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METHODOLOGY

Identifying bidirectional total and non‑linear 
information flow in functional corticomuscular 
coupling during a dorsiflexion task: a pilot study
Tie Liang1,2, Qingyu Zhang2, Xiaoguang Liu2, Bin Dong2,3, Xiuling Liu2* and Hongrui Wang1,2* 

Abstract 

Background:  The key challenge to constructing functional corticomuscular coupling (FCMC) is to accurately identify 
the direction and strength of the information flow between scalp electroencephalography (EEG) and surface elec-
tromyography (SEMG). Traditional TE and TDMI methods have difficulty in identifying the information interaction for 
short time series as they tend to rely on long and stable data, so we propose a time-delayed maximal information 
coefficient (TDMIC) method. With this method, we aim to investigate the directional specificity of bidirectional total 
and nonlinear information flow on FCMC, and to explore the neural mechanisms underlying motor dysfunction in 
stroke patients.

Methods:  We introduced a time-delayed parameter in the maximal information coefficient to capture the direction 
of information interaction between two time series. We employed the linear and non-linear system model based on 
short data to verify the validity of our algorithm. We then used the TDMIC method to study the characteristics of total 
and nonlinear information flow in FCMC during a dorsiflexion task for healthy controls and stroke patients.

Results:  The simulation results showed that the TDMIC method can better detect the direction of information inter-
action compared with TE and TDMI methods. For healthy controls, the beta band (14–30 Hz) had higher information 
flow in FCMC than the gamma band (31–45 Hz). Furthermore, the beta-band total and nonlinear information flow in 
the descending direction (EEG to EMG) was significantly higher than that in the ascending direction (EMG to EEG), 
whereas in the gamma band the ascending direction had significantly higher information flow than the descending 
direction. Additionally, we found that the strong bidirectional information flow mainly acted on Cz, C3, CP3, P3 and 
CPz. Compared to controls, both the beta-and gamma-band bidirectional total and nonlinear information flows of the 
stroke group were significantly weaker. There is no significant difference in the direction of beta- and gamma-band 
information flow in stroke group.

Conclusions:  The proposed method could effectively identify the information interaction between short time series. 
According to our experiment, the beta band mainly passes downward motor control information while the gamma 
band features upward sensory feedback information delivery. Our observation demonstrate that the center and con-
tralateral sensorimotor cortex play a major role in lower limb motor control. The study further demonstrates that brain 
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Background
In the process of human voluntary movement, the motor 
cortex of the brain sends out instructions to control 
muscle actions through the motor nerve pathway, and 
the sensory information of the muscle is fed back to the 
cortex through the sensory nerve pathway to ensure the 
accurate execution of the action [1–3]. This information 
interaction can be quantified by the coupling relation-
ship between the EEG signal and the SEMG signal of the 
effector muscle with the development of noninvasive, 
high-time resolution scalp EEG acquisition technol-
ogy. Therefore, the functional corticomuscular coupling 
(FCMC) has become an important way to reveal the con-
trol-feedback mechanism of the nervous system and to 
evaluate the motor function and rehabilitation effect on 
patients with neurological diseases such as stroke [3–6].

The key challenge to constructing the interrelation-
ship between complex neurophysiological signals is to 
accurately capture the information flow between the sig-
nals. More specifically, it includes two important indica-
tors: direction and strength. Studies were conducted on 
FCMC from these two aspects. The coherence method is 
one of the main methods to quantify the functional cou-
pling between the cerebral motor cortex and the effector 
muscle [7, 8]. However, previous studies confirmed that 
the information interaction between the motor cortex 
and the effector muscles was directional [3, 9]. The lack 
of ability to identify the direction of information interac-
tion limits the application of the coherence method in the 
analysis of FCMC. Granger causality (GC) and its exten-
sion methods used as directional methods to measure the 
causal relationship between time series have been applied 
in the analysis of FCMC [2, 3, 10]. The GC method is 
based on a linear autoregressive model, and its statisti-
cal nature is a prediction of stationary time-series data 
[11]. However, neurophysiological signals have proved to 
be nonlinear [12–14].Therefore, the effectiveness of GC 
in analyzing the relationship between nonlinear neuro-
physiological signals is also questioned [4, 15]. Model-
free methods have been used in recent years to analyze 
the information interaction between neurophysiological 
signals so as to address the challenge of nonlinearity. The 
commonly methods are mutual information (MI) and 
transfer entropy (TE).

The MI method evaluates the interaction relationship 
between two random variables X and Y by measuring the 

shared information between them [16]. MI can detect 
the linear and nonlinear statistical correlations between 
two signals, and therefore is widely used in the field of 
neuroscience [17–19]. However, MI is a symmetrical 
measurement method that cannot determine the direc-
tion of information flow. To solve this problem, Vastano 
et al. proposed time-delay mutual information (TDMI) to 
detect information transmission in spatiotemporal sys-
tems [20]. TDMI was then introduced into the analysis 
of information transmission between neurophysiological 
signals [6, 21, 22]. Nonetheless, it is difficult for both MI 
and TDMI to accurately estimate the probability density 
function (PDF) and joint probability density function 
(JPDF) in the calculation process for short and complex 
time series [23]. On the other hand, different estimation 
methods also directly affect the accurate establishment of 
the relationship between signals.

