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Abstract 

Background:  Freezing of gait (FOG) is a common and debilitating gait impairment in Parkinson’s disease. Further 
insight into this phenomenon is hampered by the difficulty to objectively assess FOG. To meet this clinical need, 
this paper proposes an automated motion-capture-based FOG assessment method driven by a novel deep neural 
network.

Methods:  Automated FOG assessment can be formulated as an action segmentation problem, where temporal 
models are tasked to recognize and temporally localize the FOG segments in untrimmed motion capture trials. This 
paper takes a closer look at the performance of state-of-the-art action segmentation models when tasked to auto-
matically assess FOG. Furthermore, a novel deep neural network architecture is proposed that aims to better capture 
the spatial and temporal dependencies than the state-of-the-art baselines. The proposed network, termed multi-
stage spatial-temporal graph convolutional network (MS-GCN), combines the spatial-temporal graph convolutional 
network (ST-GCN) and the multi-stage temporal convolutional network (MS-TCN). The ST-GCN captures the hierarchi-
cal spatial-temporal motion among the joints inherent to motion capture, while the multi-stage component reduces 
over-segmentation errors by refining the predictions over multiple stages. The proposed model was validated on a 
dataset of fourteen freezers, fourteen non-freezers, and fourteen healthy control subjects.

Results:  The experiments indicate that the proposed model outperforms four state-of-the-art baselines. Moreover, 
FOG outcomes derived from MS-GCN predictions had an excellent (r = 0.93 [0.87, 0.97]) and moderately strong (r = 
0.75 [0.55, 0.87]) linear relationship with FOG outcomes derived from manual annotations.

Conclusions:  The proposed MS-GCN may provide an automated and objective alternative to labor-intensive 
clinician-based FOG assessment. Future work is now possible that aims to assess the generalization of MS-GCN to a 
larger and more varied verification cohort.

Keywords:  Temporal convolutional neural networks, Graph convolutional neural networks, Freezing of gait, 
Parkinson’s disease, MS-GCN
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Background
Freezing of gait (FOG) is a common and debilitating 
gait impairment of Parkinson’s disease (PD). Up to 80% 
of people with Parkinson’s disease (PwPD) may develop 
FOG during the course of the disease [1, 2]. FOG leads 
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to sudden blocks in walking and is clinically defined as a 
“brief, episodic absence or marked reduction of forward 
progression of the feet despite the intention to walk and 
reach a destination” [3]. The PwPD themselves describe 
freezing of gait as “the feeling that their feet are glued to 
the ground” [4]. Freezing episodes most frequently occur 
while traversing under environmental constraints, dur-
ing emotional stress, during cognitive overload by means 
of dual-tasking, and when initiating gait [5, 6]. Though, 
turning hesitation was found to be the most frequent 
trigger of FOG [7, 8]. Subjects with FOG experience 
more anxiety [9], have a lower quality of life [10], and are 
at a much higher risk of falls [11–15].

Given the severe adverse effects associated with FOG, 
there is a large incentive to advance novel interventions 
for FOG [16]. Unfortunately, the pathophysiology of FOG 
is complex and the development of novel treatments is 
severely limited by the difficulty to objectively assess 
FOG [17]. Due to heightened levels of attention, it is diffi-
cult to elicit FOG in the gait laboratory or clinical setting 
[4, 6]. Therefore, health professionals relied on subjects’ 
answers to subjective self-assessment questionnaires [18, 
19], which may be insufficiently reliable to detect FOG 
severity [20]. Visual analysis of regular RGB videos has 
been put forward as the gold standard for rating FOG 
severity [20, 21]. However, the visual analysis relies on 
labor-intensive manual annotation by a trained clinical 
expert. As a result, there is a clear need for an automated 
and objective approach to assess FOG.

The percentage time spent frozen (%TF), defined as 
the cumulative duration of all FOG episodes divided by 
the total duration of the walking task, and the number 
of FOG episodes (#FOG) have been put forward as reli-
able outcome measures to objectively assess FOG [22]. 
An accurate segmentation in-time of the FOG episodes, 
with minimal over-segmentation errors, is required to 
robustly determine both outcome measures.

Several methods have been proposed for automated 
FOG assessment based on motion capture (MoCap) data. 
MoCap encodes human movement as a time series of 
human joint locations and orientations or their higher-
order representations and is typically performed with 
optical or inertial measurement systems. Prior work has 
tackled automated FOG assessment as an action rec-
ognition problem and used a sliding-window scheme 
to segment a MoCap sequence into fixed partitions 
[23–36]. For all the samples within a partition, a single 
label is then predicted with methods ranging from sim-
ple thresholding methods [23, 26] to high-level temporal 
models driven by deep learning [27, 30, 32, 33, 36]. How-
ever, the samples within a pre-defined partition may not 
always share the same label. Therefore, a data-depend-
ent heuristic is imposed to force all samples to take a 

single label, most commonly by majority voting [33, 36]. 
Moreover, a second data-dependent heuristic is needed 
to define the duration of the sliding-window, which is a 
trade-off between expressivity, i.e., the ability to capture 
long-term temporal patterns, and sensitivity, i.e., the abil-
ity to identify short-duration FOG episodes. Such manu-
ally defined heuristics are unlikely to generalize across 
study protocols.

