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Abstract 

Chemotherapy agents used in the standard treatments for many types of cancer are neurotoxic and can lead to last-
ing sensory and motor symptoms that compromise day-to-day movement functions in cancer survivors. To date, the 
details of movement disorders associated with chemotherapy are known largely through self-reported symptoms 
and functional limitations. There are few quantitative studies of specific movement deficits, limiting our understand-
ing of dysfunction, as well as effective assessments and interventions. The aim of this narrative review is to consoli-
date the current understanding of sensorimotor disabilities based on quantitative measures in cancer survivors who 
received chemotherapy. We performed literature searches on PubMed and found 32 relevant movement studies. We 
categorized these studies into three themes based on the movement deficits investigated: (1) balance and postural 
control; (2) gait function; (3) upper limb function. This literature suggests that cancer survivors have increased postural 
sway, more conservative gait patterns, and suboptimal hand function compared to healthy individuals. More studies 
are needed that use objective measures of sensorimotor function to better characterize movement disabilities and 
investigate the underlying causes, as required for developing targeted assessments and interventions. By updating 
our understanding of movement impairments in this population, we identify significant gaps in knowledge that will 
help guide the direction of future research.
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Introduction
Chemotherapy agents used in the standard treatments 
for many types of cancer—including platinum com-
pounds, taxanes, and vinca alkaloids—exhibit neurotoxic 
adverse effects. Depending on individual compounds, 
chemotherapy can damage the nervous system via vari-
ous mechanisms (e.g., interference with axonal transport, 
mitochondrial damage, and altered ion channel activity) 
[1]. These adverse effects are commonly referred to as 
chemotherapy-induced peripheral neuropathy or neu-
rotoxicity (CIPN). Although the ‘P’ in CIPN is included 
to describe damage to the peripheral nervous system, 

there is also evidence of central neurotoxicity [2, 3]. To 
acknowledge the central involvement that is not captured 
by peripheral neuropathy, we adopted CIN as chemo-
therapy-induced neurotoxicity for this review.

The prevalence of CIN varies from 19% to more than 
85%, with the highest reported for platinum compounds 
(70–100%) and taxanes (11–87%) [4]. Although the 
mechanisms and prevalence of CIN may vary with drug 
type, the clinical presentations of patients with CIN share 
similar characteristics. Sensory symptoms associated 
with chemotherapy are most common and may include 
numbness/tingling, neuropathic pain, increased sensi-
bility to hot/cold temperatures, and decreased vibration 
and pinprick sensitivity. Motor symptoms may include 
hyporeflexia, weakness, and muscle cramps. Autonomic 
symptoms, although less common, may include dizzi-
ness, hearing loss, and constipation [5, 6]. CIN symptoms 

Open Access

*Correspondence:  bwang15@u.northwestern.edu
1 Department of Biomedical Engineering, Northwestern University, 
Evanston, IL, USA
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-0660-9138
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12984-021-00818-2&domain=pdf


Page 2 of 18Wang et al. J NeuroEngineering Rehabil           (2021) 18:16 

can present immediately or progress after several cycles 
of treatment, and their severity usually increases with 
drug accumulation. These symptoms often improve over 
time after treatment cessation but can persist for years 
in a subset of patients, limiting their quality of life across 
the entire cancer illness trajectory [7–10]. A major issue 
associated with these sensory and motor symptoms is 
compromised movement function that contributes to 
functional impairments in day-to-day tasks [11, 12]. 
However, few studies quantify the specific movement 
deficits linked to sensory and motor signs and symptoms 
that reduce the quality of life in cancer survivors post-
treatment. Specifying which components of a movement 
are impaired could focus the assessment of disability and 
recovery as well as possibly help identify more targeted 
interventions.

