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Key components of mechanical work
predict outcomes in robotic stroke therapy
Zachary A. Wright1,2, Yazan A. Majeed1,2, James L. Patton1,2and Felix C. Huang3*

Abstract

Background:Clinical practice typically emphasizes active involvement during therapy. However, traditional
approaches can offer only general guidance on the form of involvement that would be most helpful to recovery.
Beyond assisting movement, robots allow comprehensive methods for measuring practice behaviors, including the
energetic input of the learner. Using data from our previous study of robot-assisted therapy, we examined how
separate components of mechanical work contribute to predicting training outcomes.

Methods: Stroke survivors (n = 11) completed six sessions in two-weeks of upper extremity motor exploration (self-
directed movement practice) training with customized forces, while a control group (n = 11) trained without
assistance. We employed multiple regression analysis to predict patient outcomes with computed mechanical work
as independent variables, including separate features for elbow versus shoulder joints, positive (concentric) and
negative (eccentric), flexion and extension.

Results:Our analysis showed that increases in total mechanical work during therapy were positively correlated with
our final outcome metric, velocity range. Further analysis revealed that greater amounts of negative work at the
shoulder and positive work at the elbow as the most important predictors of recovery (using cross-validated
regression, R2 = 52%). However, the work features were likely mutually correlated, suggesting a prediction model
that first removed shared variance (using PCA, R2 = 65–85%).

Conclusions:These results support robotic training for stroke survivors that increases energetic activity in eccentric
shoulder and concentric elbow actions.

Trial registration: ClinicalTrials.gov, Identifier:NCT02570256. Registered 7 October 2015– Retrospectively registered,

Keywords:Stroke, Robotic therapy, Upper limb, Energetics, Neurorehabilitation, Outcomes

Background
Assistance is often provided to aid limb movement during
the rehabilitation process of stroke survivors. Many clin-
ical researchers agree that active participation enhances
recovery, and the goal of therapy should be to maximize
“involvement” [1, 2]. Too much assistance can actually
discourage patient effort [3]. However, measurement of
the degree to which patients areactually active is often

difficult. Advances in rehabilitation devices allow for the
measurement of forcesand motion to better monitor pa-
tient activity. Here we investigate how upper limb me-
chanics during training relate to recovery.

Current tools for measuring physical activity during
therapy offer limited information for describing inter-
action with the external environment or agent. While
studies have shown that the intensity of therapy influ-
ences patient improvement, researchers have relied on
simple metrics related to experimental conditions (e.g.
movement repetitions, time-on-task, and therapy dos-
age) [4, 5]. More sophisticated tools have been used to
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directly measure energetic contributions during therapy,
such as oxygen consumption devices to measure meta-
bolic cost [6] or electromyography to measure muscle
activity [7, 8]. However, such measures do not account
for the time-varying force-motion relationships that
occur during assisted movement. Robots easily measure
both kinematic and kinetic variables facilitating the com-
putation of energetic contributions in terms of mechan-
ical power and work.

While energetic descriptions of movement have been
widely studied, it has mainly focused on cyclic [9] or sus-
tained movements, such as walking. Researchers have
computed work and power to characterize normal and
abnormal gait patterns [10, 11], to evaluate robot-
assisted locomotion [12], and to reduce energetic costs
when using exoskeletons [13]. Recently our work has fo-
cused on robotic augmentation of upper limb dynamics
to facilitate vigorous movement during practice [14, 15].
We showed that stroke survivors increase total work out-
put during force training [16]. Our intervention was fun-
damentally different than many previous strategies in that
patients trained over a broader range of movements. In
contrast to reaching studies [17, 18], such self-directed ex-
ploration allows for the examination of how energetics
might depend on different force and motion states.

To better evaluate the variation in patient energetics,
we believe more comprehensive measures are required
beyond total expenditure of power or work. Researchers
have also examined compartmentalized work and power
measures in normal limb behaviors, for example, associ-
ating magnitudes of mechanical energy (e.g. positive/
concentric and negative/eccentric work) with movement
actions (e.g. flexion and extension) at individual joints
[19]. Motor impairments due to stroke are also typically
described in the context of motor actions of the limb.
For example, stroke survivors exhibit abnormal flexion
and extension synergies [20] and alterations in concen-
tric and eccentric muscle contractions [21, 22]. As such,
impairments can be associated withsubcomponentsof
work and power. As patients interact differently in re-
sponse to forces, subcomponents of work and power
could reveal individual differences in involvement.