The TE method is also a model-free method based on 
information entropy, with the ability to detect linear and 
nonlinear coupling [24]. Benefited by its asymmetric and 
transition probability calculation characteristics, TE was 
considered to be an effective method for detecting cau-
sality between neurophysiological signals in recent years 
[25, 26]. Unfortunately, TE cannot accurately detect the 
coupling in practical applications when the time series is 
not long enough [4, 21].

Reshef et  al. proposed the maximal information coef-
ficient (MIC) method in 2011 [27]. The generality 
attribute of MIC meets the requirements of measuring 
different functional relationships; its equitability attrib-
ute ensures that different functional relationships obtain 
similar measured values at the same noise level. In par-
ticular, Reshelf et al. were the first to propose a formula 
to calculate the nonlinear components of the relation-
ship between two variables, that is, MIC-ρ2, where ρ 
represents the Pearson correlation coefficient. On the 
contrary, neither MI nor TE can identify pure nonlin-
ear coupling because the results include both linear and 
nonlinear coupling. Due to the aforementioned advan-
tages, MIC was widely used in the field of neuroscience 
[28–30]. In our previous study, MIC was first applied 
to the analysis of linear and nonlinear coupling compo-
nents in FCMC [31]. However, limited by the symmetry 
of mutual information, MIC is also symmetric, that is, 
MIC(X, Y) = MIC(Y, X), so MIC fails to identify the direc-
tion of information interaction between signals. To our 

damage caused by stroke disrupts the bidirectional information interaction between cortex and effector muscles in 
the sensorimotor system, leading to motor dysfunction.
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knowledge, none of the above MIC-based studies ana-
lyzed directional specificity in information interaction.

To overcome this limitation, a time-delayed maximal 
information coefficient (TDMIC) method was proposed 
in this study by introducing a time-delay parameter to 
capture the information transmission delay between two 
short time series. The algorithm was first tested with sim-
ulated data to verify the effectiveness of this method. Lin-
ear and nonlinear systems with short data lengths were 
constructed to compare the performance of TDMIC, 
TDMI, and TE (kernel estimator) in identifying the direc-
tion of information flow. As an application of experimen-
tal data, the TDMIC method was applied to explore the 
directional specificity of total and nonlinear information 
flow of healthy controls and stroke patients in FCMC in a 
specific frequency band. This study provided a new per-
spective for exploring the characteristics of FCMC.

Methods
Time‑delayed maximal information coefficient
For the finite data set D of ordered pairs, the data points 
{x; y} were distributed in a two-dimensional space, and 
the data space was divided into x-by-y grids. In this case, 
the MI of the two variables was expressed as:

where p(x, y) is the JPDF of time series X and Y, and p(x) 
and p(y) are the marginal PDF of X and Y, respectively. 
PDF and JPDF were obtained by calculating the probabil-
ity of data points in D that fell into each grid.

When the number of grids x-by-y was fixed, different 
grid division methods were used. The maximum value of 
MI among all grid division methods was determined:

To facilitate comparison across grids with different 
dimensions, I∗(D, x, y) was normalized by log min{x; y}, 
and then the characteristic matrix M of a set of data D 
was defined as follows:

After all elements in the matrix M were normalized, 
the score range obtained was between 0 and 1.

For the data set D of ordered pairs with sample size n, 
the MIC was defined as the maximum value of the char-
acteristic matrix obtained by all grid partitioning:

(1)I(D, x, y) =
∑

x∈X

∑

y∈Y

p(x, y) log

(

p(x, y)

p(x)p(y)

)

(2)I∗(D, x, y) = max(I(D, x, y)

(3)M(D)x,y =
I∗
(

D, x, y
)

log min
{

x, y
}

(4)MIC(D) = max
xy<B(n)

{

M(D)x,y
}

where the grid size x-by-y was limited with B(n)(B(n)=n0.6) 
to reduce the calculation efforts. The range of the MIC 
value was [0, 1]; the higher the score, the stronger the 
correlation between the two variables.

In addition, RESHEIF et al. defined a natural measure 
of nonlinearity as follows [27]:

where ρ denotes the Pearson product-moment correla-
tion coefficient. When the NL value was greater than 0, it 
indicated a nonlinear relationship.

MIC had the characteristic of symmetry, that is, for 
variables X and Y

Therefore, MIC could not identify the direction of 
information flow. In this study, a time-lag parameter was 
introduced, and the ability to detect information trans-
mission between two signals was obtained by calculat-
ing MIC with different time lags (τ), which was named 
TDMIC.

where, IG (X, Y, τ) is the MI of the time delay in the case 
of x-by-y (G). When the information of X at time t was 
decomposed at Y at time t + τ, the JPDF between Y and 
X had an obvious peak at time t + τ. Naturally, IG (X, Y, τ) 
was larger than IG (X, Y). Therefore, the sign of the time 
lag where MIC(X, Y, τ) reached its peak was used to infer 
the direction of information flow between X and Y.

For the experimental application, to estimate the total 
flow of information between two physiological time 
series (EEG and EMG), the cumulative information flow 
within a certain delay D was estimated using the follow-
ing equation [6, 26].

In this study, the maximum delay D was set to 40 data 
points, and the step size k was set to 1 for calculation.