Descriptions of movement dysfunction associated 
with chemotherapy have come largely from self-reported 
symptoms and functional limitations, with few quantita-
tive evaluations of movement function. Patient-reported 
outcome measures are the common clinical tools for 
assessing chemotherapy-induced neurotoxicity [13]. 
These measures are useful for tracking functional impair-
ments and promoting communication of adverse symp-
toms and activity limitations among patients, oncologists, 
infusion nurses and personnel within cancer care teams 
[14]. However, self-reports are subjective, potentially 
biased (depending on the patient’s recall) and inconsist-
ently interpreted among patients and health care provid-
ers [15]. Most importantly, they provide no insight into 
the etiology of movement disability. Conventional neu-
rological assessments, including nerve conduction stud-
ies, sensitivity of light touch, pin-prick and vibration, and 
deep-tendon reflexes may provide complementary infor-
mation on CIN [13], though it is often noted that changes 
in neurophysiological signs do not reflect patient’s symp-
toms or function [16]. To address the limitations of self-
reports and conventional neurological assessments on 
understanding the CIN-related movement dysfunction, 
quantitative and objective tools that directly evaluate the 
movement deficits are needed.

With the rising number of long-term survivors of 
cancer [17], there is a greater emphasis by the National 
Cancer Institute on improving quality of life and miti-
gating disability associated with the  long-term effects 
of cancer treatment. A critical first step is to improve 
the understanding of chemotherapy-related movement 
deficits. Quantitative and instrumented movement stud-
ies have been widely used in other neurological popu-
lations to identify the characteristics and underlying 
causes of movement deficits [18–20]. In recent decades, 
more researchers have adopted this approach to inves-
tigate chemotherapy-induced movement dysfunction. 

Therefore, the objectives of this narrative review are to 
consolidate current knowledge of which movement func-
tions are most commonly impaired in cancer survivors 
who received neurotoxic chemotherapy, to identify areas 
of research needed to improve the understanding of the 
movement deficits in this population, and to help guide 
improved assessment and treatments.

Methods
We performed a literature search on 5/15/2020 in Pub-
Med, with a combination of search terms including 
derivations related to movement deficits (sensorimotor, 
movement, physical) and the disease (chemotherapy-
induced neurotoxicity, chemotherapy-induced periph-
eral neuropathy, cancer, cancer patient, cancer survivor). 
Six hundred and eighty-six articles were identified from 
the search. Articles were included if they met all of the 
following inclusion criteria: (1) published within 2000–
2020; (2) human subjects of any age, any cancer type; 
(3) most of the participants had received or were receiv-
ing neurotoxic chemotherapy, including platinum com-
pounds, taxanes, and vinca alkaloids; (4) provided 
quantitative and instrumented assessments of movement 
deficits; (5) published in English. Articles were excluded 
if they (1) were a review or abstract; (2) assessed move-
ment deficits only based on patient-reported outcome 
measures, functional outcome measures, or electrophysi-
ological methods. Sixteen articles were selected after 
reviewing the titles and abstracts. We then used the ‘Sim-
ilar Articles’ feature of Pubmed and identified 127 addi-
tional articles using Kneis et  al. 2016 [21] as the search 
article. After reviewing the titles and abstracts of the 127 
articles and checking for duplicates, we added eight arti-
cles to the list. We further reviewed the reference lists of 
the 24 selected articles and added eight additional arti-
cles. A total of 32 articles are included in this review 
(Fig.  1). The list of the 32 reviewed articles is shown in 
Tables 1, 2, and 3.

Results and discussion
Thirty-two movement studies related to chemotherapy-
induced neurotoxicity were identified. All of the reviewed 
movement studies focused on one of the three areas of 
movement function: (1) balance and postural control; 
(2) gait function; (3) upper limb function; therefore, we 
organized the results and discussion using these three 
themes.

Characteristics of balance and postural control 
impairments in cancer survivors with CIN
Postural imbalance is one of the most common move-
ment dysfunctions reported by cancer survivors. 
The ability to maintain postural balance, therefore, is an 
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area  commonly investigated in cancer survivors. Main-
taining postural balance is a complex process involv-
ing various components of postural control, including a 
neural representation of body segments and position of 
the center of gravity, multisensory inputs that monitor 
the orientation and stability of body segments, and reac-
tive or anticipatory responses for balance recovery after 
perturbations or postural stabilization during voluntary 
actions [22]. Most of the postural studies on cancer sur-
vivors evaluated this by measuring spontaneous postural 
sways (Table  1). Spontaneous postural sways are the 
natural oscillations of our body during normal stance, 
but they can become maladaptive in various patholo-
gies [23]. Characterization of spontaneous postural sway 
in cancer survivors with CIN reveals postural instability. 
Nine studies compared the spontaneous sway of cancer 
survivors to that of healthy controls when standing with 
eyes open [21, 24–30]. Sway amplitude, including the 
root mean square (RMS) of the resultant sway [30], the 
mediolateral (ML) sway [25, 29], and the total sway area 
[25, 26, 28] were greater in cancer survivors than healthy 
controls. Sway velocity, including the mean velocity of 
ML sway [25, 28] and mean velocity of the resultant sway 
[24] were also greater in cancer survivors than that in 
controls. Three studies (the majority of participants had 
breast cancer) [31–33] assessed the longitudinal effect of 
chemotherapy on spontaneous sway and found that sway 
amplitude (area, ML RMS, AP RMS) and sway veloc-
ity (AP mean velocity, ML mean velocity) parameters 