An emerging trend in rehabilitation is to identify cer-
tain factors that predict individual improvement in re-
sponse to therapy. Researchers have identified patient
biomarkers (impairment level, neurophysiological) corre-
lated to patient outcomes providing better recommenda-
tions for therapy [23–25]. Similarly, our goal is to
determine if particular types of work are more important
to patient recovery. Such evaluation could inform deci-
sions on design strategies and optimize assistance to
each individual. In contrast to previous studies which
have relied on independent analyses of many individual
predictors, our analysis goal necessitates more rigorous

statistical methods to deal with potentially related work
features. One possible solution is to employ multiple re-
gression analysis which can identify features most im-
portant for prediction.

In this paper, we investigate how the energetic contri-
butions of stroke survivors during robot-assisted training
relate to upper limb recovery. We employ well-
established methods of inverse dynamics to estimate the
torques generated by each patient during self-directed
motor exploration training with customized forces.
These methods conveniently allow us to quantify the en-
ergetic involvement of each individual joint in terms of
mechanical work. We then use multiple regression ana-
lysis to identify which components of work are most im-
portant for predicting recovery. We hypothesize that
positive work (concentric) in elbow extension is the best
predictor of outcome. This study provides a key prelim-
inary step towards evaluating energetic descriptions of
patient involvement which can inform methods for
upper limb robotic therapy practice.

Methods
Study participants
This investigation considered data collected from a pre-
vious study that featured 22 stroke survivors [15]. The
main inclusion criteria included: 1) chronic stroke (8+
months post-stroke) 2) hemiparesis with moderate to se-
vere arm impairment measured by the upper extremity
portion of the Fugl-Meyer Assessment (UEFM score of
15–50) 3) primary cortex involvement. Each individual
gave informed consent in accordance with the North-
western University Institutional Review Board (IRB).

Apparatus
Experiment participants were asked to operate a two-
degree of freedom robotic device with the affected
arm (Fig. 1a). A custom video display system (not
shown) provided visual feedback of the location of
the wrist as the arm moved in the horizontal plane.
During movement, the weight of the arm was sup-
ported. Movement data was collected at 200 Hz and
filtered using a 5th order Butterworth low pass filter
with a 12 Hz cutoff. Using anthropometric measure-
ments recorded from each participant, we computed
inverse kinematic relationships to obtain elbow and
shoulder joint angles corresponding to endpoint pos-
ition data. The robot control and instrumentation
were mediated by a Simulink-based XPC Target com-
puter, with a basic rate of 1 kHz. The robot controller
compensated for the dynamics of the robot arm. A
force sensor attached to the end-effector measured
the human-robot interaction forces.
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Experimental protocol
Each participant completed nine sessions across 5 weeks,
including evaluation (Baseline, sessions 1, 2; Post, ses-
sions 8, 9) and training (sessions 2–7, spanning 2 weeks)
sessions. For each evaluation, participants completed a
clinical assessment and a motor performance assessment
which included three motor tasks using the robotic de-
vice under no forces: point-to-point reaching, circular
movements, and six two-minute trials (12 min in total)
of self-directed motor exploration. For each training ses-
sion, each participant first completed a performance as-
sessment then completed an additional 16 two-minute
trials (32 min in total) of motor exploration, either in
the presence of a customized force field (Force group,
n = 11) or absent forces (Control group,n = 11). This
investigation considered only data from the motor
exploration portions of Baseline (session 2) and Post
(session 8) evaluation sessions as well as the training
sessions.

For the motor exploration task, participants were
instructed to move the robot handle to all reachable
points within a 0.6 m × 0.4 m workspace, to vary their
speed and direction of movement as much as possible
and to avoid repetitive movements. Each motor explor-
ation trial ended after two cumulative minutes of move-
ment within the workspace. Movement speed below
0.04 m/s was considered rest so that the time samples

did not count towards the total movement time. While
we informed participants they could rest at any time, we
also provided designated rest periods (1–3 min) at the
end of the motor performance assessment and prior to
the start of training and after the first eight trials during
training. After each trial of motor exploration, we pro-
vided a Post-Trial feedback scoresummarizing their
motor exploration performance, as described previously
[15]. The score was based on a heuristic measure of ran-
domness which was used to encourage more variety in
movement patterns. Following each completed trial, we
displayed on the screen both the“Current” score (score
from the most recent trial) and the“Best” score (highest
score across all trials) the participant achieved within a
given session.

