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Abstract 

Objective:  The objective of this study was to develop a portable and modular brain–computer interface (BCI) soft‑
ware platform independent of input and output devices. We implemented this platform in a case study of a subject 
with cervical spinal cord injury (C5 ASIA A).

Background:  BCIs can restore independence for individuals with paralysis by using brain signals to control prosthet‑
ics or trigger functional electrical stimulation. Though several studies have successfully implemented this technology 
in the laboratory and the home, portability, device configuration, and caregiver setup remain challenges that limit 
deployment to the home environment. Portability is essential for transitioning BCI from the laboratory to the home.

Methods:  The BCI platform implementation consisted of an Activa PC + S generator with two subdural four-contact 
electrodes implanted over the dominant left hand-arm region of the sensorimotor cortex, a minicomputer fixed to 
the back of the subject’s wheelchair, a custom mobile phone application, and a mechanical glove as the end effector. 
To quantify the performance for this at-home implementation of the BCI, we quantified system setup time at home, 
chronic (14-month) decoding accuracy, hardware and software profiling, and Bluetooth communication latency 
between the App and the minicomputer. We created a dataset of motor-imagery labeled signals to train a binary 
motor imagery classifier on a remote computer for online, at-home use.

Results:  Average bluetooth data transmission delay between the minicomputer and mobile App was 23 ± 0.014 ms. 
The average setup time for the subject’s caregiver was 5.6 ± 0.83 min. The average times to acquire and decode neural 
signals and to send those decoded signals to the end-effector were respectively 404.1 ms and 1.02 ms. The 14-month 
median accuracy of the trained motor imagery classifier was 87.5 ± 4.71% without retraining.

Conclusions:  The study presents the feasibility of an at-home BCI system that subjects can seamlessly operate using 
a friendly mobile user interface, which does not require daily calibration nor the presence of a technical person for at-
home setup. The study also describes the portability of the BCI system and the ability to plug-and-play multiple end 
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Introduction
Paralysis is a devastating condition that affects approxi-
mately 5.4  million people in the US alone [1]. Among 
the various causes that result in paralysis, stroke is the 
most common cause followed by spinal cord injury 
(SCI) and multiple sclerosis [2]. For SCI, incidence is 
highest in the US and the prevalence of cervical SCI is 
rising [3]. Paralysis imposes a significant economic and 
social burden on the individual, their families, caregiv-
ers, and public health, as the costs for individuals with 
high tetraplegia can exceed $1  M in the 1st year after 
injury [4]. For 40% of stroke subjects, and most SCI 
subjects, functional deficits are typically permanent, 
and no treatment yet exists. Thus, the need to address 
functional improvements and restoration of movement 
and independence in these subjects remains a critical 
challenge.

Despite a lack of available treatment, recent advances 
in intracortical brain–computer interfaces (BCI) have 
shown promising results in restoring functional reach-
ing and grasping in individuals with paralysis [5–8]. BCIs 
create an external link between the brain and body by 
means other than the body’s nervous system [9]. While 
BCIs may target a variety of consumers, this technology 
yields promising outcomes for subjects with sensorimo-
tor deficits, in which BCIs can circumvent lost function 
[10].

Research efforts investigating invasive BCIs have high-
lighted their potential to restore function lost due to neu-
rological disorder and injury. Invasive neural recordings 
have enabled human subjects to control virtual cursors 
[11–16], computers [17, 18], spellers [19], virtual [20–22] 
and robotic prosthetics [6–8, 15, 23], exoskeletons [24], 
and their own paralyzed limbs via functional electrical 
stimulation (FES) [5, 25, 26]. These achievements high-
light many remarkable improvements in BCIs, such as 
the ability of neural-control devices in multiple degrees 
of freedom [8, 15, 23, 24]. These demonstrations gener-
ally require subjects to be tethered to the neural data 
acquisition hardware to allow for high-resolution data 
streaming [6–8, 12–15, 17, 20–22, 25, 26]. However, the 
constant need to tether the subject to the data acquisi-
tion hardware limits the subject’s ability to use the BCI 
in their home and community, subsequently providing no 
real way for the subjects to control or configure how they 
interact with the device. Therefore, progress in the field 

to enable BCIs to function outside of a research environ-
ment remains a critical milestone [27, 28].

The development of portable BCIs for out-of-lab use, 
or BCI systems that are not tethered to large stationary 
research equipment and can be easily transported any-
where, remains a significant challenge for intracortical 
BCIs as they must consider the constraints that current 
wireless technologies impose on high-data-rate wireless 
telemetry, ultra-low-power electronics, and space that 
the physical components occupy, both inside and on the 
surface of the body [29, 30].

Research in animal studies continue to help solve these 
problems by developing wireless intracortical interfaces 
[31] and modifying device parameters that decrease 
power consumption without significant impacts on 
decoder quality [32]. Recently, Simeral and colleagues 
demonstrated an untethered approach of an intracorti-
cal BCI for controlling a computer cursor—relying on a 
short-range radio frequency (RF) receiver tower placed in 
the same room as the subject to capture high-bandwidth 
data transmission from a wireless RF head-mount [33].

Notably, many studies that utilize electroencephalog-
raphy (EEG) have accomplished home use in a variety of 
applications [34–38]; however, EEG-based BCIs lack the 
spatial resolution captured by more invasive techniques 
[11]. Moreover, the use of non-invasive technologies, 
such as EEG, for BCI control signals can complicate set 
up procedures (e.g., appropriate electrode placement) 
limiting the subject’s independence and the ease of BCI 
use at home.

Though invasive intracortical microelectrode arrays 
have excellent signal quality and have demonstrated 
many of the remarkable strengths of BCI capablities, 
these arrays suffer from diminished signal quality over 
time, typically as a result of the inflammation triggered by 
the foreign body response to the electrode shanks punc-
turing the blood–brain barrier [39–42]. These devices 
are often percutaneous implants, where a portion of the 
implant is fully exposed increasing the risk of infection 
[43].

Similar to intracortical micro arrays are the use of inva-
sive electrodes on the surface of the brain via electrocor-
ticography (ECoG). This method has enabled long-term 
and stable signal acquisition [44] with higher spatial reso-
lution and signal-to-noise ratio [45]. Such applications 
have successfully controlled cursors [11, 46], computers 

effectors, providing the end-user the flexibility to choose the end effector to accomplish specific motor tasks for daily 
needs.
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[18], spellers [47], and recently exoskeletons [24] with 
multiple degrees of freedom. Chronic, fully implanted 
implementations have enabled the translation of research 
out of the lab and into the home [19, 47]. While fully 
implantable BCIs require the need for invasive brain 
surgery, they have the potential to move applicable BCI 
technology into the home setting, by minimizing set up 
time for caregivers and minimizing percutaneous infec-
tions since no part of the implanted device is exposed, as 
is the case in intracortical microelectrode arrays.

