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Abstract 

Background: Robotic-Assisted Gait Training (RAGT) may enable high-intensive and task-specific gait training post-
stroke. The effect of RAGT on gait movement patterns has however not been comprehensively reviewed. The purpose 
of this review was to summarize the evidence for potentially superior effects of RAGT on biomechanical measures of 
gait post-stroke when compared with non-robotic gait training alone.

Methods: Nine databases were searched using database-specific search terms from their inception until January 
2021. We included randomized controlled trials investigating the effects of RAGT (e.g., using exoskeletons or end-
effectors) on spatiotemporal, kinematic and kinetic parameters among adults suffering from any stage of stroke. 
Screening, data extraction and judgement of risk of bias (using the Cochrane Risk of bias 2 tool) were performed by 
2–3 independent reviewers. The Grading of Recommendations Assessment Development and Evaluation (GRADE) 
criteria were used to evaluate the certainty of evidence for the biomechanical gait measures of interest.

Results: Thirteen studies including a total of 412 individuals (mean age: 52–69 years; 264 males) met eligibility 
criteria and were included. RAGT was employed either as monotherapy or in combination with other therapies in a 
subacute or chronic phase post-stroke. The included studies showed a high risk of bias (n = 6), some concerns (n = 6) 
or a low risk of bias (n = 1). Meta-analyses using a random-effects model for gait speed, cadence, step length (non-
affected side) and spatial asymmetry revealed no significant differences between the RAGT and comparator groups, 
while stride length (mean difference [MD] 2.86 cm), step length (affected side; MD 2.67 cm) and temporal asymmetry 
calculated in ratio-values (MD 0.09) improved slightly more in the RAGT groups. There were serious weaknesses with 
almost all GRADE domains (risk of bias, consistency, directness, or precision of the findings) for the included outcome 
measures (spatiotemporal and kinematic gait parameters). Kinetic parameters were not reported at all.

Conclusion: There were few relevant studies and the review synthesis revealed a very low certainty in current 
evidence for employing RAGT to improve gait biomechanics post-stroke. Further high-quality, robust clinical trials on 
RAGT that complement clinical data with biomechanical data are thus warranted to disentangle the potential effects 
of such interventions on gait biomechanics post-stroke.
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Background
Technology-assisted interventions to enhance gait reha-
bilitation post-stroke are highly interesting from a clini-
cal perspective. Robotic-assisted gait training (RAGT) 
employs electromechanical devices that assist stepping 
cycles by supporting body weight while automatizing the 
gait process through support and facilitation of move-
ment in one or several lower limb joints. RAGT is sug-
gested to be less energy-consuming and cardiorespiratory 
demanding when compared with walking without a robot 
[1]. Implementing RAGT may thus enable higher intensi-
ties and longer, task-specific training sessions when com-
pared with non-robotic gait training.

Various forms of robotic devices are commercially 
available and they are commonly categorized according 
to the support they apply [2]. Treadmill-based RAGT 
(t-RAGT) is most commonly used in combination with 
body weight support [3]. This is either performed with 
end-effector robots that drive two footplates, simulating 
the phases of the gait, or with exoskeleton orthoses that 
move the lower body extremity joints in coordination 
with the phases of gait. Overground RAGT (o-RAGT) is 
provided by wearable powered exoskeletons that allow a 
person to walk overground on hard and flat surfaces [4], 
supposedly enabling the user to experience increased 
proprioceptive input when compared with the stationary 
treadmill training [5].

Earlier reviews revealed that RAGT, together with 
conventional physiotherapy, might have a slightly better 
or similar positive effect on gait speed and ambulation 
when compared with conventional gait training alone 
[6–16]. However, the need for a broadened perspective in 
the evaluation of gait ability after RAGT post-stroke has 
been highlighted [13, 15, 17, 18]. The International Clas-
sification of Functioning, Disability and Health (ICF), 
advocated by the World Health Organization, is a clas-
sification system widely used in clinical practice [19]. It 
is a foundation for understanding the patient’s personal 
and environmental resources and limitations, hence also 
used when evaluating rehabilitation effects from dif-
ferent perspectives. The classification system identifies 
three domains of a health condition: (1) body function 
(physiological and psychological) and structure (related 
to organs, limbs, etc.), (2) activity (related to the execu-
tion of a task, and (3) participation (related to involve-
ment in a real-life situation). Although the domains are 
interrelated, measurements of all domains and contex-
tual factors are necessary to describe a person’s condition 
from a holistic point of view. In a 2013 review, Geroin 
and colleagues [20] emphasize that a comprehensive 
post-intervention evaluation of RAGT, such as that of 
any other intervention, should use outcome measures 
that include all domains of the ICF. In general, tests that 