To compare the performance of the algorithm, TDMI 
and TE methods are also implemented. TDMI method was 
refered to the code published by Li et al. [21]. TE method 
with kernel estimator was refered to the code published 

(5)NL = MIC − ρ2

(6)MIC(X ,Y ) = MIC(Y ,X)
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by Lizier et al. [32]. We also calculated the nonlinear com-
ponent of TDMIC (NTDMIC) and its cumulative value 
(CNTDMIC). All algorithms described in this paper were 
implemented by MATLAB.

Verification of the TDMIC algorithm
In this study, directed linear and nonlinear systems were 
constructed separately to verify the ability of the proposed 
algorithm to identify the direction of information flow. Fur-
thermore, the Henon map was used to verify the ability of 
the algorithm to detect the coupling strength. Consider-
ing the randomization of the initial values of X and Y, each 
model was randomly generated 10 times. Subsequently, the 
algorithm was applied to the study of FCMC while main-
taining ankle dorsiflexion. The data length of both simu-
lation and experimental data was set to 1000 to verify the 
performance of the proposed algorithm in identifying the 
information flow between short time series.

Numerical simulation data
Unidirectional dynamical system
First, a unidirectional linear dynamic system was con-
structed using the following model [33]. The calculations 
showed that a linear information flow existed from time 
series Y to X.

Then a unidirectional nonlinear dynamic system was 
constructed as follows based on the aforementioned unidi-
rectional linear model. A major nonlinear information flow 
was observed from Y to X.

Bidirectional dynamical system
Second, a bidirectional linear dynamic system was con-
structed using the following model [21]. That is, a bidirec-
tional linear information flow existed between the time 
series X and Y generated by the system.

A new bidirectional nonlinear dynamic system was con-
structed as follows based on the aforementioned bidirec-
tional linear model.

(9)
xt = 0.6xt−1 + 0.5yt−1 + ut

yt = 0.6yt−1 + vt

(10)
xt = 0.6xt−1 + 0.5y2t−1 + ut

yt = 0.6yt−1 + vt

(11)
xt = −0.1yt−1 + ut

yt = −0.1xt−1 + vt

(12)xt = −0.1(yt−1)
2 + ut

yt = −0.1(xt−1)
2 + vt

For all models introduced earlier, ut and vt represented 
two independent and identically distributed (i.i.d) stand-
ard Gaussian random variables.

HENON map
Henon map was used to verify the ability of TDMIC to 
detect the direction and strength of information flow 
between time series. Two time series (X and Y) with uni-
directional coupling relationships were generated using 
the Henon maps. X and Y were the driving system and 
the response system, respectively, that is, information 
flow from X to Y:

where E is the coupling parameter with an interval of [0, 
1], and the coupling strength between two time series 
could be changed by adjusting the value of E.

Experimental data
Ten subjects (mean age, 59.2 ± 7.0  years; range, 
50–68  years; 8 male) with chronic stroke (more than 
3  months after onset of stroke) and ten healthy con-
trols (mean age, 58.7 ± 7.2  years; range, 46–67  years; 8 
male) without any history of neurological disease were 
recruited. Patient demographics are shown in Table  1. 
All the subjects were able to complete the experiment as 
required.

The preparation before the experiment was similar to 
our previous study [31]. The difference is that we changed 
the experimental paradigm from the autonomic dynamic 
dorsiflexion task to a steady-state dorsiflexion task to 
obtain stable data. There was a cross-shaped mark in 
the center of the computer screen to attract the atten-
tion of the participants. After 2 s, a right arrow appeared, 
prompting the participants to dorsiflexion of the right 
ankle and maintain this state for 50 s. Figure 1 shows the 
experimental setup. The participants then rested for 60 s 
to avoid muscle fatigue. Each participant repeated the 
aforementioned task five times.

During the study, EEG and EMG signals were simulta-
neously acquired with an EEG amplifier system (Neuro-
scan, Australia). Using the international 10–20 system, 
26 electrodes were used to record the EEG data (i.e., 
FP1, FP2, Fz, F3, F4, F7, F8, FC3, FCz, FC4, C3, Cz, C4, 
CP3, CPz, CP4, P3, Pz, P4, T7, T8, P7, P8, O1, Oz, and 
O2). The EMG signal from the tibialis anterior (TA) of 
the right leg was recorded with bipolar electrodes. EEG 
and EMG data were sampled at 1024 Hz. The electrode 
wires were fixed with a tape to reduce motion artifacts 
caused by shaking. The data were maintained for 2–49 s 
for subsequent analysis to obtain the data under the 

{

xi+1 = 1.4 − x2i + 0.3xi−1

yi+1 = 1.4 −
(

Exi + (1− E)yi
)

yi + Byi−1
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steady state. Finally, 5 48  s-long epochs free of artifacts 
in each participant were obtained. Data were further 
cut into 1000 data point segments with no overlapping. 
50  Hz power frequency interference was removed, and 
Band-pass filtering (2–100  Hz) was performed on EEG. 
Then, the independent component analysis (ICA) algo-
rithm was used to remove artifacts, such as electrooculo-
gram (EOG) and EMG. For EMG, a notch filter was used 
to remove the 50 Hz power frequency interference, and a 
2-stage IIR bandpass filter (5–100 Hz) was performed to 
remove low-frequency noise.