Potential users of BCI and their caregivers indicated 
that portability, simple system configurations, and mini-
mized setup times are important components of BCI 
system implementations [48]. Addressing these design 
considerations will better facilitate transitions into the 
home. To accomplish this goal of designing at-home 
BCI systems, we used a minicomputer mounted on the 
subject’s wheelchair that wirelessly recorded ECoG 
data from the implanted Activa PC + S device and per-
formed neural decoding. Our design included a modu-
lar approach, which enabled the subject to select from a 
variety of output devices and allowed for add-on periph-
eral devices in the future by utilizing a nearly plug-and-
play ready system.

Methods
Overview of system design
All study procedures were approved by the University of 
Miami Institutional Review Board (IRB 20190536) and 
the U.S. FDA (ClinicalTrials.gov: NCT02564419).

Subject
The at-home BCI system was implemented in a 22-year-
old subject with chronic cervical quadriplegia (C5 ASIA 
A) to restore hand grasp. The subject was part of a case 
study in which one subject enrolled with the purpose of 
fully implanting a neural sensing device for investigating 
brain–computer interfaces in the laboratory. This subject 
was injured about 6 years prior in a motor vehicle acci-
dent and had volitional control over their bicep muscles, 
but not triceps, or other distal muscle groups.

System implementation
The main components of the BCI consisted of a mini-
computer mounted to the subject’s wheelchair, the sub-
ject’s smartphone, a neural signal acquisition device, and 
an end effector. The smartphone served as the user inter-
face for the system, while the computer orchestrated the 
data acquisition, processing, and transmission between a 
signal acquisition device and an end effector.

Input device—neural data acquisition
The hardware used to collect the neural data for this 
BCI platform [49], consisted of three parts, two inter-
nal components and one external: (1) two four-contact 
electrode leads (Resume II leads, Medtronic) implanted 
intracranially over the subdural surface of the sensori-
motor hand region of the brain, (2) an Activa PC + S 
(Medtronic, USA) generator implanted inferior to the 
left clavicle for recording and transmitting the signal 
sensed by the contact electrodes, and (3) an external 
Nexus-D telemeter receiver (Medtronic, USA) which 
collected the transmitted signal when it’s antenna was 
placed in proximity to the implanted Activa PC + S 
generator (Fig.  1). The eight implanted electrodes 
were configured in a bipolar configuration resulting in 
four channels of ECoG data. In this configuration, the 
Activa PC + S allows for only two time series and two 
power sampling channels. Channels 1 and 3 provided 
real-time ECoG output sampled at 200 Hz, and chan-
nels 2 and 4 provided average power output between 
4–36  Hz sampled at 5  Hz. Theses frequency settings 
were selected based on initial laboratory measure-
ments for detecting event-related desynchronization 

Fig. 1  System overview. Electrocotricography (ECoG) signals are 
recorded using two four-contact subdural strips placed on the 
surface of the sensorimotor cortex. ECoG signals were transmitted by 
a subcutaneous implant to an external receiver which delivers it to 
the minicomputer for processing. The decoder classified the signal 
as a motor imagery command that is then sent over Bluetooth to 
actuate the mechanical glove
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[49]. Data from these channels were transmitted in 
packets gathered by the Nexus telemeter and delivered 
to the computer for further processing via a USB serial 
connection. The device, and its ability to detect move-
ment intention, was rigorously tested in the laboratory 
setting after the subject was implanted with the device 
for several months prior to home deployment [49].

Output device—end effector
Hand grasp was actuated using a mechanical glove (Neo-
mano, Neofect, South Korea). All input devices (neural 
data acquisition) and output devices (end effectors) com-
municated with the computer over serial port commu-
nication, while custom mobile phone application (App) 
and minicomputer communicated over Bluetooth Low 
Energy (BLE) protocol.

Experimental setup
Data collection
We used the BCI platform at home to collect data to train 
a continuous motor imagery classifier. The subject used 
the mobile application to initiate data collection sessions. 
To gather ECoG data associated with movement intent, 
textual prompts were sent to the subject’s phone display-
ing “MOVE” or “REST” and the subject was instructed 
to think about opening and closing their hand rapidly 
during the MOVE state (Fig. 3d). The prompt alternated 
back and forth randomly at intervals between 6–10  s 
(corresponding to 15–25 packets, or 1200–2000 sam-
ples of time-series data for channels 1 and 3 collected by 
the PC + S). This alternating process lasted for 5 min to 
gather a total of 750 packets (or 60,000 samples of data 
per time channel) per session of data collection. 33 of 
these 5-min trials were used to train the decoder (sum-
ming to 165  min of training data) after which 17 open-
loop trials and 12 close-loop trials were used to validate 
and test the decoder. Close-loop trials were trials where 
decoded values were actively controlling the prosthetic 
glove during data collection, while in open-loop trials, 
the prosthetic glove was not triggered. It should be noted 
that this move-rest protocol for training the decoder is 
not specific to the BCI platform but rather associated 
with the implementation and input device specification.

Signal processing
The Activa PC + S provided four channels of data sam-
pling. Channels 1 and 3 provided real-time data at 
200  HZ, and channels 2 and 4 provided average power 
between 4–36 Hz sampled at 5 Hz. Figure 2a, b depicts 
200 s of a 300 s representative trial after passing through 
a 1 Hz high-pass finite impulse response filter and labeled 
with the prompt presented at the time the signal was 
sampled. The power spectral density was then computed 

for each time channel for each packet to generate 321 
spectral features for each time-series channel. The aver-
age power values between 4–36 Hz, collected from chan-
nels 2 and 4, were then grouped with these power values 
from the spectral estimates of the time channels to cre-
ate a total of 644 features for each feature vector labelled 
with the prompt presented at the time of collection. The 
average spectral density demonstrates differences in 
the beta band (12–25  Hz) in each motor imagery state 
(Fig. 2c, f ), and this is also observed over time (Fig. 2d, e). 
These feature vectors were used to train a classifier that 
first passed features through linear discriminant analy-
sis, a 2-state hidden Markov model, followed by logistic 
regression to map the state probabilities to the motor 
imagery commands (see [49] for more detail).

Apart from data collection, daily use of the device was 
possible simply by turning the computer on and selecting 
the appropriate input and output devices using the App. 
Importantly, because we did not use any stimulation, 
safety concerns for at-home use were minimal.

Graphical User Interface mobile application
We deployed a custom mobile phone application (App), 
developed with NativeScript, onto the subject’s smart-
phone allowing subject-control of the BCI system over 
BLE. The App provided a graphical user interface (GUI), 
displaying the current state of the BCI, allowing the sub-
ject to select available input and output devices, as well as 
alter the preferences and settings for each device (Fig. 3). 
The mobile phone application did not participate in any 
data acquisition or processing.