Design of customized force field
The motor exploration portion of the performance as-
sessment for each training session served as a basis for
the design of a customized force field for training in that
session (See Fig.1). To serve as a model of an individ-
ual’s typical patterns of movement, this study focused on
velocity data accumulated across 12 min of motor ex-
ploration. We fit this data with a multivariate Gaussian
smoothing function. The result of this model fitting
procedure can be visualized by constructing a two-
dimensional probability distribution representing the

Fig. 1 Experimental design.a Stroke survivors performed self-directed motor exploration by moving the robot handle in the horizontal plane.
Measurements of their limb motion and the interaction forces were used to estimate the positive (concentric) and negative (eccentric)
mechanical work exerted in different directions of shoulder and elbow joint motion.b The probability distribution of each individual's movement
velocities during unassisted motor exploration (top; blue indicates lower probability, red indicates higher probability, black contour line represents
the 90th percentile velocity coverage) formed the basis for the design of customized training forces (bottom; red arrows indicate the direction
and relative magnitude of forces applied, colored contour lines represents Gaussian model fit to velocity data)
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most and least typical movement velocities during ex-
ploration (Fig. 1b, colored contours). Next, computing
the gradient of the analytical form of this function re-
sults in a continuous velocity-dependent function whose
output are vectors that represent the slope along the
two-dimensional distribution. In principal, the direction
of the vectors point from higher probabilities towards
lower probabilities of the distribution (Fig.1b, red ar-
rows). The vector field represents the direction and rela-
tive magnitude of robot-applied forces which were
updated continuously based on the current velocity of
its endpoint. Additional details on the experimental pro-
cedures were recently published [15].

Model of upper limb dynamics
Here we describe the human-robot dynamic interaction
for two degree of freedom planar movement (Fig.1a).
We employed established methods of inverse dynamics
of upper limb motion to estimate the elbow and shoul-
der joint torques generated by the human. This analysis
considers the human arm as a closed system where an
external force at the wrist is available from the force sen-
sor measurements. Thus, the model considers the influ-
ence of the torques acting on each joint; including, the
torque required to move the arm passively (τp) which is
composed of the torque generated by the human (τh)
and the torque acting on the arm by the robot (τr). The
passive load of the arm can be expressed asτp ¼ MðqÞ€q
þ Cðq; q̇Þq̇ , where q represents the joint angles of the
arm, M is the inertial matrix function and C is the
Coriolis-centrifugal matrix function. Anatomical mea-
surements of limb segments, body weight and height for
each patient were used to estimate the mass distribution
of the arm [26]. We computed the torques of the robot
acting on the human arm arising from the robot contact
forces according toτr ¼ JT

h Fs , whereJh is the Jacobian
matrix of the arm andFs is the interaction force mea-
sured from the force sensor.

Model features
We constructed a set of candidate model features
(nine in total) to be used as our model predictors in
our regression analysis. These features included a sin-
gle categorical factor representing training group in
addition to eight individual data variables, specifically
the components of mechanical work relating to each
patient’s overall energetic contribution to limb motion
during training (Table 1). To compute the work fea-
tures, we first solved for the patient-generated torque
at each individual joint and then calculated the mech-
anical powerðPðtÞ ¼ τhq̇Þ for each two-minute trial of
motor exploration within training (96 trials in total
across six training sessions). In principal, the integral

of power across time represents the total mechanical
work (W = ∫ P(t)dt). We divided the time-series calcu-
lations of power into four separate components for
each joint. Each of these components represented a
different combination of the direction of joint torques
generated by experiment participants and the relative
direction of angular motion at each respective joint.
Finally, we computed the numerical integral for each
time series of power to obtain work features; includ-
ing, both the positive (concentric) and negative (ec-
centric) work performed in elbow flexion and
extension and in shoulderhorizontal adduction and
abduction (Fig.1a). We represent each individual fea-
ture of work as the average across training trials sub-
tracted by the respective average work across
unassisted motor exploration trials (six) during Base-
line evaluation (session 2).