worsen after treatment. This evidence suggests that can-
cer survivors with CIN are unstable in standing. Among 
the eight studies that investigated direction-dependent 
sway characteristics, seven identified ML sway defi-
cits (RMS, velocity, and frequency) [25, 27–29, 31–33], 
whereas two also identified AP deficits [30, 33], suggest-
ing that cancer survivors may be more unstable in frontal 
balance control. Impaired ML sway has been shown to be 
an important predictor of retrospective and prospective 
falls in older adults [34–36]. Fino et  al. 2019 used prin-
cipal component analyses on sway data and confirmed 
the association of ML sway frequency and falls in cancer 
survivors with severe neuropathic symptoms [27]. Unlike 
balance control in the sagittal plane that uses both distal 
ankle and proximal hip strategies, balance in the frontal 
plane is predominantly controlled via the load-unload 
mechanism accomplished by hip adductors and abduc-
tors while the ankle inversion-eversion plays a minimal 
role [37, 38]. The association of the impaired ML postural 
control with falls is likely due to the lack of a compensa-
tory control scheme for ML balance.

These existing spontaneous sway studies suggest that 
there is excessive postural sway in cancer survivors, espe-
cially in the ML direction, but the factors underlying the 
amplified postural sway in this population have yet to be 
clarified. One hypothesis is that excessive postural sway is 
caused by the peripheral sensory neuropathy associated 
with CIN. This hypothesis is well motivated as the soma-
tosensory system contributes more to postural stability 

Records identified in
PubMed
(n = 686)

Records identified via the ‘Similar 
Articles’ feature in PubMed 

(n = 127)

Records after duplicates 
were removed 

(n = 783)

Records screened
(n = 783)

Records eliminated due to 
exclusion criteria 

(n = 759)

Full-text articles assessed 
(n = 24)

Articles added after 
reviewing the reference list 

of the 24 articles 
(n = 8)

Total studies included
(n = 32)

Fig. 1 Flow diagram of article selection process
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than the visual and vestibular systems [39]. The periph-
eral sensory system constitutes different perceptual sub-
systems involving mechanoreceptors in skin, muscles, 
tendons, and ligaments, but the precise determination of 
the diminished peripheral sensory capability associated 
with CIN is not straightforward. Researchers investigat-
ing the relationship between increased postural sway and 
peripheral sensory neuropathy relied on various meas-
ures to assess the state of the peripheral sensory system, 
including subjective reports of sensory symptoms (e.g., 
severity of numbness/tingling, Functional Assessment of 
Cancer Therapy-Gynecologic Oncology Group-neuro-
toxicity (FACT&GOG-Ntx), and CIPN 20-item quality of 
life questionnaire (CIPN20)) [21, 29, 32, 33, 40], vibration 
perception threshold [29, 40], and conduction studies of 
peripheral nerves [33]. Composite scores that combine 
subjective symptoms and objective measures of sensory 
signs and reflexes (e.g., modified Total Neuropathy Score 
(mTNS)) [24, 41] were also used [33]. Zahiri et al. 2019 
identified a significant correlation between the ML sway 
and plantar vibration perception threshold in patients 
reporting feet numbness/tingling [29]. Kneis et  al. 2016 
correlated the total center of pressure sway during mono-
pedal stance with perceived symptom severity measured 
by the FACT&GOG-Ntx in breast cancer survivors with 
CIN [21]. Monfort et  al. 2017 investigated the longitu-
dinal effects of taxanes chemotherapy on breast cancer 
patients and found a significant correlation between ML 
sway and sensory symptoms measured by CIPN20 [32]. 
Muller et al. 2020 also investigated the longitudinal effect 
of neurotoxic chemotherapy, but on a cohort of patients 
with mixed cancer diagnoses. In contrast to Monfort 
et al. 2017, Muller et al. did not find a significant corre-
lation between sway measures and sensory symptoms; 
instead, they found a significant correlation between 
sway measures and conduction speeds of the peroneal 
and sural nerves [33]. Wampler et  al. 2007 and Varedi 
et  al. 2018 observed a similar inconsistency. Both stud-
ies quantified a composite score of postural sway during 
six standing conditions and mTNS. Wampler et al. found 
a significant association between the composite score 
and the mTNS score in a group of breast cancer patients, 
but Varedi et  al. studying a cohort of adult survivors of 
childhood acute lymphoblastic leukemia did not find the 
same association [24, 41]. Although different measures 
of postural sway and neuropathy were used in these cor-
relational studies, the majority support an association of 
excessive postural sway with peripheral sensory deficits. 
The inconsistent findings between Monfort et  al. 2017 
and Muller et al. 2020 and between Wampler et al. 2007 
and Varedi et al. 2018 suggest that the link between pos-
tural deficits and CIN might be specific to the type of 
cancer and/or type of chemotherapy used. Future studies 