Dynamic display
The App displayed available input and output devices 
that could be selected for control (Fig.  3a, b). These 
devices would be added or removed from the App if 
they were connected or disconnected respectively from 
the minicomputer. When connected, devices provided 
device-specific settings that can be set using the App 
(Fig. 3c). Incorporating a new device into the system does 
not require an update to the App since it will dynamically 
display what the computer has access to.

Calibration
Neural signal motor imagery encoding can vary across 
subjects, therefore, machine learning algorithms must 
often be re-trained or re-calibrated to decode the sub-
jects’ intended movement from the data. We designed 
the software application programming interface (API) to 
associate decoder training protocols and input devices. In 
this way, the subject could use the App to train a decoder 
for the Activa PC + S generated signal. When available, a 
calibration button is visible in the settings menu for that 
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device (Fig.  3c). When selected, the App’s calibration 
mode is activated, allowing the subject to assess the accu-
racy of decoders associated with the given input device. 
While in calibration mode, the App receives text from the 

computer to display the patient to simultaneously record 
data and appropriately label the data to be used for test-
ing or retraining the decoder via supervised learning 
models.

Fig. 2  Remote ECoG Data collection. Results of data collected from the BCI system using the Activa PC + S Nexus device. A, B ECoG data from 
channels 1 and 3 and filtered through a 1 Hz high-pass filter. C, F Power spectra for channels 1 and 3 (shown as µ± σ ). D, E Time–frequency 
spectrograms of averaged windows (6.4 s, N = 2051) of data that show the changes in power of frequency bands between 1–100 Hz from filtered, 
averaged, and normalized data during multiple transitions from the REST state (indicated by the first half of the time series) to the MOVE state
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Computer application
The computer application was written in Python [50–54] 
and consisted of two subprocesses: one for managing 
communication between input and output devices, the 
other for managing BLE communication with the App 
(Fig.  4a). These subprocesses used asynchronous event 
loops to control the points where execution could break 
and switch between these two processes to minimize 
processing delays that could occur between device com-
munications. The main application process iteratively 
collected the decoded or classified neural signals from 
a selected input device and sent the returned command 
to the selected output device. Simultaneously, the Blue-
tooth process waited for incoming read, write, and notify 
requests from the App.

Modular design
A simple description of a motor BCI is an input device 
(or many of them) that provides neural data, transforms 
it into a meaningful output, and sends that output to an 
output device (or many of them). Because we assume 
that all devices in a BCI must communicate with the 
computer, our objective was to create an API to provide 
a framework for incorporating physically available hard-
ware devices to be used by the BCI system. This was 
done by writing an abstract device class to generalize the 

methods and properties required for defining the base 
interaction and interface between a physical device and 
the BCI software (Fig.  4b). More specifically, by inher-
iting the methods and properties of the abstract device 
class, the methods for initializing the serial communica-
tion ports that enable the BCI system to communicate 
with the hardware are readily defined. With these device 
class files saved to a folder relative to the path of the 
application, the software was able to load these devices 
using the generic device class without needing to hard-
code any device-specific details to the software directly. 
As an example, a Nexus class, coded for the Nexus-D 
telemeter, inherits this abstract device class, allowing the 
BCI system to automatically recognize the device and 
begin interacting with and monitoring data collected by 
the Activa PC + S. As mentioned briefly with the App, 
the API also provides the option to declare device attrib-
utes, if any, that the subject is allowed to adjust. By cre-
ating device setting objects, device classes could define 
how and to what extent each property could be changed. 
These device setting objects had inherited methods used 
to translate these settings into rendering commands that 
would be sent off and displayed by the App for end-user 
interaction. These device settings would allow the subject 
or caregiver to potentially change e.g., the speed, delay, or 
other user-centered preferences of a given device.

Fig. 3  Mobile application overview. The App functioned as the GUI for the subject to interact with the BCI software running on the computer. a 
The home screen displayed the currently selected input and output devices in use. The blue dot in the upper-right marked the system’s status. b 
An input device selection screen, allowing the subject to select from more devices. c A settings page that allowed the subject to adjust parameters 
(such as decoder threshold, end effector motor speed, etc.) for a given device. These settings were defined by the software Class’s Application 
Programming Interface (API) on the computer’s end and were delivered over Bluetooth for dynamic display. d A data collection session that 
presented prompts to the subject either for assessing accuracy or applying calibration to the device’s decoder
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Together, this design provided the subject with dynamic 
hardware selection (e.g., mechanical orthosis, FES, etc.) 
and the ability to adjust device settings (e.g., speed or 
time delay of the orthosis, et.c) for more customized con-
trol. In our implementation, the Nexus telemeter used to 
capture data from the Activa PC + S, was encapsulated by 
inheriting the generic device class to create a program-
ming interface to the hardware. The properties and meth-
ods of the signal decoder (Fig.  4b) associated with the 
Nexus telemeter, such as decoder threshold and decoder 
calibration, were supplied as device settings within the 

Nexus class. Because the decoder performs binary clas-
sification, a threshold was used to differentiate between 
the output movement probability that the decoded signal 
was that of MOVE or REST.

Bluetooth communication
We designed the software to communicate with the 
App using BLE, and created a cross-platform Bluetooth 
library to enable the computer to advertise services via 
Bluetooth peripheral role support (i.e., the Bluetooth 
host device). The data transmitted between the com-
puter and the phone, including device settings, device 
status, and calibration, utilized three Bluetooth Generic 
Attribute (GATT) characteristics for data transmission. 
However, GATT characteristics have a minimum transfer 
unit of 512 bytes, and the size of the device settings infor-
mation to transmit may exceed this limit. To circumvent 
this, we developed an additional layer over BLE to enable 
data streaming using a data queue to iteratively trans-
ferred data over a single BLE GATT characteristic. Blue-
tooth communication was only needed as the end-user 
made changes using the App. The Bluetooth library was 
designed using event-driven callbacks and asynchronous 
procedure calls. This design allowed the Python applica-
tion to focus on collecting data from input devices, and 
delivering that data to output devices, only deferring to 
the Bluetooth communication process when called. By 
using Bluetooth, the BCI system could be used outside of 
the home, in the community since Bluetooth communi-
cation is independent of WiFi or internet connectivity.

Remote data collection
During use of the BCI, all data were recorded to files on 
the minicomputer hard drive. The software saved the 
data files to a directory that automatically synchronized 
the university’s encrypted HIPAA compliant cloud stor-
age, allowing almost instantaneous access to the incom-
ing data, assuming the on-board computer had an active 
internet connection. To ensure that the computer would 
have an internet connection, we saved the subject’s home 
WiFi’s service set identifier (SSID), security profile, and 
password onto the computer before installing the device 
onto the subject’s wheelchair. This configuration allowed 
the computer to connect to the subject’s home WiFi to 
allow for data synchronization once the subject arrived 
home.