This study proposes to reformulate the problem of 
FOG annotation as an action segmentation problem. 
Action segmentation approaches overcome the need 
for manually defined heuristics by generating a predic-
tion for each sample within a long untrimmed MoCap 
sequence. Several methods have been proposed to tackle 
action segmentation. Similar to FOG assessment, earlier 
studies made use of sliding-window classifiers [37, 38], 
which do not capture long-term temporal patterns [39]. 
Other approaches use temporal models such as hidden 
Markov models [40, 41] and recurrent neural networks 
[42, 43]. The state-of-the-art methods tend to use tem-
poral convolutional neural networks (TCN), which have 
been shown to outperform recurrent methods [39, 44]. 
Dilation is frequently added to capture long-term tempo-
ral patterns by expanding the temporal receptive field of 
the TCN models [45]. In multi-stage temporal convolu-
tional network (MS-TCN), the authors show that multi-
ple stages of temporal dilated convolutions significantly 
reduce over-segmentation errors [46]. These action seg-
mentation methods have historically been validated on 
video-based datasets [47, 48] and thus employ video-
based features [49]. The human skeleton structure that is 
inherent to MoCap has thus not been exploited by prior 
work in action segmentation.

To model the structured information among the mark-
ers, this paper uses the spatial-temporal graph convolu-
tional neural network (ST-GCN) [50] as the first stage of 
an MS-TCN network. ST-GCN applies spatial graph con-
volutions on the human skeleton graph at each time step 
and applies dilated temporal convolutions on the tempo-
ral edges that connect the same markers across consecu-
tive time steps. The proposed model, termed multi-stage 
spatial-temporal graph convolutional neural network 
(MS-GCN), thus extends MS-TCN to skeleton-based 
data for enhanced action segmentation within MoCap 
sequences.

The MS-GCN was tasked to recognize and local-
ize FOG segments in a MoCap sequence. The predicted 
segments were quantitatively and qualitatively assessed 
versus the agreed-upon annotations by two clinical-
expert raters. From the predicted segments, two clini-
cally relevant FOG outcomes, the %TF and #FOG, were 
computed and statistically validated. To the best of our 
knowledge, the proposed MS-GCN is a novel neural 
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network architecture for skeleton-based action segmen-
tation in general and FOG segmentation in particular. 
The benefit of MS-GCN for FOG assessment is four-fold: 
(1) It exploits ST-GCN to model the structured informa-
tion inherent to MoCap. (2) It allows modeling of long-
term temporal context to capture the complex dynamics 
that precede and succeed FOG. (3) It can operate on high 
temporal resolutions for fine-grained FOG segmentation 
with precise temporal boundaries. (4) To accomplish (2) 
and (3) with minimal over-segmentation errors, MS-
GCN utilizes multiple stages of refinements.

Methods

Dataset
Two existing MoCap datasets [51, 52] were included for 
analysis. The first dataset [51], includes forty-two sub-
jects. Twenty-eight of the subjects were diagnosed with 
PD by a movement disorders neurologist. Fourteen of the 
PwPD were classified as freezers based on the first ques-
tion of the New Freezing of Gait Questionnaire (NFOG-
Q): “Did you experience “freezing episodes” over the 
past month?” [19]. The remaining fourteen subjects were 
age-matched healthy controls. The second dataset [52], 
includes seventeen PwPD and FOG, as classified by the 
NFOG-Q. The subjects underwent a gait assessment at 
baseline and after twelve months follow-up. Five subjects 
only underwent baseline assessment and four subjects 
dropped out during the follow-up. The clinical character-
istics are presented in Table 1.

Protocol
Both datasets were recorded with a Vicon 3D motion 
analysis system recording at a sampling frequency of 100 
Hz. Retro-reflective markers were placed on anatomi-
cal landmarks according to the full-body or lower-limb 

plug-in-gait model [53, 54]. Both datasets featured a 
nearly identical standardized gait assessment protocol, 
where two retro-reflective markers placed 0.5 m from 
each other indicated where subjects either had to walk 
straight ahead, turn 360◦left, or turn 360◦right. For data-
set 1, the subjects were additionally instructed to turn 
180◦left and turn 180◦right. The experimental conditions 
were offered randomly and performed with or without a 
verbal cognitive dual-task [55, 56]. All gait assessments 
were conducted during the off-state of the subjects’ med-
ication cycle, i.e., after an overnight withdrawal of their 
normal medication intake. The experimental conditions 
are visualized in Fig. 1.

For dataset 1, two clinical experts, blinded for NFOG-
Q score, annotated all FOG episodes by visual inspection 
of the knee-angle data (flexion-extension) in combination 
with the MoCap 3D images. For dataset 2, the FOG epi-
sodes were annotated by one of the authors (BF) based 
on visual inspection of the MoCap 3D images. To ensure 
that the results were unbiased, the FOG trials of dataset 
2 were used to enrich the training dataset and not for the 
evaluation of the model. For both datasets, the onset of 
FOG was determined at the heel strike event prior to 
delayed knee flexion. The termination of FOG was deter-
mined at the foot-off event that is succeeded by at least 
two consecutive movement cycles [51].