should consider the impact of these variables on chem-
otherapy-induced impairments of posture and balance 
control.

The correlational studies, however, do not suffice to 
conclude a causal relationship between peripheral sen-
sory deficits and excessive postural sway or rule out other 
contributing factors. In fact, McCrary et  al. 2019 found 
that cancer patients, regardless of sensory symptoms, 
had greater postural sway compared to age-matched 
normative values. Among the five factors contributing to 
increased postural sway (patient-reported balance/mobil-
ity deficits, abnormal vibration, numbness/tingling, self-
reported weakness, and age > 65), only two were related 
to peripheral sensory deficits [40]. These results suggest 
that motor deficits such as weakness may also affect pos-
tural balance [40, 42], but few have directly assessed their 
impact. One study with a cohort of mixed cancer types 
found no difference in grip or knee extension strength 
between control subjects and cancer survivors and no 
correlation between these strength measures and pos-
tural sway [26]. In contrast, a separate study on cancer 
survivors who had received vincristine chemotherapy 
found that impaired dorsiflexion strength was correlated 
with balance score [43]. These variable findings under-
score the need for assessing the impact of motor function 
on postural control in more tightly controlled patient 
cohorts and treatment types, as it could be a major con-
tributor to chemotherapy-induced disability along with 
sensory deficits.

Postural balance depends on the integration of sensory 
inputs from the somatosensory, visual, and vestibular sys-
tems to elicit appropriate motor responses [44]. Although 
current evidence suggests a link between CIN-induced 
somatosensory deficits and postural instability, it is not 
clear if there are also deficits in the visual and vestibu-
lar system contributing to postural instability and how 
cancer survivors adapt their control strategies. Systemati-
cally altering or removing one or more sensory inputs has 
been used to investigate the contribution of an individ-
ual sensory system to postural stability and the sensory 
integration process. Among the six studies that occluded 
vision to investigate the visual dependency of changes 
in postural sway, four observed a greater effect of visual 
occlusion on postural sway in cancer survivors than that 
in controls [28–31], whereas two did not [24, 26]. The 
greater weighting of the visual system by cancer survivors 
suggests potential deficits in the somatosensory and/or 
vestibular systems. Kneis et  al. 2020 ruled out potential 
vestibular dysfunction via the rotational chair test [30]. 
They further dissociated the relative weighting of soma-
tosensory and vestibular systems in postural control 
by perturbing standing posture using a tilting platform 
and measuring the subsequent excursions of the upper 
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(shoulder-hip) and lower (hip-ankle) body and center of 
pressure displacements. They found that cancer survivors 
had smaller body excursions than controls in response 
to platform tilts, suggesting that cancer survivors use 
vestibular rather than proprioceptive cues for pos-
tural control as proprioceptive cues may drag the body 
along platform movements (greater body excursions), 
whereas vestibular cues would stabilize the body in space 
(smaller body excursions). A postural-control model fit-
ting the experimental data was consistent with a down-
weighting of the proprioceptive cues in cancer survivors. 
The underutilization of the somatosensory system was 
also supported qualitatively by Monfort et al. 2019 [28]. 
Their data revealed that the symptomatic group exhib-
ited smaller postural deteriorations when somatosensory 
input was altered (standing on foam) compared to that 
of healthy controls and the asymptomatic group, imply-
ing that the symptomatic group relied less on somatosen-
sory feedback for postural balance. Although it appears 
that cancer survivors rely more on the vestibular system 
for postural control, whether the  vestibular function is 
intact after chemotherapy remains debatable. Kneis et al. 
2020 is the only postural study that assessed vestibu-
lar function, finding no vestibular dysfunction in their 
cohort. However, the rate of abnormal vestibular func-
tion after chemotherapy ranges from 0 to 50% [45]. Fur-
thermore, Wampler et  al. 2007 found two of the largest 
postural sway differences between cancer survivors and 
controls occurred in standing conditions relying on ves-
tibular input, suggestive of vestibular impairments [24]. 
This agrees with the study by Winters-Stone et al., which 
identified balance deficits of vestibular origin contribut-
ing to falls among breast cancer survivors who received 
chemotherapy, although the authors also assessed vision 
and identified an association of impaired visual contrast 
sensitivity with falls [46].