TDMIC and NTDMIC (the nonlinear component 
of TDMIC) values were calculated from the beta (14–
30 Hz) and gamma (31–45 Hz) bands in the power tem-
poral power map of EEG and EMG obtained by Morlet 
wavelet transform. Cumulative values of TDMIC and 
NTDMIC (i.e.CTDMIC and CNTDMIC, represents the total 
information flow and the nonlinear information flow) 
were calculated for 40 data point delay. The estimated 
time delay was close to 40 ms, which was in the range of 
latencies (20–40  ms) reported between the cortex and 
muscles [3, 9, 34, 35].

Table 1  Patients demographics

M denotes male; F denotes female; L denotes left; R denotes right

Patient Age Gender Chronicity Stroke type Lesion site Affected leg

1 57 M 25 months Ischemia L internal capsule R

2 66 M 3.5 months Ischemia L basal ganglia, Inferior temporal lobe R

3 50 M 3 months Ischemia L internal capsule R

4 68 M 3 months Ischemia R basal ganglia R

5 61 F 2 months Ischemia L frontal lobe, Periventricular R

6 50 M 18 months Ischemia L basal ganglia R

7 52 M 12 months Ischemia L fronto-temporo -parietal R

8 57 M 13 months Hemorrhage L frontal Lobe, Corona radiata R

9 64 M 4 months Ischemia L frontal Lobe, Corona radiata, Cen-
trum Semiovale

R

10 67 F 5 months Ischemia R basal ganglia R

Fig. 1  Experimental setup. a EEG and EMG acquisition. A participant sat on a chair. EEG and EMG (right TA) signals were simultaneously collected 
by the amplifier. The participant fixed gaze on the screen in front of them throughout the task and was asked to relax. b Experimental paradigm. 
A cross-shaped mark appeared at the center of the computer screen to remind the participants to pay attention. After 2 s, a right arrow appeared, 
prompting the participant to dorsiflexion of the right ankle and maintain this state for 50 s. c Denoised EEG and EMG signals
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Statistical significance
In this study, the permutation test was used for sig-
nificance testing. The two original time series were 
randomly shuffled to generate surrogate data. As for 
simulated data, the significance level alpha was set to 
0.01. For experimental data, the repeated-measures 
analysis of variance (rANOVA, a = 0.05) was performed 
on TE, TDMI, and TDMIC. Greenhouse–Geisser cor-
rection was used to correct the degree of freedom. 
Bonferroni correction was used for multiple compari-
sons. All statistical analyses were conducted in SPSS/
PC, version 22.0 (SPSS Inc., IL, USA).

Results
Results for numerical models
Figure  2 indicates TDMI and TDMIC values as a func-
tion of time lag from two time series generated from the 
unidirectional models. As shown in Fig. 2, whether it was 
a linear system or a nonlinear system, both the TDMI 
and TDMIC curves reached a significant large peak at 
the positive time lag (linear: τ = 1, nonlinear: τ = 3). The 
peak values were significantly greater than the signifi-
cance threshold (a = 0.01). This finding indicated that the 
direction of information flow recognized by TDMI and 
TDMIC for unidirectional linear and nonlinear systems 
was Y to X, which was consistent with the information 

Fig. 2  a TDMI and b TDMIC curves as a function of time lag. c Causal direction identified by TE. The left and right columns correspond to the 
unidirectional linear and nonlinear dynamical systems, respectively. X-axis indicates delay time with arbitrary unit (a.u.). Red dotted lines are the 
levels of significance threshold. The data length of all models was set to 1000
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flow direction of unidirectional models. The TE analysis 
on the linear system showed that the TE value from X to 
Y was 3.84 × 10–2 and that from Y to X was 2.399 × 10–1. 
The significance threshold of TE obtained by the per-
mutation test was 9.53 × 10–2. This finding indicated 
that the TE method recognized unidirectional informa-
tion flow consistent with the model, that is, from Y to X. 
On the contrary, for the nonlinear system model, the TE 
value from X to Y was 3.48 × 10–2 and that from Y to X 
was 1.104 × 10–1. Both the TE values were above the sig-
nificance threshold. Hence, the TE method was able to 
identify the causal relationship between X and Y that the 
model suggested. The results of TE are summarized in 
Table 2.

Figure 3 indicates TDMI and TDMIC values as a func-
tion of time lag from two time series generated from the 
bidirectional models. Two obvious peaks were observed 
in TDMIC curves, as shown in Fig.  3(b), which were 
located at positive and negative lags (linear: τ =  ± 1, non-
linear: τ =  ± 1). Both peaks were significantly greater 
than the significance threshold level (a = 0.01). This find-
ing indicated that the bidirectional information flow 
between X and Y was detected by TDMIC, which was 
consistent with the models. On the contrary, as shown in 
Fig. 3a, no obvious peaks above the significance thresh-
old were observed in the TDMI curves. This observation 
showed that TDMI failed to identify the direction of the 
information flow of bidirectional systems under this data 
length (1000). As shown in Table 2, whether it was a bidi-
rectional linear or nonlinear model, both the TE values 
were below the significance threshold, indicating that the 
TE method did not recognize a significant information 
flow between X and Y. This was also inconsistent with the 
models.