FOG segmentation
Marker-based optical MoCap describes the 3D move-
ment of optical markers in time, where each marker 
represents the 3D coordinates of the corresponding ana-
tomical landmark. The duration of a MoCap trial can 
vary substantially due to high inter-and intra-subject 
variability. The goal is to segment a FOG episode in time, 
given a variable-length MoCap trial. The MoCap trial 
can be represented as X ∈ R

N×T×Cin , where N specifies 
the number of optical markers, T the number of sam-
ples, and Cin the feature dimension. Each MoCap trial 
X is associated with a ground truth label vector YT×l

exp  , 
where the label l represents the manual annotation of 
FOG and functional gait (FG) by the clinical experts. A 
deep neural network segments a FOG episode in time by 
learning a function f : X → Y  that transforms a given 
input sequence X = x0, . . . , xT into an output sequence 
Ŷ = ŷ0, . . . , ŷT that closely resembles the manual annota-
tions Yexp.

From the 3D marker coordinates, the marker displace-
ment between two consecutive samples was computed as 
X(n, t + 1, :)− X(n, t, :) . The two markers on the femur 
and tibia, which were wand markers in dataset 1 and thus 
placed away from the primary axis, were excluded. The 
heel marker was excluded due to close proximity with the 
ankle marker. The reduced marker configuration consists 

Table 1  Subject characteristics

The subject characteristics of the fourteen healthy control subjects (controls), 
fourteen PwPD and without FOG (non-freezers), fourteen PwPD and FOG 
(freezers) of dataset 1, and seventeen PwPD and FOG (freezers) of dataset 2 
at the baseline assessment. All characteristics are given in terms of mean ± 
standard deviation. For dataset 1, the characteristics were measured during the 
ON-phase of the medication cycle, while for dataset 2 the characteristics were 
measured while OFF medication

Dataset 1 Dataset 2

Controls Non-freezers Freezers Freezers

Age 65 ± 6.8 67 ± 7.4 69 ± 7.4 67 ± 9.3

PD duration 7.8 ± 4.8 9.0 ± 4.8 10 ± 6.3

MMSE [81] 29 ± 1.3 29 ± 1.2 28 ± 1.1 28 ± 1.3

UPDRS III [82] 34 ± 9.9 38 ± 14 39 ± 12

H&Y [83] 2.4 ± 0.3 2.5 ± 0.5 2.4 ± 0.5



Page 4 of 14Filtjens et al. Journal of NeuroEngineering and Rehabilitation           (2022) 19:48 

of nine optical markers: the marker in the middle of the 
left and right posterior superior iliac spine, the mark-
ers on the left and right anterior superior iliac spine, the 
markers on the left and right lateral femoral condyle, the 
markers on the left and right lateral malleolus, and the 
markers on the left and right second metatarsal head. As 
a result, an input sequence X ∈ R

N×T×Cin is composed of 
nine optical markers (N), variable duration (T), and with 
the feature dimension ( Cin ) composed of the 3D displace-
ment of each marker.

MS‑GCN
The proposed multi-stage graph convolutional neural 
network (MS-GCN), generalizes the multi-stage tem-
poral convolutional neural network (MS-TCN) [46] to 
graph-based data. A visual overview of the model archi-
tecture is provided in Fig. 2.

Formally, MS-GCN features a prediction generation 
stage of several ST-GCN blocks, which generates an ini-
tial prediction Y ∈ R

T×l . The first layer of the prediction 
generation stage is a batch normalization (BN) layer that 
normalizes the inputs and accelerates training [57]. The 
normalized input is passed through a 1× 1 convolutional 
layer that adjusts the input dimension Cin to the number 
of filters C in the network, formalized as:

where fadj ∈ R
T×N×C is the adjusted feature map, 

fin ∈ R
T×N×Cin the input MoCap sequence, b ∈ R

C the 
bias term, ∗ the convolution operator, W1 ∈ R

1×1×Cin×C 
the weights of the 1× 1 convolution filter with Cin input 
feature channels and C equal to the number of feature 
channels in the network.

The adjusted input is passed through several blocks of 
ST-GCN [50]. Each ST-GCN first applies a graph convo-
lution, formalized as:

where fadj ∈ R
T×N×C is the adjusted input feature map, 

fgcn ∈ R
T×N×C the output feature map of the spatial 

graph convolution, and Wp the 1× 1× C × C weight 
matrix. The matrix Ap ∈ {0, 1}N×N is the adjacency 
matrix, which represents the spatial connection between 
the joints. The graph is partitioned into three subsets 
based on the spatial partitioning strategy [50]. The matrix 
Mp is a learnable N × N  attention mask that indicates 
the importance of each node and its spatial partitions.

Next, after passing through a BN layer and ReLu non-
linearity, the ST-GCN block performs a dilated tempo-
ral convolution [45]. The dilated temporal convolution 

(1)fadj = W1 ∗ fin + b,

(2)fgcn =
∑

p

ApfadjWpMp,

is, in turn, passed through a BN layer and ReLU non-
linearity, and lastly, a residual connection is added 
between the activation map and the input. This process 
is formalized as:

where fout ∈ R
T×N×C is the output feature map, b ∈ R

C 
the bias term, ∗d the dilated convolution operator, 
W ∈ R

k×1×C×C the weights of the dilated convolution 
filter with kernel size k. The output feature map is passed 
through a spatial pooling layer that aggregates the spatial 
features among the N joints.