In summary, studies of sensory integration have 
revealed that cancer survivors underutilize somatosen-
sory feedback for postural control, likely due to CIN-
related somatosensory deficits. As a compensatory 
strategy, cancer survivors increase the weight of the 
visual and vestibular systems, but the summarized evi-
dence indicates that this strategy compensates incom-
pletely for the deficits in the somatosensory system 
during static standing. The extent to which the visual and 
vestibular dysfunction contribute to postural instability 
remains unclear, as few of the reviewed postural studies 
performed rigorous tests of these systems. Likewise, few 
studies performed detailed assessments of the motor sys-
tem. Future studies should consider how the CIN-related 
motor function changes (i.e., muscle strength) affect 
postural stability. Kneis et  al. 2020 presented a useful 
paradigm for investigating sensory integration strategies 

adapted by cancer survivors. However, the study was 
based on a small sample with severe balance deficits, so 
the conclusion cannot be extrapolated to cancer patients 
with different levels of CIN severity. The sample also con-
sisted of mixed cancer types and treatments; whether 
there are cancer type-related, treatment-related differ-
ences, or interaction effects [47] remains to be investi-
gated. Therefore, robust postural control studies with 
larger sample sizes and tightly controlled cancer and 
treatment types are needed to further clarify the postural 
control strategies adopted by cancer survivors.

Characteristics of gait impairments in cancer survivors 
with CIN
Falls are common in cancer survivors. It is estimated 
that about 30% of cancer survivors fall every year [48], 
and individuals with CIN symptoms are 1.7–1.8 times 
more likely to fall than the asymptomatic individuals 
[7, 49].  The majority of falls occur during walking [50]; 
therefore, understanding walking behaviors in cancer 
survivors with CIN may provide information on how to 
prevent falls and fall-related injuries. Walking behavior 
is commonly characterized by the spatial and temporal 
parameters of gait, including step or stride length, step 
width, gait speed, single- or double-support, and swing 
time. Eight studies compared these gait parameters of 
cancer survivors with CIN to that of healthy controls 
(or asymptomatic patient group, or individuals prior to 
chemotherapy) and revealed that cancer survivors with 
CIN had impaired spatiotemporal gait pattern (Table 2) 
[29, 32, 49, 51–55]. During level ground walking with 
self-selected speed, six out of eight studies reported 
significantly decreased gait speed in the patient group 
[29, 32, 49, 51, 52, 54]. Other changes such as increased 
stride/step time [29, 53], decreased stride/step length [29, 
32, 49, 51, 52, 54], increased double support time [29, 49, 
55], and increased step width variability [53] were also 
reported. These gait changes reflect a conservative gait 
pattern [56], which is also observed in the population 
with diabetic neuropathy [19] and has been associated 
with fall risk in elderly populations [57, 58].