evaluate walking ability post-stroke address activity limi-
tations alone (6 min Walk Test, Timed Up and Go, Func-
tional Ambulation Category). These tests might fail to 
identify restrictions related to the domain of body func-
tion and structure since they do not investigate specific 
gait characteristics, such as coordination, muscle power, 
joint mobility or extremity positions during gait. In per-
sons post-stroke, gains in walking ability following reha-
bilitation may be considered a result of the restitution 
of underlying impairments. However, improvements in 
activity measures could also partly be explained by an 
adaptation of non-optimal movement strategies that 
compensate for existing deficits [21, 22]. A paradigm 
shift has occurred in the research area of gait rehabilita-
tion post-stroke [23], claiming that rehabilitation meth-
ods that stimulate the nervous system’s ability to recover 
a normalized movement pattern should be preferred 
before those encouraging compensation for impaired 
mobility, motor control, and balance. In line with this, 
the quantitative evaluation of gait quality and movement 
pattern may allow for differentiation of recovery mecha-
nisms and foster a deeper understanding of the effects of 
different gait rehabilitation interventions post-stroke [18, 
23, 24]. To manage this, various biomechanical variables 
of temporal (related to time) or spatial (related to dis-
tance) information have been applied. These are derived 
from kinematic (parameters of registered position, 
motion and/or marker trajectories of interest to describe 
the locomotion pattern) or kinetic (registered forces that 
act on the body during movement) measures of gait [24]. 
A gait-assisting robot aims to replicate a movement pat-
tern that is as close to normal as possible with regards 
to temporal and spatial parameters. It is also believed to 
generate more repetitions with regards to the number 
of steps during one training session as compared with 
non-robotic gait training. RAGT could thus be assumed 
to improve gait quality to a greater extent than training 
without a robot by normalizing the movement pattern 
and increasing training volume with a carryover effect to 
when the person is walking without the assisting robot. 
This review aims to summarize the level of evidence for 
any potential superior effects of RAGT (with or without 
a combination of non-robotic training) compared with 
non-robotic training alone on post-stroke gait move-
ment pattern quantified with objective biomechanical 
measures.

Methods
Design and registration
This review followed a protocol pre-registered in 
PROSPERO (CRD42020168846). The Preferred 
Reporting Items for Systematic review and Meta-Anal-
ysis (PRISMA) statement was used as a framework to 
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document the objectives, methods and findings of the 
review [25, 26]. Following PRISMA recommendations, 
the research question and the eligibility criteria were 
framed using the PICO approach (representing the 
patient population (P), the interventions (I), the com-
parator group (C), and the outcome (O), and the study 
design chosen [27].

Eligibility criteria
Type of studies
This review included only randomized clinical trials 
(RCT) that investigated the effects of robotic-assisted gait 
training using instrumented gait analysis to evaluate gait 
performance during overground or treadmill walking. All 
other study designs were excluded.

Type of participants
This review included adult participants (≥ 18  years of 
age) in an acute, subacute or chronic phase post-stroke. 
The stroke could be due to haemorrhagic or ischemic 
causes. No restrictions were made regarding the func-
tional ability or gender of the participants with regards to 
inclusion.

Type of intervention and comparator groups
RAGT for gait rehabilitation in either an inpatient or 
outpatient setting was mandatory for inclusion in this 
review. RAGT was defined as robotic-assisted gait train-
ing using an electromechanical device to assist the step-
ping cycles during walking. The devices could be either 
end-effectors  or exoskeletons for treadmill gait training 
or exoskeletons used for overground gait training [3]. 
Contemporary evidence and recommendations suggest 
that RAGT should complement, not replace, existing 
gait rehabilitation and non-robotic physical therapies [3, 
13]. We therefore also included studies using a combina-
tion of RAGT and other therapies such as conventional 
physiotherapy training or functional electrical stimula-
tion (FES). All studies were nevertheless required to have 
at least one comparator group performing active, non-
robotic gait rehabilitation post-stroke. Non-weight-bear-
ing interventions that used non-interactive devices for 
delivering continuous passive motion (e.g., an isokinetic 
apparatus for passive knee flexion [28]), or devices used 
for seated or standing lower extremity training (e.g., the 
MotionMaker™ [29], the Rutgers Ankle [30] or the Active 
Knee Rehabilitation Orthotic Devices (AKROD) [31]) 
were excluded.

Outcomes of interest
Instrumented gait analysis was to be performed in either 
a laboratory or a clinical setting using devices that reg-
ister kinematic or kinetic parameters during walking: a 

3-dimensional (3D) or 2-dimensional (2D) motion cap-
ture system, an optoelectrical or inertial system, a gait or 
pressure mat, force shoes, a magnetic or acoustic tracking 
system, etc. Outcome measures of interest were parame-
ters related to temporal and spatial information based on 
kinematics and kinetics. Studies that assessed gait biome-
chanics during RAGT, while wearing the robotic device, 
or immediately after only a single training session were 
excluded. Results of biomechanical outcomes measured 
solely by clinical testing, such as gait speed evaluated 
with a stopwatch or cadence reported from observations 
were also excluded.

Search strategy
One reviewer (HN) performed a systematic search in the 
following databases: PubMed, Web of Science, EBSCO 
(Cumulative Index to Nursing and Allied Health Litera-
ture [CINAHL], Allied and Complementary Medicine 
[AMED], Academic Search Premier, Sports Discus), 
Scopus, ProQuest (Sports Medicine & Education Index) 
and the Cochrane Central Register of Controlled Trials 
(CENTRAL). The search was limited to full-text articles 
published in English from the inception of the databases 
until the 19th of January 2021.

The full search strategy is provided in detail as an addi-
tional file (see Additional file 1).

