (experi-
ment I) and estimate (experiment II) the velocity of
prosthesis closing using vision and sound, and they
could even fuse the two incidental feedback sources to
improve the estimation quality. This is a strong indica-
tion that the feedback, which is intrinsically available
from the prosthesis, can be usefully exploited for the
control of prosthesis grasping. This point should be con-
sidered when designing supplemental feedback provided
through sensory substitution (e.g., electro and vibrotac-
tile stimulation). If supplemental feedback is to be effi-
cient, it needs to be of a higher quality or should
transmit information that is not already available impli-
citly (e.g., EMG feedback [41, 57, 58]).

Appendix
To measure the prosthesis closing speed, the hand was
mounted on a vice and fully opened in palmar grasp. A
Matlab program was implemented that repeatedly closed
and opened the prosthesis through a full range of speeds.
The normalized prosthesis commands in the range be-
tween 20 and 100%, in steps of 5%, were repeated three
times and the time needed for closure from the fully open
prosthesis (12 cm aperture according to the manufacturer)
to the fully closed prosthesis was measured. Then, the
average closing speed was computed by dividing the

Fig. 8 Pilot experiment assessing the closing speed for
prosthesis commands
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aperture (12 cm) by the mean closing time per prosthesis
command. The profile of obtained closing speeds is
depicted in Fig. 8. It can be seen that the two standard
speeds used for JND measurements correspond to the two
segments of the profile with different slopes.
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