Similar to postural instability, this impaired gait pat-
tern was shown to be associated with CIN-related neu-
ropathy. Winters-Stone et  al. 2017 found a significant 
association between lower walking speed and increasing 
numbness/tingling and discomfort in feet [49]. Zahiri 
et al. 2019 found a significant correlation between stride 
time and plantar vibration threshold [29]. Gilchrist et al. 
2016 found a correlation of greater than 0.3 between step 
length and pediatric mTNS [51]. Although specific gait 
pattern changes like decreased step length and increased 
cadence can also be explained by decreased gait speed 
[59], increased gait variability appears to be related to 
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deficits in somatosensory feedback. It has been suggested 
that sensory feedback is important for adjusting step-to-
step limb trajectories and smoothing unexpected per-
turbation during locomotion [60, 61]. Deficits in sensory 
feedback, therefore, could have a greater influence on 
the variability of gait than the mean locomotor pattern. 
Wuehr et al. 2014 demonstrated that ML gait variability 
was highly sensitive to deficits in peripheral sensory feed-
back, irrespective of gait speed, supporting the important 
role of integrative sensory feedback for walking adjust-
ment in this plane [59]. This hypothesis was consistent 
with the study of Hsieh et al. 2019, who found a greater 
step width variability in symptomatic cancer survivors 
than in healthy controls without a significant difference 
in gait speed, suggesting that locomotion instability 
observed in cancer survivors may be linked to deficits in 
sensory feedback [53].

Cancer survivors with CIN demonstrated conservative 
gait patterns characterized by slower gait speed, shorter 
step length, longer double support time, and greater ML 
gait variability. These altered gait patterns have been 
linked to somatosensory deficits associated with CIN [29, 
49], but it remains unclear if other factors that contrib-
ute to stability during locomotion in healthy subjects also 
contribute to disability in cancer survivors. These include 
the visual and vestibular systems, spinal and supraspi-
nal networks, and musculoskeletal functions [62]. For 
example, musculoskeletal impairments, such as impaired 
range of motion and decreased lower extremity strength, 
contribute to gait impairments in individuals with dia-
betic neuropathy, along with the well-documented 
sensory deficits in this population [19]. Currently, the 
prevalence of similar musculoskeletal impairments in 
cancer survivors remains unknown. Wright et  al. 2017 
used kinematic and kinetic analyses of gait in children 
with vincristine-induced neurotoxicity and speculated 
that the deviated gait pattern was related to decreased 
dorsiflexion range of motion, ankle weakness, and a high 
proportion of co-contraction in the medial gastrocne-
mius and tibialis anterior muscles [63]. Gilchrist et  al. 
2016 also found that decreased dorsiflexion range of 
motion and impaired balance score explained decreased 
step length the most [51]. These results are intriguing, 
but it is unclear if they are relevant to adult cancer survi-
vors since both studies were performed on children. Co-
contraction of medial gastrocnemius and tibialis anterior 
muscles has been documented as a safety strategy used 
by adult cancer survivors with CIN for balance control, 
but only in static standing tasks [21]. These results have 
been observed in pediatric cancer survivors during gait, 
and it will be useful to determine if a similar strategy is 
employed by adult cancer survivors. Monfort et al. 2019 
is the only study that considered the role of cognition in 

gait stability [64]. They quantified gait stability in cancer 
survivors with CIN during single- and dual-task walking. 
They found that cancer survivors had similar gait stability 
during the single-task walking compared to healthy con-
trols, but the stability cost was greater during the dual-
task walking, and it was associated with poor executive 
function. The increased stability cost during dual-task 
walking could be due to the diminished sensory feed-
back associated with CIN that makes gait control more 
cognitively costly, but there was no evidence for an iso-
lated association between CIN severity and gait stability. 
These results suggest that cognitive impairments in addi-
tion to CIN could contribute to gait impairments though 
more work is needed to evaluate the prevalence and rela-
tive importance of these contributions. Finally, we were 
unable to find any studies that evaluated the impact of 
chemotherapy on the visual and vestibular systems even 
though these are known to be central to unimpaired gait.