Screening process
The screening process strictly adhered to the ‘a priori’ 
objective eligibility criteria elaborated in the PROSPERO 
protocol. Abstracts and titles retrieved in the search of 
the electronic databases were exported to EndNote X9 
and screened independently by two reviewers (HN and 
AB) to reduce the possibility of rejecting relevant reports 
(Fig. 1). Only studies that did not clearly match the inclu-
sion criteria were excluded (e.g. populations such as 
individuals with Parkinson’s disease, traumatic brain 
injury, etc.; study designs such as case studies, cross-sec-
tional studies, etc.; different types of robots, like robots 
for training the upper extremities, etc.; types of reports 
such as conference papers, reviews, etc.). All remaining 
articles advanced to the next step of the screening pro-
cess and were scrutinized in full-text before potential 
inclusion. The included articles were divided between 
two reviewers (HN and AB or MS) for independent data 
extraction. Risk of bias was independently assessed by 
the same two reviewers using the Cochrane Risk of Bias 
2 (RoB 2) tool [32]. Another reviewer (AA) was available 
to adjudicate any potential disagreements to help reach a 
consensus.

A meta-analysis using a random-effects model was 
performed with Review Manager 5 (Copenhagen: The 
Nordic Cochrane Centre, Cochrane) when a minimum 
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of three studies with relevant data, adequate homoge-
neity of population, interventions and chosen outcome 
measures were available. An  I2 value > 40% was consid-
ered as the threshold for statistical heterogeneity [33]. 
Subgroup analyses were performed regarding the effects 
on gait speed and cadence depending on velocity during 
the assessment (self-selected, SSV, versus fastest pos-
sible, FV),  type of RAGT employed in the intervention 
group (t-RAGT versus o-RAGT) and time of publication 
(studies published 2007–2014 versus studies published 
2015–2020). When a study had two intervention groups 
and one comparator group, the data from the interven-
tion groups were pooled (if their findings were identi-
cal) in the synthesis. For instance, one study [34] used 
two intervention groups performing RAGT. One used 
additional direct transcranial stimulation during RAGT, 
while the other group received sham transcranial direct 
stimulation during the same training. The results in these 
two groups did not differ significantly and were therefore 
pooled in the meta-analyses.

In addition to the meta-analyses, a descriptive synthesis 
was performed for the outcomes where statistical pooling 
was not possible and findings have been presented in a 
narrative form with complementing tables. The GRADE 
(Grading of Assessment, Development and Evaluation) 
criteria [35] were employed to interpret findings and 
summarise the levels of evidence for both the pooled 
and narratively summarised data [36]. The evidence was 
downgraded from “high certainty” by one level for seri-
ous (two levels for very serious) concerns about the risk 
of bias, indirectness of evidence, the inconsistency of 
findings, imprecision of effect estimates or potential pub-
lication bias across studies.

Results
Characteristics of the included studies
Of the 2857 studies retrieved, 13 studies involving a 
total of 412 participants (264 males, 148 females) were 
eventually included in this review (Table 1). The mean 
age of the populations in each study ranged from 52 to 
69 years. Sample sizes ranged from 12 to 63 participants 

Screening for title and abstract
(n= 1648)

Full text screening
(n= 70)

Studies included in synthesis
(n= 13)

Duplicates removed (n=1209)

Records identified through databases 
(n= 2857)

No peer reviewed English full text available 
(n= 11)

Reasons for exclusion: Conference papers, dissertations,
other language than English, etc.

Irrelevant studies (n= 1578)

Study did not meet inclusion criteria             
(n= 46) 

Reasons for exclusion: Intervention: n= 11 (study design,
not RAGT); Control group: n= 26 (lack of non-robotic control
group); Outcome measure: n= 9 (no gait analysis)
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Fig. 1 PRISMA flowchart for identification and screening of eligible studies for the current review
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and over half of the studies (62%) involved sample sizes 
of 30 participants or less [34, 37–43]. The participants 
in three of the studies [43–45] were in a subacute phase 
(mean time up to 4 months post-stroke), while the rest 
were in a chronic phase post-stroke (mean time up to 
104  months post-stroke). Gait ability for inclusion in 
each study varied from being independent to needing 
an assistive device and/or personal assistance for walk-
ing. The intervention groups received either RAGT as 
a monotherapy (n = 10) [34, 37–40, 42, 44–47] or in 
combination with some kind of non-robotic gait train-
ing (n = 3) that was similar to the training received by 
the comparator group [41, 43, 48]. All studies except 
one [34] used exoskeletons (Lokomat, GEMS, EKSO, 
ALEXII, SMA, GEAR) and the majority of these (n = 8) 
employed t-RAGT with body weight support [34, 
37, 38, 40, 41, 43, 44, 47]. One study [39] combined 
t-RAGT (no body weight support) and o-RAGT. The 
comparator groups of the included studies received 
conventional gait training [43–45, 48], overground gait 
training [34] and/or treadmill gait training with [37, 
38, 40–42, 47] or without body weight support [39, 46] 
(Table 1).

The duration of the study interventions ranged from 
10 days to 10 weeks, yielding 10–40 sessions, given with a 
frequency of two to five times per week. Duration ranged 
from 30 to 105  min per day. Comparator and interven-
tion groups were offered training with similar duration 
and frequency. Details of the received training (e.g., 
intensity) were however vague or inadequately reported 
in many studies. This was specifically true for the training 
received by the comparator group, where the interpre-
tation of “conventional gait training” or “traditional gait 
training” may have differed.