As shown in Fig. 4a, a peak value greater than the sig-
nificance threshold was observed at the negative lag 
(τ = –1). This indicated that the direction of information 
flow recognized by TDMIC for the Henon map was X to 
Y, which was consistent with the model. In contrast, the 
information flow direction of the unidirectional Henon 
map was misinterpreted as bidirectional by TE, as shown 
in Table  2. Figure  4b shows the ability of TDMIC to 
detect the coupling strength following the change in the 

coupling parameter E. The maximum value of TDMIC 
values also increased monotonically with E. Additionally, 
a local maximum was observed in Fig. 4b around E = 0.2.

Results for experimental data
Figure  5a and b presents the grand averaged TDMIC 
and NTDMIC curves as a function of delay in the beta 
(14–30 Hz) and gamma (31–45 Hz) bands. The EEG sig-
nal collected at the Cz position was selected for analysis. 
Overall, whether it was the TDMIC or the NTDMIC, 
the beta-band information flow from EEG to EMG was 
stronger than that from EMG to EEG. Interestingly, the 
ascending information flow (EMG to EEG) in the gamma 
band was higher than the descending information 
flow (EEG to EMG). Figure  5c presents the grand aver-
aged TDMI curve as a function of delay in the beta and 
gamma bands. Compared with TDMIC and NTDMIC, 
the TDMI curve did not clearly distinguish the ascend-
ing and descending information flows. The interval of 
significance thresholds for TDMIC, NTDMIC and TDMI 
in the beta band were [0.1546, 0.1554], [0.152, 0.1528] 
and [0.0030, 0.0035]. In the gamma band, the interval of 
significance thresholds for TDMIC, NTDMIC and TDMI 
were [0.1460, 0.1464], [0.1430, 0.1439] and [0.0032, 
0.0035], respectively. Both of the TDMIC and NTDMIC 
values were above the significance thresholds. However, 
TDMI was below the significance threshold. Additionally, 
the TE method did not detect significant bidirectional 
information flow between experimental data. The TE 
results of the experimental data are listed in Table 3.

Figure 6 shows the grand averaged normalized topog-
raphies of CTDMIC and CNTDMIC for controls. The aver-
aged CTDMIC topography of EMG → EEG was similar 
to that of EEG → EMG with the peak value at similar 
electrodes: Cz, C3, CP3, P3, Pz and CPz. The difference 
was that the peak area of the EMG → EEG topographic 
map was more scattered. In addition, the peak distribu-
tion of CNTDMIC in the two directions (EMG → EEG and 
EEG → EMG) was similar to that of CTDMIC, which was 
mainly distributed at Cz, C3, CP3, P3, Pz and CPz.

The cumulative values of TDMIC and NTDMIC in 
the beta and gamma bands for both directions were 
calculated to further quantify the differences between 

Table 2  Summary of te results in each model

Model Threshold TEx→y Threshold TEy→x TEx→y TEy→x TE direction

Unidirectional linear dynamic system (X ← Y) 9.53 × 10–2 9.93 × 10–2 3.84 × 10–2 2.399 × 10–1 X ← Y

Unidirectional nonlinear dynamic system (X ← Y) 1.049 × 10–1 1.109 × 10–1 3.48 × 10–2 1.104 × 10–1 X ← Y

Bidirectional linear dynamic system (X ↔ Y) 4.75 × 10–2 4.78 × 10–2 3.65 × 10–2 4.03 × 10–2 Independent

Bidirectional nonlinear dynamic system (X ↔ Y) 4.95 × 10–2 4.67 × 10–2 3.55 × 10–2 3.45 × 10–2 Independent

Henon Map (X → Y) 5.37 × 10–2 5.21 × 10–2 7.195 × 10–1 8.99 × 10–2 X ↔ Y
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the controls and the stroke patients. Then, three way 
rANOVA was performed for each method, with subject 
(two levels: stroke and healthy control) as a between-
subject factor, with frequency band (two levels: beta 
and gamma) and direction (two levels: descending 
and ascending) as within-subject factors. Figure  7a 
shows the results of statistical analysis for controls. 
The results showed that the CTDMIC and CNTDMIC in 
the beta band were significantly higher in the descend-
ing direction than in the ascending direction (CTDMIC: 
F(1, 18) = 5.07, p = 0.037; CNTDMIC: F(1, 18) = 7.86, 
p = 0.012). On the contrary, the ascending CTDMIC and 
CNTDMIC in the gamma band were significantly higher 
than the descending values (CTDMIC: F(1, 9) = 8.56, 

p = 0.009; CNTDMIC: F(1, 9) = 11.18, p = 0.004). Figure 7 
(b) shows the results of statistical analysis for stroke 
groups. Different from the control groups, the CTDMIC 
and CNTDMIC results showed no significant difference 
in beta or gamma bands in both directions (beta band, 
CTDMIC: F(1, 18) = 4.20, p = 0.055; beta band, CNTDMIC: 
F(1, 18) = 0.54, p = 0.473; gamma band, CTDMIC: F(1, 
18) = 2.19, p = 0.156; gamma band, CNTDMIC: F(1, 
18) = 0.76, p = 0.396).