In summary, current evidence on the underlying causes 
of gait abnormality in cancer survivors remains limited. 
Musculoskeletal deficits at the ankles, including reduced 
range of motion and strength and increased muscu-
lar co-contraction, contribute to altered gait patterns in 
pediatric cancer survivors, but further kinematic and 
kinetic gait analyses are warranted to determine if simi-
lar musculoskeletal changes occur in adult cancer sur-
vivors. Future gait studies should also investigate how 
chemotherapy-related changes in the central nervous 
system (e.g., vision, vestibular, cognition) contribute to 
gait impairments.

Characteristics of upper limb function impairments 
in cancer survivors with CIN
CIN-induced sensorimotor dysfunction not only con-
tributes significantly to balance and gait dysfunction in 
cancer survivors but also plays a significant role in upper 
extremity dysfunction. Particularly, cancer survivors with 
CIN report difficulties with skilled hand function such 
as typing, writing, and buttoning a shirt [8, 65–68], but 
few studies have investigated the specific components 
of the impairments and contributions from the CIN-
induced sensory or motor dysfunction (Table 3). Osumi 
et  al. 2019 investigated one of the essential upper limb 
motor behaviors, reach-to-grasp movement, in cancer 
survivors with perceived numbness due to neurotoxic 
chemotherapy [69]. Their reach-to-grasp movement con-
sisted of a reach component that primarily reflects the 
motor function of the proximal upper limb muscles and a 
thumb-index grasp component that requires fine control 
of hands and fingers. They found that cancer survivors 
had a significantly decreased smoothness during grasp-
ing but similar smoothness during reaching compared 
to healthy age-matched controls. The grasp smoothness 
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was significantly correlated with hand sensory func-
tion, measured by tactile detection threshold and numb-
ness rating, and hand motor function, measured by the 
hand grip-release test, suggesting that hand sensory and 
motor dysfunction may contribute to impaired thumb-
index grasp smoothness. Reinders-Messelink et  al. 2001 
investigated handwriting dexterity in children undergo-
ing vincristine chemotherapy for acute lymphoblastic 
leukemia [70] and found that pen pressure increased pro-
gressively during and six months after treatment, and the 
effect was most significant with the most complex draw-
ing task. Other qualities of handwriting, such as veloc-
ity, dysfluency, pause duration, and accuracy, were not 
different between patients and healthy controls. It was 
speculated that increased pen pressure is a compensatory 
mechanism for vincristine-induced sensory impairments 
whereby increased pen pressure can, in turn, increase 
pen-paper friction, providing more kinesthetic informa-
tion needed for handwriting tasks.

In summary, these two studies provide preliminary 
evidence of suboptimal hand function linked to CIN-
related sensory and motor disturbances. However, since 
thumb-index grasp and handwriting only represent parts 
of skilled hand function, further studies are needed to 
investigate other skilled hand function and manual dex-
terity (e.g., power vs. precision grasp, prehensible vs. 
non-prehensible object manipulation) and how they are 
affected by CIN. Furthermore, neither study considered 
the compensatory effect of vision on task performance, 
thus potentially misidentifying the functional signifi-
cance of CIN-induced sensory and motor dysfunction. 
Although incorporating vision is more functionally rele-
vant and takes hand-eye-coordination into account, iden-
tifying the relative contribution of sensory and motor 
dysfunction independent of vision can be useful for iden-
tifying targets of intervention.

Other factors to consider when investigating movement 
dysfunction in cancer survivors
Chemotherapy-induced neurotoxicity produces unique 
sensory and motor symptoms that contribute to dysfunc-
tion in postural control, gait, and upper limb function. 
While further research is warranted to fully characterize 
CIN movement dysfunction and its underlying causes, 
researchers should also consider other side effects of can-
cer and treatments, including fatigue, cognitive changes, 
and pain, when designing future studies. Cancer-related 
fatigue is common, with most studies reporting preva-
lence rates above 60% [71]. Cancer fatigue can have a 
peripheral component that is perceived as a sensation of 
weakness, which may be confounded with CIN-related 
motor symptoms [71]. It also can have a central com-
ponent, defined as difficulty in initiating or maintaining 