The dropout rate during the intervention period ranged 
from 0 to 37%. In six studies, all included participants 
completed the training throughout the whole interven-
tion period [34, 38, 40, 42, 46, 48]. Reasons for with-
drawal included fear of falling, skin lesions, leg pain due 
to training, problems with an orthosis, pitting oedema, 
injury related to training, or self-reported exercise intol-
erance [37, 43–45, 47]. Dropout was also due to travel 
limitations and medical or personal reasons that were 
reported to be unrelated to training [37, 41, 43–45, 47].

All studies performed a baseline and post-intervention 
assessment within a couple of weeks after the participants 
completed the training period. In addition, one study [34] 
included a 2-week follow-up evaluation, while four stud-
ies [41, 44, 46, 47] performed follow-up evaluations 1–6 
months post-intervention to investigate the long-term 
effects of RAGT. To collect biomechanical data, gait anal-
ysis was performed on a gait mat (GAITRite, Walkway or 
GaitMat) [34, 38, 40, 44–47], with a 3D motion capture 

system [38, 39, 41, 42], an accelerometer [48], or an in-
shoe plantar pressure measurement system [43]. Of the 
13 included studies, biomechanical measures were pre-
sented as primary outcomes in nine [37–41, 45–47] and 
as secondary outcomes in four [34, 42–44].

Risk of bias assessment
A summary of the risk of biases is reported in detail for 
each included study in Figs.  2 and 3 (generated with 
Review Manager: Version 5, Copenhagen: The Nordic 
Cochrane Centre). Risk of bias arising from the randomi-
zation process revealed concerns for two studies, either 
due to a lack of relevant information [42] or that rand-
omization was based on the hospital record numbers of 
the participants [45] (Fig. 3). Risk of bias due to missing 
outcome data gave rise to concerns in several studies. 
Reasons for withdrawal were not reported in one study 
[39], and when reported they were likely to be related to 
certain consequences of the training, e.g., fear of falling, 
skin lesions, leg pain due to training, pitting oedema or 
self-reported exercise intolerance [37, 43–45, 47]. In all 
of these studies except for one [43], the dropouts were 
excluded from the analysis. Selective reporting of results 
raised some concerns in most of the included studies due 
to the absence of study protocols or pre-specified analy-
sis plans. Only four studies reported trial registrations 
[39, 41, 46, 48]. The analysis plan in one of the registered 
protocols did not conform to the analyses performed in 
the study [48], and one study [41] chose to report only 
within-group analyses.

Effect on temporal and spatial parameters
Although all included studies analysed at least one tem-
poral gait parameter, the most reported were gait speed 
(n = 10) and cadence (n = 8). The certainty of evidence 
(GRADE evaluation) was found to be very low for both 
these parameters because there were some concerns for 
several studies with regard to the risk of bias (Table  2), 
indirectness of evidence owing to clinical variation 
regarding intervention parameters and gait analysis set-
tings (see Table  1), and imprecise findings with insig-
nificant differences between small population groups 
(6–25 participants/group). The meta-analysis of gait 
speed (Fig. 4) indicated no overall significant differences 
between the intervention and comparator groups after 
the training period (mean difference [MD] 0.00  m/s; 
95% confidence interval [CI]   − 0.05, 0.05;  I2 = 93%). The 
meta-analysis of cadence similarly did not reveal any sig-
nificant differences between groups (MD 1.44 steps/min; 
95% CI − 2.34, 5.22;  I2 = 92%) (Fig. 5). Bang et al. [38] did 
not report gait velocity during assessment (SSV or FV) 
and this study was therefore excluded from the subgroup 
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meta-analyses. This study found significantly larger 
improvements for both gait speed (MD 2.14 m/s; 95% CI 
0.93, 3.36) and cadence (MD 1.48 steps/min; 95% CI 0.41, 
2.55) favouring the RAGT group. When these results 
were included in the meta-analyses, they did however not 
influence the overall results.

In the subgroup analyses of gait speed and cadence (see 
Additional files 2 and 3), where the studies employing 
o-RAGT and those using t-RAGT were differentiated, we 
did not find any between-group differences. Differences 
between groups were neither identified in subgroup anal-
yses that differentiated between earlier (2007–2014) and 
later published studies (2015–2020) with regards to gait 
speed and cadence (see Additional files 4 and 5).

Other temporal parameters assessed in the included 
studies were gait cycle/stride duration [43, 48], step time 
[46], stance time/percentage of GC (single [43, 47] and/
or double limb support [38, 41, 43]), and swing time/
percentage of GC [41, 46] (Table  3). For the same rea-
sons as for the outcomes used in the meta-analysis, the 
GRADE assessment indicated very low certainty of evi-
dence for the gathered temporal parameters (Table  2). 
However, in nearly all studies, no significant difference in 
temporal parameters between groups was observed and 
both groups improved to an equal extent. A significantly 
higher increase in the single-limb stance period favouring 
the comparator group during FV was reported by Hornby 
et  al. [47] (MD − 3.0%; 95% CI − 6.96, 0.96) (Table  3). 
In contrast, Bang et  al. [38] observed a decreased dou-
ble limb support time (MD − 1.46%; 95% CI − 2.32, − 
0.6) favouring the RAGT group during walking in SSV. 
Although Calabró et  al. [48] reported a significantly 
higher effect for gait cycle duration in the RAGT group, 
our calculations (based on measurements of distances 
in the pdf-file and calculations using RevMan) did not 
reveal any significant difference between the groups (MD 
− 0.08 (ratio); 95% CI − 0.19, 0.03) (cf. Tables 3). Finally, 
the study by Ogino et al. [41] that did not  report results 
of between-group analyses  was excluded in the narrative 
synthesis.