Furthermore, compared to the controls, the CTDMIC and 
CNTDMIC results of the stroke groups were significantly 
weaker both in the beta and gamma bands in the descend-
ing direction (i.e., EEG to EMG), as shown in Fig.  8a 
(CTDMIC, beta band: F(1,18) = 33.0, p = 0.000, Bonferroni; 

Fig. 3  a TDMI and b TDMIC curves as a function of time lag. c Causal direction identified by TE. The left and right columns correspond to the 
bidirectional linear and nonlinear dynamical systems, respectively. X-axis indicates delay time with arbitrary unit (a.u.). Red dotted lines are the levels 
of significance threshold. The data length of all models was set to 1000
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CTDMIC, gamma band: F(1,18) = 27.84, p = 0.000, Bonfer-
roni; CNTDMIC, beta band: F(1,18) = 11.65, p = 0.003, Bon-
ferroni; CNTDMIC, gamma band: F(1,18) = 4.63, p = 0.045, 
Bonferroni). Similarly, compared to the controls, the 
results of the stroke groups were significantly weaker 
both in the beta and gamma bands in the ascending 
direction (i.e., EMG to EEG), as shown in Fig. 8b (CTDMIC, 
beta band: F(1,18) = 17.46, p = 0.001, Bonferroni; CTDMIC, 
gamma band: F(1,18) = 65.68, p = 0.000, Bonferroni; 
CNTDMIC, beta band: F(1,18) = 4.81, p = 0.042, Bonfer-
roni; CNTDMIC, gamma band: F(1,18) = 10.82, p = 0.004, 
Bonferroni).

Discussion
This study proposed the TDMIC algorithm to solve the 
problem of inability to identify causal interactions in 
MIC applications. The simulation results showed that 
TDMIC could accurately identify the information flow 
direction of all models with short data lengths and detect 
the coupling strength of nonlinear systems. On the con-
trary, with the same short data length, the performance 
of TE or TDMI was not as good as that of TDMIC in 
identifying the direction of information flow. The appli-
cation of experimental data showed significant bidirec-
tional total and nonlinear information flows in FCMC 

in the beta and gamma bands. Further analysis showed 
that the strength of total and nonlinear information flow 
in the descending direction were significantly higher than 
that in the ascending direction in the beta band, while an 
opposite phenomenon was observed in the gamma band. 
Additionally, strong total and nonlinear information flow 
mainly acted on the center and contralateral sensorimo-
tor cortex. Further controlled experiments showed that 
the total and nonlinear information flows in both beta 
and gamma bands were significantly weaker in stroke 
group than in healthy control group. This study extended 
the application of MIC and suggested a new idea for the 
study of nonlinear coupling components in FCMC.

Compared with TE and TDMI, the TDMIC method 
could more effectively identify the direction of infor-
mation flow between short time series, which might be 
related to the derivation of these algorithms. TE was 
proposed to explore whether the historical information 
of the driver could improve the prediction of the state of 
the recipient [24]. The value of TE (Y to X) between time 
series X and Y was expressed by the following formula

where xkn = {xn−1, xn−2, . . . xn−k} and 
yln = {yn−1, yn−2, . . . yn−l} are k- and l-dimensional delay 
vectors, which represent the history of X and Y. The for-
mula showed that TE involved the calculation of high-
dimensional PDF. This meant that the calculation of TE 
required long and stable data to accurately construct a 
high-dimensional PDF [21]. In addition, TE was equiva-
lent to GC under Gaussian conditions [36]. Both GC and 
TE might detect false causality due to incomplete obser-
vation of the state of the drive system [11, 37]. In the case 
of short data length (1000) in this study, the performance 
of the TE method was not satisfactory, especially for bidi-
rectional linear and nonlinear systems.

As an asymmetric extension of the MI method based 
on information theory, TDMI also involved the calcula-
tion of the PDF. The accuracy of PDF calculations directly 
affected the validity of TDMI results. Unlike TE, the 
dimension of the TDMI PDF was only 2, which avoided 
the problem of high-dimensional PDF construction in 
the TE method. Nevertheless, TDMI still needed long 
stationary time series data to accurately calculate PDF 
[6]. Roulston et  al. used the standard error formula to 
prove that MI had obvious errors in the case of short data 
[38]. In this study, TDMI failed to detect the information 
flow direction on the bidirectional linear and nonlinear 
models, thus limiting the application of TDMI to non-
stationary EEG signals. The brain proved to be a non-
linear dynamic system [13, 14]. It was difficult to obtain 

(14)

TY→X =
∑

p(xn+1, x
−
n , y

−
n ) log

p(xn+1, x
−
n , y

−
n )

p(xn+1|x
−
n )

Fig. 4  a TDMIC curves as a function of time lag in Henon map 
(E = 0.7). X-axis indicates delay time with arbitrary unit (a.u.). b TDMIC 
detected the coupling strength with the variation of parameters 
(E). Here Henon map was set to a nonidentical (B = 0.1) system with 
unidirectional coupling (X to Y). The data length was set to 1000
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long stationary EEG data in motor task experiments. 
For instance, in this study, the duration of ankle dorsi-
flexion was about 1  s. The EEG signal was nonstation-
ary and dynamic during the whole action. Therefore, the 

application of the TDMI method in short-term exercise 
task experiments needed to be carefully evaluated.