Deployable for at‑home use
The goal for the system design was to provide a sub-
ject, who was equipped with a fully implanted neuro-
sensory device, with a functional BCI for at-home use. 
We deployed the system to the home by installing the 
designed software on a minicomputer (m90n Nano, 

Fig. 4  Application control flow. a The main application is initialized 
by a daemon script—or background running process—that ensured 
the program was always running while the computer was on. The 
computer application ran multiple coroutines asynchronously to 
allow for nearly uninterrupted data streaming between input and 
output devices as well as for Bluetooth communication. b The main 
application process iteratively made calls to classes that manage 
input and output devices. These device manager classes contained 
public methods for obtaining device input and sending commands 
to output devices. These device classes communicated with their 
hardware counterpart over serial port communication. Importantly, 
an array of devices may exist for the subject to use. These could be 
individually selected via the App over BLE
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Lenovo, China; Windows 10 Pro; Intel i3 2.10 GHz, 8 GB 
RAM) and housed the computer, along with a lithium 
battery (50,000  mAh power bank, Krisdonia, China) 
in a custom 3D-printed case. This case was attached 
to the back of the subject’s wheelchair by using straps 
that looped through holes printed onto the exterior of 
the case. Sliding doors were placed on two sides of the 
case for easy access to charging ports and power but-
tons on the battery and minicomputer. After installing 
the BCI software onto the minicomputer, we configured 
the computer to run the software at startup by invok-
ing a daemon process that would ensure the software 
would always be running (Fig.  4a). We stored the code 
for our software online using a version control system. 
This allowed our daemon script to pull from the version 
control system to ensure the code was up to date. This 
setup allowed us to use git commit dates and timestamps 
as conditions against which we could programmatically 
select and analyze data collected under varying software 
conditions (e.g., before and after decoder updates or ini-
tial bug fixes).

Results
Bench testing
Bluetooth communication delays
The Activa PC + S has a sampling rate of 200 Hz and has 
an onboard memory store that is overwritten at a rate of 
2.5  Hz (400  ms). API calls to the Activa PC + S, via the 
device’s firmware, block program execution until data 
is available. Importantly, if the time between two subse-
quent calls to the API to collect data is > 400 ms, the data 
sampled by the intracortical electrodes during the time 
between the two API calls will be lost, since the Activa 
PC + S will already be storing data for the next 400  ms 
block by the time the second call is issued. Thus, signifi-
cant latencies between calls to collect data could result 
in data loss. This is particularly important for data col-
lection for decoder training, where incoming data must 
be synchronously labeled. Because data labeling relied 
on messages sent over BLE, we needed to ensure the 
time to display the movement instruction to the subject 
temporally matched up with the data being collected. 
Thus, data can only reliably match up with the onscreen 
instruction labels presented to the subject if the time to 
send the instruction to the App over BLE was less than 
400  ms to minimize the chances of overwriting data as 
well as subject reaction times. By recording time stamps 
during a simulated recalibration session, the difference 
between the time stamp at which the prompt was sent 
by the computer, and the time stamp at which the same 
prompt was displayed on the App, demonstrates that the 
average delay-to-screen was 23  ms (Fig.  5), indicating 
that the Bluetooth communication was not adding time 

delays that would affect data collection. We also found 
that no Bluetooth data packets were dropped during 
transmission.

Software profiling
System application profiling was measured using the 
cProfile Python module and visualized using SnakeViz 
(Fig.  6) to characterize the latency caused by processes 
in the BCI system. The BCI software was initialized after 
the subject was set up at home. Profiling was collected 
while the system was in use for 5  min. The main appli-
cation loop consisted of two main functions: (1) reading 
in decoded commands from the selected input device 
(Fig. 6 left) and (2) sending the commands to the selected 
output device (Fig.  6 right). System profiling revealed 
that the time to process incoming signals into a motor 
instruction command was approximately 400 ms (Fig. 6 
left), after which only 1 ms was spent sending that com-
mand to the end effector for hand grasp (Fig. 6 right). The 
first portion of this main loop: processing the incoming 
signal into a motor instruction, was made up of two sub-
processes: (1) receiving the neural channel data from the 
Activa PC + S (~ 393  ms), and (2) decoding that signal 
into a motor command (10.23  ms). Then, sending that 
command off to the Neomano glove required approxi-
mately 1 ms.

Home testing
Signal decoding and classification
Accuracy metrics for the motor imagery classifier con-
tinued to be measured over the next year after training 
without recalibration (Fig. 7). Decoder accuracy defined 
as the number of correctly classified windows of data, 

Fig. 5  Bluetooth low energy communication Benchmark. The time 
delay observed during a data collection session (n = 750). Bluetooth 
transmission time delay was measured as the difference between the 
time at which the display prompted changed on the App and the 
time the prompt was changed on the computer system to initiate 
BLE (prompt to display notifying characteristic)
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remained stable with a median accuracy of 87.53% across 
79 trials (Fig. 7; gray dotted line).

Caregiver management
Little to no training for caregivers was required to learn 
to setup the device for the subject using our BCI imple-
mentation. Set up merely required turning the system 
on, appropriately positioning the telemetry antenna on 
the subject, and fitting any end-effector devices onto the 
subject’s limb. From this point, the subject was able to 
configure, calibrate, and control the BCI system using the 
App without assistance. To quantify this, we measured 
the average amount of time elapsed between the time 

the nurse began setting up the system up to the moment 
the subject had neural control of the mechanical glove 
(Fig. 8a). On average, time to setup this implementation 
was 5.58 min, with most of this time (2.34 min) taken to 
establish a Bluetooth connection between the App and 
the minicomputer and configure the system as well as to 
don the Neomano glove (2.18 min).

Fig. 6  System profiling. Sunburst diagrams representing the proportions of time spent to process incoming data (left) and send the decoded 
output to the glove (right). The center of each sunburst diagram represents the process to obtain the decoded neural signal (left), or to send the 
command to the glove (right). Each arc surrounding the center point represents a subprocess needed to be carried out to process incoming data 
(left) or send data (right). The length of the arc represents the proportion of time taken for a subprocess to complete relative to subprocesses that 
depend on it for completion. While there are many subprocesses, those relevant to the BCI software are highlighted. The remaining subprocesses 
are system sepectific processes such as input–output operations

Fig. 7  Decoder classification. Classification performance of the 
decoder associated with the Nexus telemeter input device. Month 
0 indicates assessment of training data and the subsequent months 
indicate the number of months since training. The black dotted line 
indicates the global median of 87.53% Fig. 8  System setup time. Elapsed time taken by the subject’s 

primary caregiver to set up the system. Repeated measurements 
once a day for several days. A Presents the total time to setup the 
system, while B presents the times for the different set up steps 
that sum to the total elapsed time. Calibration time is not included 
because it was not necessary during datily setups
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Discussion
Our design aimed to allow the BCI to function both in 
and out of the home and give the subject control over 
device selection, data collection, and system settings and 
preferences, all while minimizing the need for caregiver 
assisted setup. Although this system was implemented 
in a subject with SCI with an implanted neural interface, 
applications can be extended to other forms of paralysis, 
or wherever BCI can be employed, for example in use 
with EEG headsets or intracortical spike signals.