Among spatial parameters, step length increased sig-
nificantly more on the affected side following RAGT 
compared with non-robotic gait training (MD 2.67  cm; 
95% CI 1.55, 3.80;  I2 = 65%) (Fig. 6). Such between-group 
differences were not detectable for step length on the 
non-affected side, nor for the combined (affected and 
non-affected side) change. As seen in Fig. 7, stride length 
increased significantly more in the RAGT group when 
compared with the comparator group (MD 2.88 cm; 95% 
CI 0.46, 5.25;  I2 = 66%). However, the (GRADE) certainty 
of evidence remained very low for both these parameters 
(Table 2).

Seven studies [34, 37, 39, 40, 45, 46, 48] calculated some 
kind of temporal or spatial symmetry ratio (Table  4) by 
using a variety of ratio calculations of different spatio-
temporal parameters for either or both the paretic and 
non-paretic limbs. Results from the meta-analysis of 
temporal symmetry (Fig.  8) revealed very low evidence 
(Table  2) for a statistically significant improvement in 
the symmetry ratio in the RAGT groups compared with 
the non-robotic gait training groups (MD 0.09; 95% CI 
0.04, 0.15;  I2 = 90%). For spatial asymmetry (Fig.  9) on 
the other hand, no significant differences were observed 
between groups (MD − 0.01; 95% CI − 0.06, 0.04;  I2 = 80).

Effect on kinematic parameters
Only three of the included studies [37, 41, 42] analysed 
kinematic data, and the overall (GRADE) certainty of 
evidence was found to be low for the kinematic param-
eters (Table  4). Lewek et  al. [37] detected the consist-
ency of intra-limb hip and knee angular trajectories over 
repeated gait cycles and the maximum lateral deviation 
of the heel during the swing phase with respect to the 
position of the ipsilateral heel during consecutive stance 
phases (known as circumduction). Srivastava et  al. [42] 
analysed the peak flexion angles during the swing phase. 
Both studies analysed gait at SSV but none of them found 
any differences between groups after the intervention 
period. Ogino et  al. [41] used kinematic data to detect 
index values for abnormal gait patterns following stroke. 
However, they did not report results from between-group 
analyses.

Effect on kinetic parameters
Kinetic variables represent the forces generating the kin-
ematics and spatiotemporal outcomes during walking, 
and kinetic information should therefore be very useful 
for understanding and interpreting gait characteristics 
[49]. However, we did not find any eligible RCTs evaluat-
ing kinetic gait data following RAGT.

Follow‑up data
Four studies performed a follow-up test: one after 2 
weeks [34], one after 1 month [41], three after 3 months 
[41, 44, 46] and one after 6 months [47]. The outcome 
measures investigated during the follow-up period were 
gait speed, cadence, step time, swing/stance time, step 
length, temporal and spatial symmetry and gait kinemat-
ics (Tables  3 and 4). The 2  week follow-up by Geroin 
et al. [34], found similar group differences in cadence and 
temporal symmetry that had been observed during the 
assessments immediately after the intervention period. 
According to this, the RAGT group showed a significant 
improvement in cadence (MD 15.6 steps/min; 95% CI 
8.15, 23.11) and temporal symmetry (MD − 0.42 (ratio); 
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95% CI − 0.5, − 0.34) when compared with the compara-
tor group. No group differences were otherwise detected 
for any of the investigated outcomes when RAGT was 
compared with non-robotic gait training during follow-
up measurements [44, 46, 47].

Discussion
Except for synthesised evaluations of gait speed, this is 
the first study to review and ascertain the level of evi-
dence for RAGT with the quantification of post-stroke 
gait quality based on biomechanical measures. While 
employing a pre-registered comprehensive search strat-
egy, based on well-defined eligibility criteria for studies, 
in nine renowned databases and screening 2857 retrieved 
citations, only 13 RCTs met the eligibility criteria to 
address the research question.

Analysis and synthesis of the included studies revealed 
mixed effects on biomechanical measures assessed after 
RAGT. Risk of bias assessment raised concerns for sev-
eral of the studies due to limitations in the randomization 
process and poor reporting regarding the handling of 
missing data (See Figs. 2 and 3). Furthermore, reporting 
bias could be a problem as the plan for analysis was sel-
dom available and only three studies [39, 46, 48] reported 
a registered study protocol. The variety of outcome 
measures used in the included studies limited the abil-
ity to pool results. However, meta-analyses for gait speed 
and cadence showed no effect of RAGT that exceeded 
the effect of non-robotic treatment (Figs. 4 and 5). Owing 
to the uncertainty of the evidence, specifically concern-
ing the risk of bias, small population sizes, and hetero-
geneity and inconsistency in results, the general quality 
of evidence for these outcomes was downgraded to very 
low despite including only randomized controlled trials 
(RCTs) (Table 2). The low number of eligible RCTs iden-
tified for inclusion in this review, in combination with the 
concerning risk of bias associated with them, rendered 
a low certainty of evidence for the effects of RAGT on 
gait  speed among persons with stroke compared with 
non-robotic training. Methodologically robust RCTs are 
required to elucidate any potential effects of RAGT on 
biomechanical parameters relating to post-stroke gait.