Lastly, the aggregated feature map is passed through 
a 1× 1 convolution and a softmax activation function 
to get the probabilities for the l output classes for each 
sample in-time, formalized as:

where ŷt are the class probabilities at time t, fout the out-
put of the pooled ST-GCN block at time t, b ∈ R

l the bias 
term, ∗ the convolution operator, ζ the softmax function, 
W1 ∈ R

1×C×l the weights of the 1× 1 convolution filter 
with C input channels and l output classes.

Next, the initial prediction is passed through one or 
more refinement stages. The first layer of the refine-
ment stage is a 1× 1 convolutional layer that adjusts the 
input dimension l to the number of filters C in the net-
work, formalized as:

where fadj ∈ R
T×C is the adjusted feature map, 

fin ∈ R
T×l the softmax probabilities of the previous 

stage, b ∈ R
C the bias term, ∗ the convolution operator, 

W1 ∈ R
1×l×C the weights of the 1× 1 convolution filter 

with l input feature channels and C equal to the number 
of feature channels in the network.

The adjusted input is passed through ten blocks of 
TCN. Each TCN block applies a dilated temporal con-
volution [45], BN, ReLU non-linear activation, and a 
residual connection between the activation map and 
the input. Formally, this process is defined as:

where fout ∈ R
T×C is the output feature map, b ∈ R

C 
the bias term, ∗d the dilated convolution operator, 
W ∈ R

k×C×C the weights of the dilated convolution filter 
with kernel size k, and δ the ReLU function.

Lastly, the feature map is passed through a 1× 1 con-
volution and a softmax activation function to get the 
probabilities for the l output classes for each sample in-
time, formalized as:

(3)fout = δ(BN (W ∗d fgcn + b))+ fadj ,

(4)ŷt = ζ(W1 ∗ fout + b),

(5)fadj = W1 ∗ fin + b,

(6)fout = δ(BN (W ∗d fadj + b))+ fadj ,
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where ŷt are the class probabilities at time t, fout the 
output of the last TCN block at time t, b ∈ R

l the bias 
term, ∗ the convolution operator, ζ the softmax function, 
W1 ∈ R

1×C×l the weights of the 1× 1 convolution filter 
with C input channels and l output classes.

Model comparison
To put the MS-GCN results into context, four strong DL 
baselines were included. Specifically, the state-of-the-art 
in skeleton-based action recognition, spatial-temporal 
graph convolutional network (ST-GCN) [50]. The state-
of-the-art in action segmentation, multi-stage tempo-
ral convolutional neural network (MS-TCN) [46]. Two 
commonly used sequence to sequence models in human 
movement analysis [58, 59], a bidirectional long short 
term memory-based network (LSTM) [60], and a tempo-
ral convolutional neural network-based network (TCN) 
[39].

Implementation details
To train the models, this paper used the same loss as MS-
TCN which utilized a combination of a classification loss 
(cross-entropy) and smoothing loss (mean squared error) 
for each stage. The combined loss is defined as:

where the hyperparameter � controls the contribution of 
each loss function. The classification loss Lcls is the cross 
entropy loss:

The smoothing loss LT−MSE is a truncated mean squared 
error of the sample-wise log-probabilities:

In each loss function, T are the number of samples and 
ŷt,l is the probability of FOG or FG at sample t. To train 
the entire network, the sum of the losses over all stages is 
minimized:

To allow an unbiased comparison, the model and opti-
mizer hyperparameters were selected according to 

(7)ŷt = ζ(W1 ∗ fout + b),

(8)L = Lcls + �LT−MSE ,

(9)Lcls =
1

T

∑

t

−yt,l log(ŷt,l).

(10)

LT−MSE = 1

TC

∑

t,c

�̃2
t,c

�̃t =
{
�t,c : �t,c ≤ τ ,

τ :otherwise,

�t,l = |log(ŷt,l)− log(ŷt−1,l)|,

(11)L =
∑

s

Ls

MS-TCN [46]. Specifically, the multi-stage models had 
1 prediction generation stage and 4 refinement stages. 
Each stage had 10 layers of 64 filters that applied graph 
and/or dilated temporal convolutions with kernel size 3 
and ReLU activations. The temporal convolutions were 
acausal, i.e., they could take into account both past and 
future input features, with a dilation factor that doubled 
at each layer, i.e., 1, 2, 4, ..., 512. The single-stage models, 
i.e., ST-GCN and TCN, used the same configuration but 
without refinement stages. The Bi-LSTM used a configu-
ration that is conventional in human movement analysis, 
with two forward LSTM layers and two backward LSTM 
layers, each with 64 cells [59, 61]. For the loss function, τ 
was set to 4 and � was set to 0.15. All experiments used 
the Adam optimizer [62] with a learning rate of 0.0005. 
All models were trained for 100 epochs with a batch size 
of 16.

For the temporal models, i.e., LSTM, TCN, and MS-
TCN, the input is reshaped into their accepted formats. 
Specifically, the data is shaped into T × Cin ∗ N  , i.e., the 
spatial feature dimension N is thus collapsed.