Unlike TE and TDMI, TDMIC was an asymmetric 
extension based on the MIC algorithm. The MIC algo-
rithm ensured that different types of functional rela-
tionships were accurately captured by finding the grid 
division method with the largest MI value [27]. This was 
different from TDMI in terms of relying on a single PDF 
calculation method to calculate MI. Especially for com-
plex time series, a single discrete method was not always 
suitable for different types of functional relations. MIC 
solved this problem well using the calculation principle. 

Fig. 5  Grand averaged a TDMIC, b NTDMIC, and c TDMI curve between EEG (Cz) and EMG as a function of delay data points in the beta (14–30 Hz) 
and gamma (31–45 Hz) bands for controls

Table 3  Summary of te results on experimental data

Frequency band EEG → EMG EMG → EEG Threshold 
TEEEG→EMG

Threshold 
TEEMG→EEG

Beta (14–30 Hz) 0.0072 0.0079 0.0584 0.0594

Gamma 
(31–45 Hz)

0.0093 0.0098 0.0634 0.0651
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At the same short data length (1000), the performance 
of TDMIC in identifying the direction of information 
flow between time series pairs generated by four differ-
ent models was significantly better than that of TE and 
TDMI.

The ability to accurately capture the coupling strength 
between time series is important for evaluating the effec-
tiveness of a new algorithm. The Henon map results 
showed that the maximum value of TDMIC increased 
monotonically as coupling strength increase, which was 
consistent with the trend of the MIC curve. The local 
maximum we observed in the result was related to the 
characteristics of the Henon map, namely, it can be inter-
preted as the minima of the largest sub-Lyapunov expo-
nent [39]. This was also consistent with the previous 

studies that used Henon map to verify new algorithms 
[40–42]. The value of TDMIC was always greater than 
the value of MIC. The Henon map had a typical nonlin-
ear unidirectional information flow(X to Y). Therefore, 
according to the principle of the algorithm, the value of 
MIC at the time of negative lag was naturally greater than 
the value at the time lag τ = 0. These results indicated 
that the TDMIC algorithm could accurately identify the 
coupling strength between nonlinear dynamic systems.

The direction and strength of the information flow in 
FCMC needed to be accurately identified to evaluate the 
motor function and reveal the motion control-feedback 
mechanism. Beta- and gamma-band FCMCs were dem-
onstrated to be associated with movement tasks [8, 43]. 
The Cz electrode position was considered to be related 

Fig. 6  Grand averaged normalized topographies of CTDMIC (a) and CNTDMIC (b) in the beta band of controls for EEG → EMG (left column) and 
EMG → EEG (right column) directions
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to leg movement, and therefore EEG signals recorded 
from the Cz channel were selected for analysis in this 
study. Significant beta-band total information flow was 
observed in both descending and ascending directions. 

This observation was consistent with previous findings 
indicating not only descending motor output information 
but also ascending somatosensory feedback information 
[3, 15, 44]. As the cortex and the periphery constituted 

Fig. 7  Grand averages of the CTDMIC and CNTDMIC values in both directions (i.e., EEG to EMG, EMG to EEG) for all subjects at beta and gamma bands. 
“*” denotes P < 0.05, “**” denotes P < 0.01, and “***” denotes P < 0.001

Fig. 8  Comparison of the CTDMIC and CNTDMIC values betwen controls and stroke patients in both directions (i.e., EEG to EMG, EMG to EEG) at beta 
and gamma bands, respectively. “*” denotes p < 0.05, “**” denotes p < 0.01, and “***” denotes p < 0.001
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a closed-loop sensorimotor system, the interaction 
between EEG and EMG was inevitably affected by the 
bidirectional information flow. Further statistical signifi-
cance showed that the beta-band total information flow 
in the descending direction was significantly higher than 
that in the ascending direction, which was consistent 
with previous findings on the steady-state force output 
task for the upper limbs [2, 6, 45]. This might be associ-
ated with the experimental paradigm of steady-state force 
output. During the steady-state force output, the task for 
the upper or lower limbs needed stronger motor control 
signals than sensory feedback integration. Beta-band 
oscillations affected the transmission of descending con-
trol instructions, which were used for force stability and 
output [1, 46]. Also, a significant bidirectional gamma-
band total information flow was observed. The differ-
ence was that the gamma-band information flow in the 
ascending direction was stronger than that in the oppo-
site direction. This result indicated that the transmission 
of sensory feedback was the main information flow in the 
gamma band. The gamma-band coupling was confirmed 
to be related to the generation of dynamic force and the 
integration of information such as attention, vision, and 
proprioception [43, 46]. The stronger somatosensory 
feedback flow in the gamma band might provide evi-
dence for these conclusions.

Additionally, significant bidirectional nonlinear infor-
mation flow was observed in beta and gamma bands, 
which might be accounted for by the mechanism of neu-
ral signal production. Motor output and somatosensory 
feedback were mainly produced by nonlinear neuronal 
interaction in the cortex [47]. Therefore, the bidirectional 
information flow in FCMC naturally had obvious nonlin-
ear characteristics. Similar to the total information flow, 
the direction specificity of the nonlinear information flow 
might also be caused by the experimental paradigm and 
the different functions of beta- and gamma-band oscil-
lations. A comprehensive assessment of nonlinear inter-
actions in the sensorimotor system was demonstrated 
to have clinical significance [48].Our future studies will 
explore the clinical significance of nonlinear information 
flow in FCMC.