voluntary physical and cognitive activities [2, 71], which 
could negatively affect attention and interfere with move-
ment function, particularly during tasks that require 
greater cognitive loads (i.e., dual-task). Closely related 
to central fatigue is cognitive dysfunction in cancer sur-
vivors. It is estimated that 75% of patients might have 
measurable cognitive impairments during treatment, and 
35% will continue to exhibit cognitive difficulty months 
to years following treatment [72]. These cognitive impair-
ments range from changes in attention, memory, execu-
tive function, and psychomotor speed, related to the 
comorbid factors associated with cancer such as depres-
sion and anxiety and/or direct effects of chemotherapy/
radiation and cancer itself [72]. Cognition and attention 
play important roles in the  maintenance of balance and 
postural control [73]; therefore, these factors should be 
considered when interpreting the results of balance and 
postural impairments. Pain is another factor that can 
alter movement patterns [74]. Neuropathic pain related 
to chemotherapy, although not as common as numbness/
tingling, can present in a substantial patient population 
[75]. Cancer patients may also present with pain origi-
nating from tumor excision, removal of a body part (i.e., 
breast), tumor-related spinal cord compression, bone 
metastasis, and radiation injuries depending on types of 
cancer and course of individual cancer treatment [76].

In summary, individuals with cancer might present 
with other side effects add to the CIN-induced sensory 
and motor symptoms. Side effects like fatigue, cognitive 
dysfunction, and pain could complicate the interpreta-
tion of movement dysfunction. Researchers should con-
sider monitoring these side effects, if not controlling for 
them when investigating movement dysfunction linked 
to CIN.

Conclusion
Motivated by improving the management of chemother-
apy-related movement dysfunction, this literature review 
evaluated 32 studies and consolidated the knowledge of 
common movement disabilities in cancer survivors who 
received chemotherapy. Overall, cancer survivors with 
chemotherapy-induced neurotoxicity have been shown 
to present with increased postural sway, conservative 
gait patterns, and suboptimal hand function, but the cur-
rent understanding of CIN-related movement function 
changes is far from comprehensive.

We identified a number of areas where more infor-
mation is needed. Cancer survivors with CIN report 
a wide range of dysfunction in gross mobility (e.g., bal-
ance, walking, climbing stairs, and driving) and fine 
motor skills (e.g., tying shoes, buttoning clothes, writ-
ing, typing, opening lids, and cooking) [7, 8, 12, 65–68, 
77]. The majority of the reviewed studies focused on 
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quantifying postural and gait impairments, which are 
useful for understanding balance and walking dysfunc-
tion. However, the understanding of other mobility 
limitations, such as driving and stair climbing, is still 
lacking. Furthermore, current evidence is not clear on 
the underlying causes of gait and postural dysfunction. 
CIN-related somatosensory deficits likely play a role, but 
more research is needed to control and test other fac-
tors, including motor and central factors, to delineate 
their relative contributions to gait and postural dysfunc-
tion. Similarly, the two studies on the  upper extremity 
have identified some important deficits of hand func-
tion, including impaired smoothness in grasping and 
increased pen pressure in writing, but more studies are 
needed to understand other aspects of fine motor skills 
and manual dexterity.

There are currently no effective treatments for CIN. 
Many early reports suggest a possible beneficial effect 
of exercise (see reviews [11, 78, 79]). However, most 
exercise studies took a multimodal approach. We do 
not know what the best therapies are, nor do we have 
objective measures to determine if the therapies that we 
are using are effective in treating CIN, or they simply 
lead to compensation. Knowledge gaps in the objective 
characterization and underlying causes of CIN-related 
movement dysfunction present formidable barriers. To 
begin to address these outstanding issues, researchers 
and clinicians should work in concert to integrate and 
act upon objective measures deployed across the can-
cer treatment continuum. While this review character-
ized significant heterogeneity in evaluative tools and 
methodology for understanding CIN-related movement 
dysfunction, Kneis et  al. provide a framework on which 
to build future clinical studies [30]. By integrating more 
sensitive and reliable tools, the authors not only gained 
information about baseline group level deficits resulting 
from the effects of chemotherapy but also the capability 
to precisely monitor treatment effects. Both advantages 
outlined will be crucial for discovering factors associated 
with sensorimotor deficits and making rigorous determi-
nations on the efficacy of proposed treatments.

In summary, we identify significant knowledge gaps 
in CIN-related movement dysfunction and recommend 
frameworks for future clinical studies. Filling these gaps 
will help improve the clinical understanding of CIN-
related movement dysfunction and guide the develop-
ment of targeted assessments and treatments.
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