Recovery outcomes
We evaluated how well the components of mechanical
work during training could act as predictors of measures
of patient recovery. Our primary clinical outcome in-
cluded changes in UEFM from Baseline (session 2) to
Post (session 8). Beyond standard clinical assessments,
we also evaluated changes in motor exploration per-
formance. We employed an engineering metric, previ-
ously described in [15], which captures the“maximum”
range of movement velocities spanned during motor ex-
ploration. Velocity coverage is expressed as the esti-
mated area of two dimensional velocity data (in units of
m2/s2). To determine velocity coverage, we first calcu-
lated the 90th percentile speed within 64 equally spaced
bins radially aligned from the zero-velocity center within
the range of 0-2π. We then calculated the area within
the boundary formed by connecting the points repre-
senting the 90th percentile speed within each bin. We
considered the change in velocity coverage from Baseline
(session 2) to Post (session 8) as an additional outcome
prediction.

Prediction model
We employed a Least Absolute Shrinkage and Selection
Operator (LASSO) predictive model to predict recovery
outcomes using our work features [27]. The LASSO
method is a special case of regularized least squares re-
gression which incorporates an additional penalty term
on the L1 norm of the model coefficients. We chose
LASSO because it has the advantage over alternative ap-
proaches of enhancing the interpretability of the results
by reducing the number of features used by the model.
We used a first-order LASSO model represented by the
following formula in Lagrangian form that determines a
set of fitted coefficients such that:
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where N equals the number of experimental participants
(22 in total), J equals the number of features (9 in total),
yi is the outcome measure, xi = [Xi1, …,Xip,] represents
the eight components of work features and an additional
categorical feature representing training group denoted
Xij, (i = 1, …,N, j = 1, …,J),βj is the coefficient of the j-th
feature andβ0 is the intercept. The model features were
standardized to account for relative differences in mag-
nitude between the components of work.λ represents

the non-negative penalty term that controls the degree
of regularization by effectively driving the coefficients of
features that are unhelpful to the predictions to zero.
This results in a reduced feature set incorporated by the
model. For our model predictions, we chose the largest
λ value (λ1SE) where the cross-validated mean-square
error MSECV (i.e. an estimation of how well the model
would predict new data) is within one standard error of
the minimum MSECV [27].

Our primary goal in using LASSO regression was to
determine the most important predictors of recovery
outcomes, particularly among the work features (See
Ranking the Features). In addition, we used LASSO

Table 1: Individual Participant Data

Outcomesa Work Featuresb

UEFM Velocity
Coverage (m2/
s2)