Mobile phone application
In our design, the App functioned as a GUI. However, 
other implementations have used smartphones for sig-
nal processing—using the phone as the sole process-
ing unit for the system [55–58]—as opposed to using an 
on-board minicomputer. Others have used smartphones 
to drive communication with home appliances [35, 36]. 
Here, the use of NativeScript limited the development of 
the phone application to Bluetooth Low Energy proto-
cols, which limits our system’s ability for high bandwidth 
data streaming that Bluetooth classic radio frequency 
communication (RFCOMM) could otherwise achieve for 
raw signal transmission. The alternative solution of using 
classic RFCOMM, however, would likely drain the bat-
tery of the phone fairly quickly, as reported in Campbell 
et  al. [56]. However, the implementation of RFCOMM 
would need to be considered for continuous and reliable 
data collection and streaming if the system were to be 
moved entirely onto the phone in future iterations. Addi-
tionally, migrating to phone-use warrants increased secu-
rity measures. As [59] points out, widespread and trusted 
use of such systems will require care to ensure the integ-
rity and security of the system.

As an important note, our subject was able to navigate 
use of the App using the residual movements available 
with their bicep muscles. However, the App is simple 
enough to enable a caregiver to configure or alter sys-
tem settings where needed, and doesn’t limit the appli-
cation of our system to subjects with unique residual 
movements.

Portable system
For more practical use of BCIs outside of the labora-
tory, system portability is a significant component [27]. 
One method for increasing portability, is using smaller 
computational equipment that has become more readily 
available in personal tablets, phones, and minicomput-
ers. Several previous studies have used portable devices 
such as tablets and phones for command [35] and sig-
nal processing [55, 57, 58], subject interaction [38], and 
as the end effector itself [56]. For our design, we used 

a minicomputer and the subject’s smartphone, which 
allowed us to give the subject control of the BCI while 
ensuring that the BCI software could continue run-
ning independently of the phone. Additionally, by way 
of cost, these components are already consumer grade 
products that can readily be purchased. The short-range 
Bluetooth communication used by the phone and motor-
ized orthotic allowed for constant control of the system, 
which permitted the subject to continue using the BCI 
outside of the home. Because the motorized orthotic 
communicated with the system over wireless Bluetooth 
radio, WiFi was only necessary for uploading data needed 
for offline analysis, the use of the BCI system itself ran 
independently of internet connectivity.

Modular system
Modular BCI designs for research development have 
helped improve scientific reproducibility and have 
reduced the time required to develop new BCI software 
and configurations. Several software tools, packages, and 
pipelines have been developed to help with this effort 
[60–64]. Such applications have been used successfully in 
the lab and at home using some of these systems [65]. In 
addition to these tools, other studies have shown a variety 
of successful output controls including, cursor control, 
spellers, home appliance control, exoskeletons, prosthet-
ics, and FES [6–8, 11–24, 47]. Our design focused on 
end-user interaction while enabling the software to scale 
across OS and processor architectures. While we only 
utilized a motorized orthotic when testing our device, we 
ensured the system could be modular, including dynamic 
changes to input and output devices at runtime. This 
modularity was another purpose for employing the sub-
ject’s mobile device. It allowed the subject to swap end 
effector devices, initiate training sessions, and adjust 
available system settings.

Input devices (e.g., EEG system) have plug-n-play func-
tionality, when a device class is provided. Implementing 
a device class requires some mechanism for sampling 
digitalized data from the device to the computer; e.g., 
through serial port, socket, or device-provided API. A 
decoder from our work can be used or custom made that 
transforms, classifies, or regresses the input signal into 
a meaningful value. The device class must inherit the 
device base class and define a get_input method that then 
(1) collects the data as previously determines, (2) decodes 
that data into a meaningful value, then (3) returns that 
value. Lastly, serial port, socket, or API properties can be 
defined on the class that the platform will utilize to auto-
matically detect the device during start up. With these in 
place, a new device can be added to the platform, and will 
be available for selection on the mobile app for use.
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Subject interaction with the at‑home BCI platform
Together, the BCI platform and its implementation not 
only enabled a subject with cervical SCI to reanimate 
hand grasp at home and swap modular components, 
but it also gave the subject control over the settings and 
preferences for each device individually and the BCI sys-
tem as a whole. More specifically, these settings included 
options for changing the response time of the motorized 
orthotic and restarting the BCI application. Researcher 
assistance or transport to the laboratory became unnec-
essary because the App allowed the subject to initiate 
data collection sessions on their schedule.

The deployment of our system for use at home mini-
mized the need for complex donning and doffing proce-
dures. Over several sessions, we measured the average 
setup time, from start until the subject could control 
the glove, to be around 5 min. This is well within range 
of previously recommended setup times of 10–20  min 
desired by surveyed potential users [48]. A large part 
of this simplification is likely a result of using a fully 
implanted device. This setup avoids the use of EEG 
caps that might require wire connections, gel applica-
tion, accurate placement, and configuration of the EEG 
cap [66, 67]. In comparison, a recent study was able to 
achieve an average setup time of 20 min in 8 caretaker-
subject pairs over several sessions [68]. In general, setup 
times are dependent on the setup time of each compo-
nent of a BCI system. Continued developments in non-
invasive technologies will help drive down these setup 
times and configuration complexities. Although, user-
evaluation was not systematically evaluated the sub-
ject did comment: “It’s easy to use and control and only 
sometimes take a bit of time to connect over Bluetooth”.

Though our implementation only utilizes 4 ECoG chan-
nels, potentially limiting the functional output of the sys-
tem in comparison to many EEG channels, the purpose 
of this implementation was to minimize the setup time 
and complexity to use at home, while still delivering some 
functionality to the subject. Still, even fully-implanted 
systems can require a wired setup that requires plugging 
in the system [6–8, 19, 47].

In our implementation, however, switching on the bat-
tery fixed to the back of the wheelchair was sufficient to 
start up the system. From here, aligning the telemetry 
antenna to the subcutaneous transmitter enabled neu-
ral control. Notably, the ease of setup because of using 
an implanted device such as the Activa PC + S is a mat-
ter of implementation of this BCI platform rather than a 
requirement to use the platform. The platform could be 
implemented using an EEG headset. For the implemen-
tation presented here, the fully implanted Activa PC + S 
was used to improve at-home setup and use of the system 
as a whole.

Limitations
Python as the development language may not result in 
a completely OS agnostic platform. This limitation is 
mostly a result of methods the language uses to interface 
with the OS and hardware. An alternative solution could 
be to utilize already available software such as BCI2000 
[60]. However, using an interpreted language such as 
Python for development removed the need for compile 
time during remote system updates.