The LSTM was additionally evaluated as an action 
recognition model. For this evaluation, the MoCap 
sequences were partitioned into two-second windows 
and majority voting was used to force all samples to take 
a single label. These settings are commonly used in FOG 
recognition [33, 36]. The last hidden LSTM state, which 
constitutes a compressed representation of the entire 
sequence, was fed to a feed-forward network to gener-
ate a single label for the sequence. To localize the FOG 
episodes during evaluation, predictions for each sample 
were made by sliding the two-second partition in steps 
of one. This setting enables an objective comparison with 
the proposed action segmentation approaches as pre-
dictions are made at a temporal frequency of 100 Hz for 
both action detection schemes.

Evaluation
For dataset 1, FOG was provoked for ten of the fourteen 
freezers during the test period, with seven subjects freez-
ing within the visibility of the MoCap system. For dataset 
2, eight of the seventeen freezers froze within the visibil-
ity of the MoCap system. The training dataset consists of 
the FOG and non-FOG trials of the seven subjects who 
froze in front of the MoCap system of dataset 1, enriched 
with the FOG trials of the eight subjects who froze in 
front of the MoCap system of dataset 2. Only the FOG 
trials of dataset 2 were considered to balance out the 
number of FOG and FG trials. Only the subjects of data-
set 1 were considered for evaluation, as motivated in the 
procedure. Detailed dataset characteristics are provided 
in Table 2.
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The evaluation dataset was partitioned according to a 
leave-one-subject-out cross-validation approach. This 
cross-validation approach repeatedly splits the data 
according to the number of subjects in the dataset. One 
subject is selected for evaluation, while the other subjects 
are used to train the model. This procedure is repeated 
until all subjects have been used for evaluation. This 
approach mirrors the clinically relevant scenario of FOG 
assessment in newly recruited subjects [63], where the 
model is tasked to assess FOG in unseen subjects.

From a machine learning perspective, action segmen-
tation papers tend to use sample-wise metrics, such as 
accuracy, precision, and recall. However, sample-wise 
metrics do not heavily penalize over-segmentation errors. 
As a result, methods with significant qualitative differ-
ences, as was observed between the single-stage ST-GCN 
and MS-GCN, can still achieve similar performance on 
the sample-wise metrics. In 2016 Lea et al. [39] proposed 
a segment-wise F1-score to address those drawbacks. To 
compute the segment-wise F1-score, action segments 

Table 2  Dataset characteristics

Overview of the number of motion capture trials (#Trials), number of FOG trials (#FOG trials), number of FOG episodes (#FOG), percentage time spent frozen (%TF), 
total duration of the FOG trials (in minutes), and average duration of the FOG trials (± standard deviation (SD)) (in minutes). For dataset 1, the characteristics are given 
per subject. For dataset 2 (D2), which was only used to enrich the training dataset and not for model evaluation, a single summary is provided

ID #Trials #FOG trials #FOG %TF Total duration Avg duration (± SD)

S1 27 3 9 33.9 1.05 0.35 (± 0.28)

S2 22 11 13 12.3 4.01 0.36 (± 0.12)

S3 27 4 5 6.89 0.49 0.12 (± 0.02)

S4 21 9 18 36.7 2.45 0.27 (± 0.19)

S5 24 1 3 36.1 0.29 0.29

S6 7 5 7 14.4 0.85 0.17 (± 0.08)

S7 31 1 1 20.1 0.08 0.08

D2 68 68 134 28.4 24.4 0.36 (±0.18)

Fig. 1  Overview of the acquisition protocol. Two reflective markers were placed in the middle of the walkway at a 0.5m distance from each other 
to demarcate the turning radius. The data collection included straight-line walking (a), 180 degree turning (b), and 360 degree turning (c). The 
protocol was standardized by demarcating a zone of 1 m before and 1m after the turn in which data was collected. The gray shaded area visualizes 
the data collection zone, while the dashed lines indicate the trajectory walked by the subjects. For dataset 2, the data collection only included 
straight-line walking and 360 degree turning. Furthermore, the data collection ended as soon as the subject completed the turn, as visualized by 
the red dashed line
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are first classified as true positive (TP), false positive 
(FP), or false negative (FN) by comparing the intersec-
tion over union (IoU) to a pre-determined threshold, as 
visualized in Fig. 3. The segment-wise F1-score has sev-
eral advantages for FOG segmentation. (1) It penalizes 
over and under-segmentation errors, which would result 
in an inaccurate #FOG severity outcome. (2) It allows for 

minor temporal shifts, which may have been caused by 
annotator variability and do not impact the FOG severity 
outcomes. (3) It is not impacted by the variability in FOG 
duration, since it is dependent on the number of FOG 
episodes and not on their duration.

This paper also reports a sample-wise metric. More 
specifically, the sample-wise Matthews correlation coef-
ficient (MCC), defined as [64]:

A perfect MCC score is equal to one hundred, whereas 
minus one hundred is the worst value. An MCC score of 
zero is reached when the model always picks the majority 
class. The MCC can thus be considered a balanced meas-
ure, i.e., correct FOG and FG classification are of equal 
importance. The discrepancy between sample-wise MCC 
and the segment-wise F1 score allows assessment of 
potential over and under-segmentation errors. Conclu-
sions were based on the segment-wise F1-score at high 
IoU overlap.