(� ) Shoulder
Adduction

(+) Shoulder
Adduction

(� ) Shoulder
Abduction

(+) Shoulder
Abduction

(� ) Elbow
Flexion

(+) Elbow
Flexion

(� ) Elbow
Extension

(+) Elbow
Extension

Force Group

1 0.5 1.44 200.9 148.8 251.7 126.6 143.1 86.8 148.4 53.5

2 2 1.36 179.7 58.2 258.0 77.5 179.6 80.4 161.7 37.6

3 2 0.65 51.6 7.9 53.4 13.7 39.2 4.7 30.0 10.1

4 1.5 0.51 119.0 49.9 155.1 46.3 70.9 14.6 83.3 12.9

5 0.5 1.07 108.7 � 40.9 134.4 � 1.3 288.9 107.7 251.6 106.7

6 0.5 0.15 46.6 13.7 49.7 22.3 59.1 13.2 59.1 10.2

7 0 2.34 144.8 52.0 173.1 60.6 110.5 54.5 92.2 45.6

8 3.5 0.15 18.5 � 7.2 26.2 � 0.2 83.6 9.4 61.3 10.5

9 � 1 0.67 87.2 22.8 92.8 22.7 48.2 16.0 40.7 13.4

10 2.5 0.25 98.2 26.6 107.7 44.7 69.3 20.4 54.7 17.8

11 0.5 1.14 157.0 82.5 189.7 64.8 152.9 48.8 155.5 39.7

Mean
1.1 0.88 110.2 37.7 135.6 43.4 113.2 41.5 103.5 32.5

± SD 1.3 0.67 57.5 50.1 78.7 38.1 74.1 36.3 67.9 29.4

Control Group

1 0 � 0.07 15.5 24.5 17.0 11.8 17.3 26.9 33.5 15.3

2 2 0.01 15.4 6.5 18.9 18.7 15.7 16.4 12.7 20.3

3 2 0.35 � 9.0 � 15.6 � 0.4 5.0 � 1.5 18.6 � 36.5 31.0

4 3 0.70 14.1 23.0 11.8 23.4 14.9 � 1.1 7.2 3.8

5 2.5 1.56 16.6 27.3 23.8 26.8 8.0 2.0 4.6 4.8

6 0.5 0.84 13.7 10.4 11.0 30.3 5.1 � 2.0 2.9 2.7

7 2 1.03 15.1 15.1 8.3 18.3 4.8 4.1 7.4 6.5

8 � 0.5 1.28 11.5 10.5 13.2 7.4 10.3 8.4 9.3 14.6

9 1 0.58 5.4 24.6 8.4 17.2 14.4 4.5 16.5 3.4

10 � 2.5 0.74 12.1 16.7 12.2 27.9 10.8 2.2 10.8 3.7

11 � 2.5 0.20 9.1 16.1 4.1 15.4 � 0.6 � 2.9 1.0 � 5.6

Mean
0.7 0.66 10.9 14.5 11.7 18.4 9.0 7.0 6.3 9.1

± SD 1.9 0.51 7.5 12.0 6.7 8.3 6.5 9.6 16.7 10.2
achange from baseline to postbaverage change from baseline to training in Joules (−) Negative/Eccentric work (+) Positive/Concentric work
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regression to perform an exhaustive analysis of the sensi-
tivity in the predictive ability of our work features. We
relied on the adjusted coefficient of determination (R2)
as our primary metric which measures the proportion of
variance in our recovery outcomes that can be explained
by the work features selected by LASSO. We determined
the sensitivity in R2 to different data splits using 5-fold
cross-validation with 231 repeats. Each repeat uniquely
split the participant data into the five different folds. For
each repeat, we chose the LASSO model whereλ = λ1SE,
then trained the model using all the data and calculated
the R2 of the resulting predictions. As a secondary
metric we calculated the mean squared error (MSE) of
the trained model predictions and compared to the
MSECV in order to assess the degree of overfitting. Our
repeated cross-validation method provides a robust esti-
mate of the variability in R2 and MSE to different
choices ofλ. As an additional measure of sensitivity, we
repeated the cross-validation procedure with six boot-
strap datasets. We constructed each of these datasets by
randomly resampling, with replacement, the original
dataset (all 96 trials). Thus, our measure on the quality
of our model predictions included 1617 R2 estimates.
Our bootstrap method increases confidence in our R2

and MSE estimates.

Ranking the features
Our primary objective in using LASSO regression was to
determine the most important predictors of recovery out-
comes, particularly among the work features. LASSO con-
veniently reduces the number of features used in the
model; however, there are no built-in methods for ranking
the model predictors based on importance. We rely on our
previously described methods in which, as a first step, the
ranking of features was based on the frequency each was
selected in the model [28]. The selection frequency metric,
expressed as a percentage, represents the number of times
in total each feature is included in the model (i.e. assigned a
non-zero coefficient) across the231 5-fold cross-validation
repeats for each bootstrap dataset. Thus, the maximum
possible number of times a given feature could be selected
was 1617. Next, we used a heuristic approach, which devi-
ates slightly from our previous methods [28], to determine
the important model features. Here, we evaluated model
performance (R2) with each successive removal of a feature,
rather than removing each feature individually, starting
with the highest ranked feature (i.e. the most selected) and
compared to the model predictions that included the full
feature set (Full Model). By excluding features successively
and in this order, we determine the extent to which the
remaining features are able to compensate for the excluded
features and where model performance starts to diminish
when they can no longer compensate.

Results
We investigated how practice energetics (mechanical
work) performed by stroke survivors could explain dif-
ferences in recovery outcomes. Our use of a multiple re-
gression model (LASSO) revealed more accurate
predictions using changes in velocity coverage (coeffi-
cient of determination: mean R2 ± SD; 0.36 ± 0.03), as
compared to changes in our primary clinical outcome
UEFM (− 0.0007 ± 0.005). Our analysis also revealed that
‘training group’ was the most frequently selected feature
in each of these models. This result suggests a significant
group effect contributed uncertainty to the model predic-
tions, and more importantly, in determining the work fea-
tures most important to recovery. Thus, in the following
analysis, we performed separate predictions for each
group.