The subject in the implementation presented here was 
able to use the App GUI on their own using their rem-
nant bicep function. This generally limits the GUI’s use 
for less abled subjects. However, the App GUI still pro-
vides convenient system access for the caregiver. Addi-
tionally, future iterations are planned to enable voice 
activation and/or gaze control to enable better control in 
subjects with varying disability and control of the hand 
and arm.

Using the Activa PC + S and Nexus telemeter isn’t 
completely wireless. Data sample collection between 
the Nexus telemeter and the Activa PC + S requires an 
external antenna to be placed close to the implanted gen-
erator. However, Newer implementations of implantable 
generators (Medtronic Percept, St. Jude, Boston Scien-
tific, Clinatec, etc.) are building wireless capabilities into 
their generators. Additionally, the Activa PC + S, used in 
cases of deep brain stimulation, can last up to 5 years, but 
the battery life of the device used in this context where 
stimulation is not used, is unknown. Implants that can be 
inductively charged [69] and wirelessly transmit their sig-
nals [70] will provide a more robust system that further 
minimizes system maintenance and caregiver assistance 
while maximizing portability.

Like many invasive studies, our implementation of an 
invasive device is limited to one subject, and thus difficult 
to generalize. Fortunately, using event-related desynchro-
nizations as a method to perform binary classification 
of motor imagery is well established [68, 71–74], and a 
few studies have employed it in the home [34, 68, 75, 76]. 
Although, we employed this BCI system for use in a sub-
ject with cervical SCI, it has provided insights in to limi-
tations how the software and App can be improved for 
easier incorporation into other BCI implementations.

Conclusion
Future adoption of BCI-related technology will need to 
ensure that BCI systems are portable, intuitive to setup, 
and simple to configure [48]. This modular BCI software 
design puts forth a light-weight platform for implement-
ing BCI systems on consumer computer platforms and 
mobile phone devices. The BCI platform enables easy 
addition of input and output devices that the subjects 
can easily switch between using the mobile graphical 
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user interface. The implementation of the BCI modular 
software platform design demonstrates the increasing 
feasibility of transitioning BCI systems to more portable 
units for at-home use. As more assistive and rehabilita-
tive device become available, modular platforms may 
provide more functionality for BCI users. The develop-
ment of such systems will make the assistive and reha-
bilitative capabilities of BCI more accessible to subjects 
who would benefit from them. BCI systems in the home 
settings provide fertile opportunity to improved the inde-
pendence in subjects with paralysis. Future work will 
focus on expanding customized mapping between input 
and output devices to allow for use of multiple devices 
simultaneously.

Abbreviations
BCI: Brain–computer interface; SCI: Spinal-cord injury; RF: Radio frequency; 
EEG: Electroencephalography; ECoG: Electrocorticography; BLE: Bluetooth 
low energy; RFCOMM: Radio frequency communication; App: Mobile phone 
application; GUI: Graphical user interface; OS: Operating system.

Acknowledgements
We would like to thank our subject for his continued dedication and enthu‑
siasm throughout the duration of this study. We would like to thank Roberto 
Suazo for his assistance with the design of the figures and editing of videos, 
the dedicated staff in the operating room and intensive care unit for their 
post-operative care of the subject.

Author contributions
KD, IC, JJ, and AP designed the study. KD designed and developed the 
software and performed benchmark testing and software profiling. CA, SG, SB, 
and FR contributed to software development. KD, BM, IC, JA designed remote 
data collection protocols. BM, JA designed the motor imagery classifier. IC, NP, 
LF, JJ, AP designed the IRB protocol. JN, WR, MM assisted with data analysis. 
IC, MI, JJ performed the surgical implantation of the ECoG device in the 
subject. KD, AP wrote the manuscript. All authors read and approved the final 
manuscript.

Funding
Supported by a private institutional grant from the Miami Project to Cure 
Paralysis. Medtronic device was donated by Medtronic. Medtronic provided 
all components of the implant including the external antenna/receiver free 
of charge to the University of Miami but did not provide funds directly to 
the institution, the researchers, or the subject. Funding for the mechani‑
cal glove was provided by a private donor. IC was supported in part by NIH 
5R25NS108937-02. KD was supported in part by grant NIH T32GM112601.

Availability of data and materials
Individual participant data that underlies the results reported in this article 
after de-identification, study protocol, statistical analysis plan, and analytic 
code will be made available upon request to researches who provide a meth‑
odologically sound proposal.

Declarations

Ethics approval and consent to participate
All study procedures were approved by the University of Miami Institutional 
Review Board and the U.S. FDA ClinicalTrials.gov: NCT02564419. The registra‑
tion for the trail was first submitted to ClinicalTrials.gov on 08/18/2015 and 
first posted on 09/30/2015 after meeting the QC criteria. The study subject 
signed the consent on 11/02/2018.

Consent for publication
Not applicable.

Competing interests
JJ reports support from Medtronic Inc, during the conduct of the study; grants 
and personal fees from Medtronic Inc, grants from Boston Scientific, outside 
the submitted work. Outside the submitted work, EB is a cofounder of PAS‑
CALL, a company developing closed-loop physiological control systems and 
a cofounder of Neuradia, a company developing agents to promote recovery 
of consciousness following general anesthesia or sedation. In addition, EB has 
a patent SYSTEMS AND METHODS FOR ANALYZING ELECTROPHYSIOLOGI‑
CAL DATA FROM PATIENTS UNDERGOING MEDICAL TREATMENTS. MI reports 
personal fees from Medtronic—Visualase outside the submitted work.

Author details
1 Department of Biomedical Engineering, University of Miami, 1251 Memo‑
rial Dr, MEA 204, Coral Gables, Miami, FL 33146, USA. 2 Department of Brain 
and Cognitive Science, Massachusetts Institute of Technology, Cambridge, 
MA 02139, USA. 3 Department of Anesthesia, Critical Care and Pain Medicine, 
Massachusetts General Hospital, Boston, MA 02114, USA. 4 Picower Institute 
for Learning and Memory, Massachusetts Institute of Technology, Cambridge, 
MA 02139, USA. 5 Department of Neurological Surgery, University of Miami, 
1095 NW 14th Terrace, Miami, FL 33136, USA. 6 Department of Electrical 
and Information Engineering, University of Ruhuna, Matara, Sri Lanka. 7 Depart‑
ment of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 
30332, USA. 8 Division of Sleep Medicine, Harvard Medical School, Boston, MA 
02115, USA. 9 Miami Project to Cure Paralysis, University of Miami, Miami, FL 
33136, USA. 10 Harvard John A. Paulson School of Engineering and Applied 
Sciences, Harvard University, Cambridge, MA 02138, USA. 

Received: 16 May 2021   Accepted: 13 May 2022

References
	1.	 Armour BS, Courtney-Long EA, Fox MH, Fredine H, Cahill A. Preva‑

lence and causes of paralysis-United States, 2013. Am J Public Health. 
2016;106(10):1855–7.