For the model validation, the entirety of dataset 1 was 
used, i.e., MoCap trials without FOG and MoCap trials 
with FOG, of the seven subjects who froze during the 
protocol. The machine learning metrics were used to 
evaluate MS-GCN with respect to the four strong base-
lines. While a high number of trials without FOG can 
inflate the metrics, correct classification of FOG and non 
FOG segments are, however, of equal importance for 
assessing FOG severity and thus also for assessing the 
performance of a machine learning model. To further 
assess potential false-positive scoring, an additional anal-
ysis was performed on trials without FOG of the healthy 
controls, non-freezers, and freezers that did not freeze 
during the protocol.

From a clinical perspective, FOG severity is typically 
assessed in terms of percentage time-frozen (%TF) and 

(12)

MCC = TP ∗ TN − FP ∗ FN√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )

.

Fig. 2  Overview of the multi-stage graph convolutional neural 
network architecture (MS-GCN). MS-GCN generates an initial 
prediction with multiple blocks of spatial-temporal graph 
convolutional neural network (ST-GCN) layers and refines the 
predictions over several stages with multiple blocks of temporal 
convolutional (TCN) layers. An ST-GCN block is visualized in blue and 
a TCN block in gray

Fig. 3  Toy example to visualize the IoU computation and segment classification. The predicted FOG segmentation is visualized in pink, the experts’ 
FOG segmentation in gray, and the color gradient visualizes the overlap between the predicted and experts’ segmentation. The intersection is 
visualized in orange and the union in green. If a FOG segment’s IoU (intersection divided by union) crosses a predetermined threshold it is classified 
as a TP, if not, as a FP. For example, the FOG segment with an IoU of 0.42 would be classified as a FP. Given that the number of correctly detected 
segments (n = 0) is less than the number of segments that the experts demarcated (n = 1), there would be 1 FN
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number of detected FOG episodes (#FOG) [22]. The %TF 
quantifies the duration of FOG relative to the trial dura-
tion, and is defined as:

where T are the number of samples in a MoCap trial and 
yFOG are the FOG samples predicted by the model or the 
samples annotated by the clinical experts. To evaluate the 
goodness of fit, the linear relationship between observa-
tions by the clinical experts and the model predictions 
was assessed. The strength of the linear relationship was 
classified according to [65]: ≥ 0.8 : strong, 0.6–0.8 : mod-
erately strong, 0.3–0.5 : fair, and < 0.3 : poor. The correla-
tion describes the linear relationship between the experts’ 
observations and the model predictions but ignores bias 
in predictions. Therefore, a linear regression analysis was 
performed to evaluate whether the linear association 
between the expert annotations and model predictions 
was statistically significant. The significance level for all 
tests was set at 0.05. For the FOG severity statistical anal-
ysis, only the trials with FOG were considered, as trials 
without FOG would inflate the reliability scores.

Results
Model comparison
All models were trained using a leave-one-subject-out 
cross-validation approach. The metrics were summa-
rized in terms of the mean ± standard deviation (SD) of 
the seven subjects that froze during the protocol, where 
the SD aims to capture the variability across different 
subjects. According to the results shown in Table 3, the 
ST-GCN-based models outperform the TCN and LSTM-
based models on the MCC metric. This result confirms 
the notion that explicitly modeling the spatial hierarchy 
within the skeleton-based data results in a better repre-
sentation [50]. Moreover, the multi-stage refinements 
improve the F1 score at all evaluated overlapping thresh-
olds, the metric that penalizes over-segmentation errors, 
while the sample-wise MCC remains mostly consistent 
across stages. This result confirms the notion that multi-
stage refinements can reduce the number of over-seg-
mentation errors and improve neural network models 
for fine-grained activity segmentation [46]. Additionally, 
the results suggest that the sliding window scheme is ill-
suited for fine-grained FOG annotation at high temporal 
frequencies.

MS‑GCN detailed results
This section provides an in-depth analysis of the perfor-
mance of the MS-GCN model. According to the results 
shown in Table  4, the model correctly detects 52 of 56 

(13)%TF =
(

1

T

∑

t

yFOG

)
∗ 100,

FOG episodes. A detection was considered as a TP if 
at least one sample overlapped with the ground-truth 
episode. Thus, without imposing a constraint on how 
much the predicted segment should overlap with the 
ground-truth segment, as is the case when computing 
the segment-wise F1 score. The model proved robust, 
with only six episodes incorrectly detected in a trial that 
the experts did not label as FOG. In terms of the clini-
cal metrics, the model provides an accurate assessment 
of #FOG and %TF for five of the seven subjects. For S2 
the model overestimates FOG severity, while for S3 the 
model underestimates FOG severity.

One FOG segmentation trial for each of the seven 
subjects is visualized in Fig.  4. The sample-wise MCC 
and segment-wise F1@50 for each trial are included for 
comparison. A near-perfect FOG segmentation can be 
observed for the trials of S1, S4, S5, and S7. For the two 
chosen trials of S3 and S6, the model did not detect two 
of the sub-0.5-second FOG episodes. For S2, it is evi-
dent that the model overestimates the number of FOG 
episodes.