Evidence for the potential of RAGT, in combination 
with physiotherapy, to increase the likelihood of regain-
ing independent walking ability post-stroke has previ-
ously been reported by Mehrholtz et al. to be moderate 
[12]. Their findings, as well as the findings of yet another 
review [14], were in line with ours and showed that gait 
speed (assessed either with clinical or instrumented 
methods) improved to an equal extent in the RAGT and 
comparator groups post-stroke.

We found the certainty of evidence for the effect of 
RAGT on cadence to be very low for the same reasons 
as mentioned for gait speed (Table 2). The pooled results 
revealed an equal amount of improvement in cadence in 
intervention and comparator groups (Fig. 5). Gait speed 

Fig. 2 Risk of bias summary: review authors’ assessment of each risk 
of bias item for every included study (generated with the Review 
Manager Web, The Cochrane Collaboration, 2019, available at revman.
cochrane.org)
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and cadence on their own do not reflect the specific gait 
movement pattern during walking and should instead 
be interpreted in combination with other spatial and/or 
temporal kinematic parameters [21, 50]. Step length and 
stride length are considered closely connected to gait 
speed  [74]. However, even though a difference between 
groups was not detectable with regards to gait speed, 
our analyses showed that step length (Fig.  6) and stride 
length (Fig. 7) on the affected side improved more in the 
RAGT group when compared with the non-robotic train-
ing group.

The typical motor impairments following stroke cause 
an unbalanced walking pattern which is often charac-
terized by asymmetries in temporal parameters (rela-
tion between affected and non-affected swing, stance, 
step and/or stride time) and/or spatial parameters 
(relation between affected and non-affected limb posi-
tions and/or step length) [51, 52]. The consequences of 
spatial and temporal asymmetry are debated [53], but 
symmetry ratios seem to be more sensitive measures 
of recovery compared with absolute values of spatial or 
temporal parameters [54]. Gait symmetry is further asso-
ciated with a high energy expenditure [55], a high risk 
of falls, and an unequal loading of the joints (increas-
ing the risk of joint degeneration and bone density loss 
in the paretic limb) [56]. Our meta-analysis showed that 
temporal symmetry improved slightly more in the RAGT 
groups when compared with the non-robotic gait train-
ing groups (Fig. 8). There were conversely no significant 
differences observed between groups with regard to spa-
tial symmetry after training (Fig. 9). The pattern of spa-
tial symmetry vary greatly, while some individuals exhibit 
a longer step length on the non-paretic side, and oth-
ers take longer steps on the paretic side [57, 58]. A step 
lengthening strategy on the affected side detected for the 
RAGT group (see Fig. 6) may not necessarily be associ-
ated with a similar improvement in spatial symmetry in 
the same group. The level of asymmetry is suggested to 

be more relevant than some other parameters (e.g., gait 
speed and step length) to identify the degree of impair-
ment and compensatory mechanisms used during walk-
ing post-stroke [59]. These results should however be 
interpreted cautiously since the GRADE certainty of evi-
dence was very low due to inconclusive results between 
studies and since there were only a few studies with rela-
tively small sample sizes that investigated this.

Meta-analyses that differentiated studies from before 
and after 2015 found no differences between the groups 
with regards to gait speed and cadence (see Additional 
files 4 and 5). However, when contrasting the findings 
of most recent studies with those of earlier research 
(Tables  3 and 4), the most recent studies (published 
from 2018 to 2019) reported larger improvements of 
spatial and temporal parameters in the RAGT groups 
when compared with the non-robotic training groups 
[39, 45, 48]. This may reflect how increased knowl-
edge in the area of gait rehabilitation post-stroke, com-
bined with the rapid technological development of 
advanced robotic devices, may have improved RAGT 
post-stroke. Several factors are considered imperative 
to stimulate increased neural activity and reorganiza-
tion: (1) enhancement of active wearer participation, 
which includes the possibility of individual adjustments 
and an adaptable robotic interference [3, 8, 60, 61], 
(2) sufficient degrees of freedom to minimize motion 
restrictions in the joints and allow other aspects of 
gait, such as balance, to be incorporated in training [3, 
8, 60, 61], and (3) real-time biofeedback to the wearer 
[8]. The trend towards more positive results for the 
biomechanical gait measures in the most recent stud-
ies evaluating RAGT post-stroke might be a result of 
adjustments made based on the factors mentioned 
above. For instance, Lee et al. (2019) [39] and Calabrò 
et  al. (2018) [48] provided active wearer participation 
through individual guiding, encouragement, adaptation 
and progression.

Fig. 3 Risk of bias graph (generated with the Review Manager Web, The Cochrane Collaboration, 2019, available at revman.cochrane.org)
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Low certainty of evidence indicated that kinematic 
measures were not significantly different between 
the groups after the intervention [37, 42]. Although 
kinematic measurements could help to discriminate 
between restoration and compensation strategies that 
develop post-stroke, only two studies [37, 42] that col-
lected kinematic data after RAGT (Tables 3 and 4) were 
found. Hence, no certain conclusions can be made 
regarding the effect of RAGT on kinematic measures of 
gait post-stroke at this time. It has been advocated that 
detailed kinematic data should be collected and ana-
lysed for quantification of specific gait movement pat-
terns when investigating walking post-stroke [18, 20]. 
Even so, the need for sophisticated laboratory equip-
ment, competence of assessors, and more time and 
finances may be some reasons for the lack of studies 
that have performed these assessments.