	2.	 Gresham GE, Stason WB, Duncan PW. Post-stroke rehabilitation, vol. 95. 
Collingdale: Diane Publishing; 2004.

	3.	 Devivo MJ. Epidemiology of traumatic spinal cord injury: trends and 
future implications. Spinal Cord. 2012;50(5):365–72.

	4.	 National Spinal Cord Injury Statistical Center. Facts and figures at a 
Glance. Birmingham: University of Alabama at Birmingham; 2020. p. 1–2. 
www.​msktc.​org/​sci/​model-​system-​cente​rs. https://​www.​nscisc.​uab.​edu/​
Public/​Facts_​and_​Figur​es2020.​pdf.

	5.	 Ajiboye AB, Willett FR, Young DR, Memberg WD, Murphy BA, Miller JP, 
et al. Restoration of reaching and grasping in a person with tetraplegia 
through brain-controlled muscle stimulation: a proof-of-concept demon‑
stration. Lancet. 2017;389(10081):1821–30.

	6.	 Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, 
et al. Neuronal ensemble control of prosthetic devices by a human with 
tetraplegia. Nature. 2006;442(7099):164–71.

	7.	 Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J, et al. 
Reach and grasp by people with tetraplegia using a neurally controlled 
robotic arm. Nature. 2012;485(7398):372–5. https://​doi.​org/​10.​1038/​natur​
e11076.

	8.	 Collinger JL, Wodlinger B, Downey JE, Wang W, Tyler-Kabara EC, Weber 
DJ, et al. High-performance neuroprosthetic control by an individual 
with tetraplegia. Lancet. 2013;381(9866):557–64. https://​doi.​org/​10.​1016/​
S0140-​6736(12)​61816-9.

	9.	 Shih JJ, Krusienski DJ, Wolpaw JR. Brain-computer interfaces in medicine. 
Mayo Clin Proc. 2012;87(3):268–79. https://​doi.​org/​10.​1016/j.​mayocp.​
2011.​12.​008.

	10.	 Daly JJ, Wolpaw JR. Brain-computer interfaces in neurological rehabilita‑
tion. Lancet Neurol. 2008;7(11):1032–43. https://​doi.​org/​10.​1016/​S1474-​
4422(08)​70223-0.

	11.	 Leuthardt EC, Schalk G, Wolpaw JR, Ojemann JG, Moran DW. A brain-
computer interface using electrocorticographic signals in humans. J 
Neural Eng. 2004;1(2):63–71.

	12.	 Simeral JD, Kim S-P, Black MJ, Donoghue JP, Hochberg LR. Neural control 
of cursor trajectory and click by a human with tetraplegia 1000 days 

http://www.msktc.org/sci/model-system-centers
https://www.nscisc.uab.edu/Public/Facts_and_Figures2020.pdf
https://www.nscisc.uab.edu/Public/Facts_and_Figures2020.pdf
https://doi.org/10.1038/nature11076
https://doi.org/10.1038/nature11076
https://doi.org/10.1016/S0140-6736(12)61816-9
https://doi.org/10.1016/S0140-6736(12)61816-9
https://doi.org/10.1016/j.mayocp.2011.12.008
https://doi.org/10.1016/j.mayocp.2011.12.008
https://doi.org/10.1016/S1474-4422(08)70223-0
https://doi.org/10.1016/S1474-4422(08)70223-0


Page 13 of 14Davis et al. Journal of NeuroEngineering and Rehabilitation           (2022) 19:53 	

after implant of an intracortical microelectrode array. J Neural Eng. 
2011;8(2):25027.

	13.	 Kim S, Black MJ. Point-and-click cursor control with an intracortical neural 
interface system by humans with tetraplegia. IEEE Trans Neural Syst 
Rehabil Eng. 2012;19(2):193–203.

	14.	 Gilja V, Pandarinath C, Blabe CH, Nuyujukian P, Simeral JD, Sarma AA, et al. 
Clinical translation of a high-performance neural prosthesis. Nat Med. 
2015;21(10):1142–5.

	15.	 Aflalo T, Kellis S, Klaes C, Lee B, Shi Y, Pejsa K, et al. Decoding motor 
imagery from the posterior parietal cortex of a tetraplegic human. Sci‑
ence. 2015;348(6237):906LP – 910.

	16.	 Pandarinath C, Nuyujukian P, Blabe CH, Sorice BL, Saab J, Willett FR, et al. 
High performance communication by people with paralysis using an 
intracortical brain-computer interface. Elife. 2017;6:1–27.

	17.	 Kennedy PR, Bakay RAE. Restoration of neural output from a paralyzed 
patient by a direct brain connection. NeuroReport. 1998;9(8):1707–11.

	18.	 Oxley TJ, Yoo PE, Rind GS, Ronayne SM, Lee CMS, Bird C, et al. Motor 
neuroprosthesis implanted with neurointerventional surgery improves 
capacity for activities of daily living tasks in severe paralysis: First in-
human experience. J NeuroInterv Surg. 2021;13:102–8.

	19.	 Pels EGM, Aarnoutse EJ, Leinders S, Freudenburg ZV, Branco MP, van 
der Vijgh BH, et al. Stability of a chronic implanted brain-computer 
interface in late-stage amyotrophic lateral sclerosis. Clin Neurophysiol. 
2019;130(10):1798–803. https://​doi.​org/​10.​1016/j.​clinph.​2019.​07.​020.

	20.	 Kennedy PR, Kirby MT, Moore MM, King B, Mallory A. Computer control 
using human intracortical local field potentials. IEEE Trans Neural Syst 
Rehabil Eng. 2004;12(3):339–44.

	21.	 Patil PG, Carmena JM, Nicolelis MAL, Turner DA. Ensemble recordings 
of human subcortical neurons as a source of motor control signals for a 
brain-machine interface. Neurosurgery. 2004;55(1):27–35.

	22.	 Jarosiewicz B, Sarma AA, Bacher D, Masse NY, Simeral JD, Sorice B, et al. 
Virtual typing by people with tetraplegia using a self-calibrating intracor‑
tical brain-computer interface. Sci Transl Med. 2015;7(313):1–1.

	23.	 Wodlinger B, Downey JE, Tyler-Kabara EC, Schwartz AB, Boninger ML, 
Collinger JL. Ten-dimensional anthropomorphic arm control in a human 
brain-machine interface: difficulties, solutions, and limitations. J Neural 
Eng. 2015;12(1):016011.

	24.	 Benabid AL, Costecalde T, Eliseyev A, Charvet G, Verney A, Karakas S, et al. 
An exoskeleton controlled by an epidural wireless brain–machine inter‑
face in a tetraplegic patient: a proof-of-concept demonstration. Lancet 
Neurol. 2019;18(12):1112–22.

	25.	 Chadwick EK, Blana D, Simeral JD, Lambrecht J, Kim SP, Cornwell AS, et al. 
Continuous neuronal ensemble control of simulated arm reaching by a 
human with tetraplegia. J Neural Eng. 2011;8(3):034003.