Energetics relate to outcomes
Prior to our main analysis, we inspected how training
energetics relate to patient outcomes (Fig.2). We first
examine the degree that the total work performed
(change from Baseline to Training in Joules, mean ± SE;
Force, 617.7 ± 106.2; Control, 87.5 ± 13.6) correlated with
changes in our main clinical outcome measure (change
in UEFM scores from Baseline to Post, mean ± SE; Force,
1.1 ± 0.4; Control, 0.7 ± 0.6). Because these observed
changes in UEFM scores would not be considered“clin-
ically important” [29], it may not be surprising that we
failed to detect a trend for both groups (Force,r = −
0.29,p = 0.4; Control,r = 0.1,p = 0.77). However, beyond
clinical outcomes, we focused our investigation on
whether training energetics relates to changes in velocity
coverage (change from Baseline to Post; Force, 0.88 ±
0.20 m2/s2; Control, 0.66 ± 0.15 m2/s2). We expected that
this measure would be more sensitive to any recovery
resulting from motor exploration training (Fig. 2a).
Interestingly, we found a significant correlation for pa-
tients who trained with forces (r = 0.7, p = 0.1), but not
the Control group (r = − 0.003,p = 0.99). It is worth not-
ing that the Force group performed much greater levels
of work than the Control group due to the presentation
of interactive forces.

Besides the basic link we found between work and
recovery, we were interested in pinpointing the spe-
cific components of workthat best predict recovery
(Table 1). As a preliminary inspection, we correlated
changes in work for each component with the recov-
ery outcomes (Fig.2b). For the Force group, we
found that negative work during shoulder adduction
(r = 0.73, p = 0.01) and abduction (r = 0.71, p = 0.01)
and positive work during elbow flexion (r = 0.65, p =
0.03) significantly correlated with changes in velocity
coverage, but not positive work during elbow exten-
sion (r = 0.54, p = 0.08), negative work during elbow
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flexion (r = 0.45, p = 0.17) and extension (r = 0.46, p =
0.15), or positive work during shoulder adduction
(r = 0.45, p = 0.16) and abduction (r = 0.56, p = 0.08).
We failed to detect any trends for the Control group.
Our correlation analysis also did not reveal significant
effects for changes in UEFM for both groups.

Model performance
We performed a rigorous statistical analysis to deter-
mine how well components of work during training col-
lectively predict patient outcomes using multiple
regression analysis (Fig.3). Unsurprisingly, we found
better predictions for the Force group compared to the
Control group. Our model predicted changes in velocity
coverage with a coefficient of determination of 0.52 ±
0.043 (mean R2 ± SD) for the Force group (shown in Fig.
3, Full Model) and 0.34 ± 0.15 for the Control group.
The mean squared error of the trained model predic-
tions was 0.21 ± 0.02 (MSE ± SD) for the Force group
and 0.17 ± 0.04 for the Control group. While our model-
ing approach provided a robust estimate of the predict-
ive power of the components of work, we also wanted to
evaluate how well the model might perform in predict-
ing new data. We found the estimated predicted mean
squared error in cross-validation was 0.64 ± 0.09

(MSECV ± SD) for the Force group and 0.46 ± 0.06 for
the Control group. In contrast to changes in velocity
coverage, prediction accuracy for changes in UEFM
score was substantially lower for both groups (mean
R2 ± SD; Force, 0.16 ± 0.14; Control, 0.25 ± 0.22).

Feature importance
Beyond proposing an overall predictive model, we used
LASSO to determine the relative importance of each
work feature to predicting outcomes (Fig.3). We first
examined the selection frequency of each work feature
by our LASSO model which determined the order of
feature removal used in our subsequent analysis. Our
analysis showed that negative work in shoulder adduc-
tion (98.9% selected), positive work in elbow flexion
(66.1%) and extension (65.5%) were selected most. The
remaining features were selected considerably less than
the top features (negative work in elbow extension
and positive and negative work in shoulder abduc-
tion were less than 12%, positive work in shoulder ad-
duction was less than 5% and negative work in elbow
flexion was not selected).

As a complement to selection frequency, we ana-
lyzed how removing features influenced the accuracy
of model predictions. Interestingly, we found that

Fig. 2 Correlation analysis.a The total mechanical work performed during motor exploration force training significantly correlated with changes in
velocity coverage. Each data point represents an individual participant. The size of each data point is proportional to that participant’s velocity
coverage during Baseline (session 2). For the Force group (black closed circles), participants with greater initial velocity coverage (evident of larger data
points) tend to exert more total work during Training and showed greater gains in velocity coverage. This trend was not observed in the Control
group (black open circles).b The breakdown of work reveals subcomponents that significantly correlated with changes in velocity coverage. A single
pair of open (Control group) or closed (Force group) red triangle (Positive Work) and blue circle (Negative Work) along the x axis (the Training axis on
each plot) represents an individual participant. Regression lines only shown for statistically significant correlation (� < 0.05) observed in the
Force group
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