The requirements in terms of finance, assessor compe-
tence and time are similar for the collection of kinetic and 
kinematic data. To obtain valid kinetic data represent-
ing joint moments and power, the individual also needs 
to walk independently without walking aids, as naturally 
as possible, and contact the force platform with only one 

foot. This may be a challenging task for individuals post-
stroke who have severe impairments. We did not find any 
eligible RCTs that evaluated kinetic variables after RAGT. 
Spatial and temporal parameters during walking are 
nevertheless direct consequences of the kinetic param-
eters affecting the joints [49]. Several studies have shown 
kinetic deviations in both the affected and unaffected leg 
in individuals post-stroke [62, 63]. Moments and power 
bursts are suggested to be reduced in amplitude in per-
sons post-stroke when compared with asymptomatic 
controls while walking at a self-selected speed [64]. How-
ever, the total lack of eligible robust RCTs evaluating 
kinetic variables after RAGT post-stroke calls for future 
research in this area.

Methodological considerations
This review followed a pre-registered protocol in PROS-
PERO, included relevant RCTs published until the 19th 
of January 2021, employed the updated and comprehen-
sive Cochrane risk of bias 2 tool (2019), and summarized 
the current level of evidence for the biomechanical gait 
parameters of interest using the established GRADE cri-
teria. In general, the RAGT and comparator groups were 

Fig. 4 A forest plot (generated with the Review Manager Web, The Cochrane Collaboration, 2019, available at revman.cochrane.org) summarizing 
a pooled effect estimate on change in gait speed (m/s), following robotic-assisted gait training (RAGT) compared with non-robotic gait training 
(non-RAGT), during walking at a self-selected velocity (SSV) and the fastest velocity possible (FV). CI confidence interval; df degrees of freedom; SD 
standard deviation
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comparable based on the amount of therapy (duration 
and frequency) provided, but information on the inten-
sity (here defined as the amount of work per unit time 
[i.e., the rate of work or power]) of training and individual 
adjustments was inadequate or unavailable. The impor-
tance of specifying the intensity of practice has been 
emphasized [65]. The intensity is nonetheless applied and 
specified inconsistently in most exercise training proto-
cols. This is also the case for the studies included in this 
review, and this may account for some of the differences 
in the conclusions regarding the lack of superiority of one 
rehabilitation method compared with the other. Clini-
cal heterogeneity between the included studies was also 
considerable due to differences in the population of inter-
est (stroke severity level and phase post-stroke, etc.) and 
intervention settings (the robotic device used, feedback 
delivered, and content, duration, intensity and frequency 
of the training in both the RAGT as well as the compara-
tor groups).

The chosen biomechanical outcome measures (differ-
ent spatial and/or temporal parameters) and the settings 
for gathering gait data varied (various systems for gait 
analysis, allowance of walking aids during assessments, 
variations in walking distances, etc.). This variation 
together with different definitions and/or calculations 

in data analysis limit the possibility of generalising the 
results. We also did not include studies using only elec-
tromyography (EMG) in our review because motor intent 
identification using EMG may have significant limitations 
in individuals post-stroke due to severe motor impair-
ment, profound muscle fatigue, or abnormally coacti-
vated muscles [66, 67]. This is further corroborated in an 
up-to-date compilation of evidence in this area provided 
by Lennon et al. (2020) [68]. Finally, this review excluded 
papers in languages other than English.

It has been suggested that the effect of RAGT depends 
on factors such as time after stroke and impairment sever-
ity [12]. Indeed, RAGT combined with physiotherapy 
has been suggested to be especially efficient in improv-
ing the function and mobility of the lower limbs in non-
ambulatory patients in their subacute phase post-stroke 
[11, 13]. It has also been hypothesized that gait function 
and movement pattern is less likely to change in a chronic 
phase post-stroke. Interventions for improving motor 
performance, initiated in an early stage post-stroke, are 
assumed to closely interact with the dynamic phases of 
neural remodelling to promote better reorganization 
[69]. Hence, the possibility to influence the gait move-
ment pattern post-stroke would supposedly decrease with 
the course of time post-stroke. Only three of the thirteen 

Fig. 5 A forest plot (generated with the Review Manager Web, The Cochrane Collaboration, 2019, available at revman.cochrane.org) summarizing 
a pooled effect estimate on change in cadence (steps/min), following robotic-assisted gait training (RAGT) compared with non-robotic gait training 
(non-RAGT), during walking at a self-selected velocity (SSV) and the fastest velocity possible (FV). CI confidence interval; df degrees of freedom; SD 
standard deviation
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studies included in this review had a population in a suba-
cute phase post-stroke, whereas the others addressed pop-
ulations in a chronic phase. Since the assessment of gait 
biomechanics requires walking function (with or without 
aids or personal support), none of the studies included 
non-ambulatory persons. It was thus not possible to draw 
any conclusions regarding the impact of RAGT in relation 
to the different phases post-stroke (subacute/chronic) or 
different severity levels of impairments.