The coherence between the contralateral sensorimo-
tor cortex and effector muscle (TA) in lower limb tasks 
has been confirmed by several previous studies [8, 10]. 
Our study were partially consistent with these previous 
findings. As shown in the beta-band topographic maps, 
the strong ascending total information mainly flowed 
to C3, Cz, CP3, P3 and CPz, from where the descend-
ing information was output. These electrode positions 
are generally thought to be associated with the central 
and contralateral sensorimotor cortex. What differenti-
ates our study from the previous ones is that we observed 

strong bidirectional total information flows that mainly 
act on this region. This finding indicated that the central 
and contralateral positions of the sensorimotor cortex 
played a major role in motor control and sensory feed-
back in lower limb motor tasks. A near-infrared study 
on gait also confirmed that the medial primary sensori-
motor cortices were activated during foot movements 
[49]. Additionally, the peaks of the topographic map of 
the total information flow were scattered more in the 
ascending direction (EMG to EEG) than in the opposite 
direction (EEG to EMG). This might have to do with the 
physiological structural difference between the motor 
control pathway and the sensory feedback pathway. The 
descending motor output was mainly completed through 
the corticospinal tract, with direct information transmis-
sion. However, the ascending sensory feedback pathway 
involved the cerebellum, brainstem, and thalamus, with 
a more complicated information transmission process. 
The inconsistency in information transmission, which 
resulted in the positive and negative directions, also 
showed nonlinear FCMC.

Furthermore, for healthy controls, after separating the 
nonlinear information flow form FCMC, the bidirec-
tional nonlinear information flow also mainly acted at 
C3, CP3, P3 and CPz. This was similar to the results of 
some recent studies on hand tasks [6, 35]. Jin et al. used 
TDMI to observe a significant nonlinear information flow 
from the contralateral sensorimotor cortex to the effector 
muscle during a wrist extension task [6]. However, they 
did not present a further discussion on the information 
flow from the effector muscles to the sensorimotor cor-
tex. Recently, Yang et  al. used the MSPC method and 
found the peak of the ascending and descending nonlin-
ear coherences at the CCP3 and C1 electrodes, respec-
tively, during constant contraction of the right upper 
limb [35]. Our findings indicated that the nonlinear 
information flow of the contralateral sensorimotor cor-
tex had the dominant role in motor control and sensory 
feedback regardless of upper or lower limb tasks.

Compared to the healthy controls, we did not observe 
significant directional differences in the strength of infor-
mation flow both in the beta and gamma bands. This may 
be due to structural damage to the patient’s brain, which 
affects normal information interaction [50]. Another 
possible explanation is that the individual differences 
among patients caused by factors such as different dis-
ease levels, different brain damage locations, and dif-
ferent stroke onset times. Furthermore, compared with 
the controls, the bidirectional total and nonlinear infor-
mation flows in both the beta and gamma bands of the 
stroke group were significantly reduced. This result was 
consistent with the previous studies [5, 51–53]. This 
weakening of FCMC may be caused by cortical damage 
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or muscle changes resulting from stroke [5, 54]. On the 
one hand, neural activities through the pyramidal tract 
were significantly reduced after brain injury, leading to 
the disassociation of presynaptic and postsynaptic activi-
ties, thereby weakening the cortical-spinal connection 
[52]. On the other hand, it has been demonstrated that 
neuromuscular disorders lead to an increased MU dis-
charge variability and a decreased firing rate after stroke 
[55]. In particular, Mima et  al. previously demonstrated 
that weak coupling is primarily caused by impaired infor-
mation flow from the brain to the muscles [56]. The 
results of weaker descending information flow that we 
observed in the stroke group was the same. Meanwhile, 
weaker information flow in the ascending direction was 
also observed in the stroke group. As mentioned ear-
lier, information flow in the ascending direction plays 
an important role in somatosensory tasks. Weakening 
of the ascending information flow may have caused the 
proprioception disorder of the stroke patient who, in fact, 
usually suffers proprioceptive dysfunction [57].This study 
may have demonstrate that the cerebral lesion caused by 
stroke damages the bidirectional information interaction 
between the cortex and the effector muscles in the sen-
sory-motor system, and this damage leads to obstacles in 
limb movement control and proprioceptive feedback.

Conclusions
This study proposed the TDMIC algorithm to address the 
challenge of accurate identification of information flow 
in FCMC. Simulation and experimental results showed 
the effectiveness of the proposed method. This study 
extended the related research of FCMC on information 
flow and further explored the frequency specificity and 
directional specificity of bidirectional nonlinear infor-
mation flow. The weakening of bidirectional informa-
tion flow may reflect the underlying mechanism of limb 
sensorimotor dysfunction after stroke. The proposed 
method might provide a deeper understanding of the 
control-feedback mechanism in motor control and serve 
a useful tool for the clinical evaluation of motor func-
tion. Further studies will recruit more stroke patients for 
a long-term analysis, focusing on evaluating the effects 
of different rehabilitation strategies on rehabilitation 
outcomes.
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