A quantitative assessment of the MS-GCN predictions 
for the fourteen healthy control subjects (controls), four-
teen non-freezers (non-freezers), and the seven freezers 
that did not freeze during the protocol (freezers-) further 
demonstrates the robustness of the MS-GCN. The results 
are summarized in Table  5. According to Table  5, no 
false-positive FOG segments were predicted.

Automated FOG assessment: statistical analysis
The clinical experts observed at least one FOG epi-
sode in 35 MoCap trials of dataset 1. The number of 
detected FOG episodes (#FOG) per trial varied from 1 to 
7 amounting to 56 FOG episodes, while the percentage 
time-frozen (%TF) varied from 4.2 to 75. For the %TF, the 
model predictions had a very strong linear relationship 
with the experts observations, with a correlation value 
[95% confidence interval (CI)] of r = 0.93 [0.87, 0.97]. 
For the #FOG, the model predictions had a moderately 
strong linear relationship with the experts’ observations, 
with a correlation value [95% CI] of r = 0.75 [0.55, 0.87]. 
A linear regression analysis was performed to evalu-
ate whether the linear association between the experts’ 
annotations and model predictions was statistically sig-
nificant. For the %TF, the intercept [95% CI] was − 1.79 
[− 6.8, 3.3] and the slope [95% CI] was 0.96 [0.83, 1.1]. 
For the #FOG, the intercept [95% CI] was 0.36 [− 0.22, 
0.94] and the slope [95% CI] was 0.73 [0.52, 0.92]. Given 
that the 95 % CIs of the slopes exclude zero, the linear 
association between the model predictions and expert 
observations was statistically significant (at the 0.05 level) 
for both FOG severity outcomes. The linear relationship 
is visualized in Fig. 5.
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Discussion
Existing approaches treat automatic FOG assessment as 
an action recognition task and employ a sliding-window 
scheme to localize the FOG segments within a MoCap 
sequence. Such approaches require manually defined 
heuristics that may not generalize across study protocols. 
For instance, the most common FOG recognition scheme 
uses two-second partitions with majority voting to force 
all labels within a partition to a single label [33, 36]. Yet, 
such settings would induce a bias on the ground-truth 
annotations as sub-second episodes would never be the 
majority label. For the present dataset, this bias would 
neglect all the FOG episodes of S3. While shorter parti-
tions could overcome this issue, they would restrict the 
amount of temporal context exposed to the model.

To address these issues, this paper reformulated FOG 
assessment as an action segmentation task. Action seg-
mentation frameworks overcome the need for fixed 

partitioning by generating a prediction for each sample. 
Therefore, these frameworks rely only on the obser-
vations and their assumed model and not on manual 
heuristics that are unlikely to generalize across study pro-
tocols. As predictions vary at a high temporal frequency, 
action segmentation is inherently more challenging than 
recognition. To address this task, a novel neural network 
architecture, entitled MS-GCN, was proposed. MS-
GCN extends MS-TCN [46], the state-of-the-art model 
in action segmentation, to graph-based input data that is 
inherent to MoCap.

MS-GCN was quantitatively compared with four 
strong deep learning baselines. The comparison con-
firmed the notions that: (1) the multi-stage refinements 
reduce over-segmentation errors, and (2) the graph con-
volutions give a better representation of skeleton-based 
data than regular temporal convolutions. As a result, 
MS-GCN showed state-of-the-art FOG segmentation 

Fig. 4  Overview of seven standardized motion capture trials, visualizing the difference between the manual FOG segmentation by the clinician 
and the automated FOG segmentation by the MS-GCN. The x-axis denotes the number of samples (at a sampling frequency of 100 hz). The color 
gradient visualizes the overlap or discrepancy between the model and experts’ annotations. The model annotations were derived from the test set, 
i.e., subjects that the model had never seen
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Fig. 5  Assessing the performance of the MS-GCN (6 stages) for automated FOG assessment. More specifically, the performance to measure the 
percentage time-frozen (%TF) (left) and the number of FOG episodes (#FOG) (right) during a standardized protocol. The ideal regression line with 
a slope of one and an intercept of zero is visualized in red. All results were derived from the test set, i.e., subjects that the model had never seen. 
Observe the overestimation of %TF and #FOG for S2

Table 3  Model comparison results

Overview of the FOG segmentation performance in terms of the segment-wise F1@50 and sample-wise MCC for MS-GCN and the four strong baselines. The †denotes 
the sliding window FOG detection scheme. The best score is denoted in bold. All results were derived from the test set, i.e., subjects that the model had never seen

Model F1@10 F1@25 F1@50 F1@75 MCC

Bi-LSTM† 25.9 ± 8.40 21.8 ± 9.03 15.0 ± 5.60 11.9 ± 6.26 62.4 ± 23.2

Bi-LSTM 63.7 ± 21.7 63.2 ± 22.0 50.8 ± 25.4 40.9 ± 28.4 78.8 ± 21.1

TCN 45.4 ± 16.8 42.7 ± 18.6 35.8 ± 14.8 27.0 ± 16.6 81.1 ± 12.9

ST-GCN 53.2 ± 21.2 51.5 ± 21.7 46.7 ± 22.5 37.6 ± 26.6 83.0 ± 11.5
MS-TCN 68.2 ± 29.4 66.8 ± 29.3 60.2 ± 30.5 54.9 ± 33.1 77.3 ± 22.2