Another topic of interest when evaluating the effects 
of RAGT is the possible difference between RAGT 
employed on a treadmill and the one performed over-
ground. Overground RAGT is hypothesized to provide 
greater motor control stimulation, multisensory plas-
ticity and required effort when compared with RAGT 
performed on a treadmill [5]. Hence, we performed sub-
group-analyses based on the employed type of RAGT for 
the outcomes of gait-speed and cadence but found no 
significant differences between the groups (Fig. 6).

Future challenges and recommendations
Robotics in gait training post-stroke requires an evalu-
ation from several perspectives in order to identify 
responders and non-responders to RAGT (e.g., the 

impact of RAGT in relation to the different phases post-
stroke and different severity levels of impairments) and 
map the strengths and weaknesses to support and guide 
future technical development. Highly intensive, task-
specific and repetitive gait training post-stroke, such as 
RAGT, is assumed to stimulate restoration of motor skills 
and, consequently, normalize the gait movement pattern 
through neuroplasticity [70–72]. Yet this has not been 
thoroughly investigated and the mechanisms underlying 
functional gains achieved through RAGT in individuals 
post-stroke are still poorly understood. This review high-
lights the need to combine the measures of task accom-
plishment with objective assessments of gait movement 
patterns and gait quality after RAGT.

A consensus is unfortunately lacking as to which bio-
mechanical gait measures to use when investigating 
motor coordination and the quality of movement pat-
terns during walking [50, 73, 74]. Standardised guidelines 
for assessing and reporting gait variables should be devel-
oped to support researchers and enable pooling of results 
to facilitate the evaluation of the effects of and further 
development of gait-assisting robots used in post-stroke 
rehabilitation. These guidelines should include assess-
ments of several (spatial, temporal and kinetic) aspects 
of gait [15, 50], and consider bilateral motor coordination 

Fig. 6 A forest plot (generated with the Review Manager Web, The Cochrane Collaboration, 2019, available at revman.cochrane.org) summarizing 
a pooled effect estimate on change in step length (cm), following robotic-assisted gait training (RAGT) compared with non-robotic gait training 
(non-RAGT). *: assessed during walking at a self-selected velocity (SSV); ^: assessed during walking at the fastest velocity possible (FV); CI 
confidence interval; df degrees of freedom; SD standard deviation
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[50] as well as the engagement of the trunk [75] and dis-
placement of centre of mass [76]. Inter-limb coordina-
tion, such as symmetry in spatio-temporal parameters, 
including kinematic measures of movement endpoint, 
whole trajectories, and joint angles, as well as in kinetic 
parameters, are all important outcomes reflecting the 
quality of gait post-stroke [76] and bilateral motor coor-
dination [50].

The challenge of bioengineers is to match the most 
recent neurological findings with the features of the 
robots developed for gait training post-stroke [3]. These 
robots should not only simulate physiological patterns 
but also favour the determinants of a qualitative gait 
recovery. To stimulate the recovery of a close-to-nor-
mal gait movement pattern, the robots should enable 

variability in lower limb kinematics through sufficient 
degrees of freedom in all three planes of motion [60]. In 
addition, they should be flexible and individually adjust-
able, and they need to encourage active participation 
from the wearer. The combination of individual support 
and progression, realtime feedback and guidance, and 
motor tasks that challenge balance control and coordina-
tion, serves for multisensory stimulation that has been 
suggested to be beneficial for neural reorganization. The 
optimally developed robot should have the ability to gen-
erate a bottom-up and top-down complex and controlled 
multisensory stimulation aiming to modify the plasticity 
of neural connections through the experience of moving 
[5].

Fig. 7 A forest plot (generated with the Review Manager Web, The Cochrane Collaboration, 2019, available at revman.cochrane.org) summarizing 
a pooled effect estimate on change in stride length (cm), following  robotic-assisted gait training (RAGT) compared with non-robotic gait training 
(non-RAGT). *: assessed during walking at a self-selected velocity SSV; ^: assessed during walking at the fastest velocity possible FV; CI confidence 
interval; df degrees of freedom; SD standard deviation

Fig. 8 A forest plot (generated with the Review Manager Web, The Cochrane Collaboration, 2019, available at revman.cochrane.org) summarizing 
a pooled effect estimate on change in temporal symmetry (ratio), following robotic-assisted gait training (RAGT) compared with non-robotic gait 
training (non-RAGT). *: assessed during walking at a self-selected velocity SSV; ^: assessed during walking at the fastest velocity possible FV; CI 
confidence interval; df degrees of freedom; SD standard deviation
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Conclusion
This systematic review revealed a substantial knowl-
edge gap underpinning the effects of RAGT post-stroke 
when compared with non-robotic gait training. Only 
thirteen eligible randomised controlled trials were iden-
tified which evaluated the effects of RAGT post-stroke 
on objective biomechanical outcome measures. Our 
findings demonstrated a very low certainty in current 
evidence for employing RAGT instead of non-robotic 
gait training to improve gait ability post-stroke. Stand-
ardised guidelines for biomechanical quantification of 
gait should be developed to support researchers in the 
evaluation of gait-assisting robots used in post-stroke 
rehabilitation. Well-designed, high-quality clinical trials 
that complement clinical data with objective, quantitative 
gait data post-stroke will provide more detailed informa-
tion on the potential effects of robotic gait training in 
general, as well as the influence on gait movement pat-
tern in particular. In the long term, this could contribute 
to the development of RAGT that, either on its own or 
as an addition to other treatments, can better target true 
recovery and decrease the impact of compensatory gait 
patterns post-stroke.
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