MS-GCN 77.8 ± 15.3 77.8 ± 15.3 74.2 ± 21.0 57.0 ± 30.1 82.7 ± 15.5

Table 4  Detailed MS-GCN results

Detailed overview of the FOG assessment performance of the proposed MS-GCN model for each subject. The fourth column depicts the number of true positive FOG 
detections (TP) with respect to the number of FOG episodes. The fifth column depicts the number of false-positive (FP) FOG detections with respect to the number of 
trials that did not contain FOG. The sixth and seventh columns depict the #FOG and %TF computed from the model annotated segmentations with respect to those 
computed from the expert annotated segmentations. All results were derived from the test set, i.e., subjects that the model had never seen

ID F1@50 MCC #TP #FP #FOG %TF

S1 87.5 95.7 9 / 9 0 / 24 10 / 9 37.1 / 33.9

S2 31.6 60.3 13 / 13 3 / 11 24 / 13 22.6 / 12.3

S3 60.0 59.8 3 / 5 2 / 23 3 / 5 5.34 / 6.89

S4 71.1 87.2 18 / 18 0 / 12 18 / 18 40.6 / 36.7

S5 85.7 96.9 3 / 3 1 / 23 3 / 3 35.2 / 36.1

S6 83.3 80.7 5 / 7 0 / 2 5 / 7 12.7 / 14.4

S7 100 98.5 1 / 1 0 / 30 1 / 1 19.5 / 20.1

74.2 82.7 52 / 56 6 / 125 64 / 56 24.7 / 22.9
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performance. Two common outcome measures to assess 
FOG, the %TF and #FOG [22], were computed and sta-
tistically assessed. MS-GCN showed a very strong (r = 
0.93) and moderately strong (r = 0.75) linear relation-
ship with the experts’ observations for %TF and #FOG, 
respectively. For context, the intraclass correlation coef-
ficient between independent assessors was reported to be 
0.87 [66] and 0.73 [22] for %TF and 0.63 [22] for #FOG.

A benefit of MS-GCN is that it is not strictly limited 
to marker-based MoCap data. The MS-GCN architec-
ture naturally extends to other graph-based input data, 
such as single- or multi-camera markerless pose estima-
tion [67, 68], and FOG assessment protocols that employ 
multiple on-body sensors [24, 25]. Both technologies 
are receiving increased attention due to the potential to 
assess FOG not only in the lab but also in an at-home 
environment and thereby better capture daily-life FOG 
severity. Furthermore, up until now, deep learning-
based gait assessment [58, 61, 69, 70] did not yet exploit 
the inherent graph-structured data. The established 
improvement in FOG assessment by this research might, 
therefore, signify further improvements in deep learning-
based gait assessment in general.

Several limitations are present. The first and most 
prominent limitation is the lack of variety in the stand-
ardized FOG-provoking protocol. FOG is characterized 
by several apparent subtypes, such as turning and des-
tination hesitation, and gait initiation [7]. While turn-
ing was found to be the most prominent [7, 8], it should 
still be established whether MS-GCN can generalize to 
other FOG subtypes under different FOG provoking pro-
tocols. For now, practitioners are advised to closely fol-
low the experimental protocol used in this study when 
employing MS-GCN. The second limitation is the small 
sample size. While MS-GCN was evaluated based on 
the clinically relevant use-case scenario of FOG assess-
ment in newly recruited subjects, the sample size of the 
dataset is relatively small compared to the deep learning 
literature. The third limitation is based on the observa-
tion that FOG assessment in the clinic and lab is prone 
to two shortcomings. (1) FOG can be challenging to elicit 
in the lab due to elevated levels of attention [4, 6], despite 

providing adequate FOG provoking circumstances [51, 
71]. (2) Research has demonstrated that FOG severity in 
the lab is not necessarily representative of FOG severity 
in daily life [4, 72]. Future work should therefore establish 
whether the proposed method can generalize to tackle 
automated FOG assessment with on-body sensors or 
markerless MoCap captured in less constrained environ-
ments. Fourth, due to the opaqueness inherent to deep 
learning, clinicians have historically distrusted DNNs 
[73]. However, prior case studies [74, 75], have demon-
strated that interpretability techniques are able to visual-
ize what features the model has learned [76–78], which 
can aid the clinician in determining whether the assess-
ment was based on credible features.

Conclusions
FOG is a debilitating motor impairment of PD. Unfortu-
nately, our understanding of this phenomenon is ham-
pered by the difficulty of objectively assessing FOG. To 
tackle this problem, this paper proposed a novel deep 
neural network architecture. The proposed architecture, 
termed MS-GCN, was quantitatively validated versus 
the expert clinical opinion of two independent raters. In 
conclusion, it can be established that MS-GCN demon-
strates state-of-the-art FOG assessment performance. 
Furthermore, future work is now possible that aims to 
assess the generalization of MS-GCN to other graph-
based input data, such as markerless MoCap or multiple 
on-body sensor configurations, and to other FOG sub-
types captured under less constrained protocols. Such 
work is important to increase our understanding of this 
debilitating phenomenon during everyday life.
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