	26.	 Bouton CE, Shaikhouni A, Annetta NV, Bockbrader MA, Friedenberg DA, 
Nielson DM, et al. Restoring cortical control of functional movement in a 
human with quadriplegia. Nature. 2016;533:247–50.

	27.	 Huggins JE, Guger C, Allison B, Anderson CW, Batista A, Brouwer A-M, 
et al. Workshops of the fifth international brain-computer interface 
meeting: defining the future. Brain Comput Interfaces (Abingdon, Engl). 
2014;1(1):27–49.

	28.	 Miralles F, Vargiu E, Dauwalder S, Solà M, Müller-Putz G, Wriessneg‑
ger SC, et al. Brain computer interface on track to home. Sci World J. 
2015;2015:623896.

	29.	 Nurmikko A, Borton D. Wireless neurotechnology for neural prostheses. 
In: Neurobionics: the biomedical engineering of neural prostheses. Hobo‑
ken: Wiley; 2016. p. 123–61. http://​ebook​centr​al.​proqu​est.​com/​lib/​miami/​
detail.​action?​docID=​46614​77.

	30.	 Nurmikko A. Challenges for large-scale cortical interfaces. Neuron. 
2020;108(2):259–69. https://​doi.​org/​10.​1016/j.​neuron.​2020.​10.​015.

	31.	 Borton DA, Yin M, Aceros J, Nurmikko A. An implantable wireless neural 
interface for recording cortical circuit dynamics in moving primates. J 
Neural Eng. 2013;10(2):026010.

	32.	 Even-Chen N, Muratore DG, Stavisky SD, Hochberg LR, Henderson JM, 
Murmann B, et al. Power-saving design opportunities for wireless intra‑
cortical brain–computer interfaces. Nat Biomed Eng. 2020;4(10):984–96. 
https://​doi.​org/​10.​1038/​s41551-​020-​0595-9.

	33.	 Simeral JD, Hosman T, Saab J, Flesher SN, Vilela M, Franco B, et al. Home 
use of a percutaneous wireless intracortical brain–computer interface by 
individuals with tetraplegia. IEEE Trans Biomed Eng. 2021;68:2313–25.

	34.	 Gao Q, Zhao X, Yu X, Song Y, Wang Z. Controlling of smart home 
system based on brain-computer interface. Technol Health Care. 
2018;26(5):769–83.

	35.	 Sun KT, Hsieh KL, Syu SR. Towards an accessible use of a brain-computer 
interfaces-based home care system through a smartphone. Comput 
Intell Neurosci. 2020;2020:16–8.

	36.	 Yang D, Nguyen T-H, Chung W-Y. A bipolar-channel hybrid brain-com‑
puter interface system for home automation control utilizing steady-state 
visually evoked potential and eye-blank signals. Sensors (Basel, Switzer‑
land). 2020;20:5474.

	37.	 Sellers EW, Vaughan TM, Wolpaw JR. A brain-computer interface 
for long-term independent home use. Amyotroph Lateral Scler. 
2010;11(5):449–55.

	38.	 Al-Taleb MKH, Purcell M, Fraser M, Petric-Gray N, Vuckovic A. Home used, 
patient self-managed, brain-computer interface for the management of 
central neuropathic pain post spinal cord injury: usability study. J Neuro‑
eng Rehabil. 2019;16(1):1–24.

	39.	 Barrese JC, Rao N, Paroo K, Triebwasser C, Vargas-Irwin C, Franquemont L, 
et al. Failure mode analysis of silicon-based intracortical microelectrode 
arrays in non-human primates. J Neural Eng. 2013;10(6):066014.

	40.	 Kozai TDY, Jaquins-Gerstl AS, Vazquez AL, Michael AC, Cui XT. Brain tissue 
responses to neural implants impact signal sensitivity and intervention 
strategies. ACS Chem Neurosci. 2015;6(1):48–67.

	41.	 Kozai TDY, Li X, Bodily LM, Caparosa EM, Zenonos GA, Carlisle DL, et al. 
Effects of caspase-1 knockout on chronic neural recording quality and 
longevity: insight into cellular and molecular mechanisms of the reactive 
tissue response. Biomaterials. 2014;35(36):9620–34. https://​doi.​org/​10.​
1016/j.​bioma​teria​ls.​2014.​08.​006.

	42.	 Szarowski DH, Andersen MD, Retterer S, Spence AJ, Isaacson M, Craig‑
head HG, et al. Brain responses to micro-machined silicon devices. Brain 
Res. 2003;983(1–2):23–35.

	43.	 Colachis SC, Dunlap CF, Annetta NV, Tamrakar SM, Bockbrader MA, 
Friedenberg DA. Long-term intracortical microelectrode array per‑
formance in a human: a 5 year retrospective analysis. J Neural Eng. 
2021;18(4):0460d7. https://​doi.​org/​10.​1088/​1741-​2552/​ac1add.

	44.	 Chao ZC, Nagasaka Y, Fujii N. Long-term asynchronous decoding of arm 
motion using electrocorticographic signals in monkeys. Front Neuroeng. 
2010;3:3.

	45.	 Miller KJ, Hermes D, Staff NP. The current state of electrocorticography-
based brain–computer interfaces. Neurosurg Focus. 2020;49(1):1–8.

	46.	 Silversmith DB, Abiri R, Hardy NF, Natraj N, Tu-Chan A, Chang EF, et al. 
Plug-and-play control of a brain–computer interface through neu‑
ral map stabilization. Nat Biotechnol. 2020. https://​doi.​org/​10.​1038/​
s41587-​020-​0662-5.

	47.	 Vansteensel MJ, Pels EGM, Bleichner MG, Branco MP, Denison T, Freuden‑
burg ZV, et al. Fully implanted brain-computer interface in a locked-in 
patient with ALS. N Engl J Med. 2016;375(21):2060–6. https://​doi.​org/​10.​
1056/​NEJMo​a1608​085.

	48.	 Huggins JE, Moinuddin AA, Chiodo AE, Wren PA. What would brain-com‑
puter interface users want: opinions and priorities of potential users with 
spinal cord injury. Arch Phys Med Rehabil. 2015;96(3):S38-S45.e5. https://​
doi.​org/​10.​1016/j.​apmr.​2014.​05.​028.

	49.	 Cajigas I, Davis KC, Meschede-krasa B, Prins NW, Gallo S, Naeem JA, et al. 
Implantable brain-computer interface fo neuroprosthetic-enabled 
volitional hand graps restoration in spinal cord injury: a case report. Brain 
Commun. 2021;3:fcab248.

	50.	 Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Courna‑
peau D, et al. Array programming with {NumPy}. Nature. 2020;585:357–62.

	51.	 McKinney W. Data Structures for Statistical Computing in Python. In: Walt 
S van der, Millman J, editors. Proceedings of the 9th python in science 
conference. 2010. p. 56–61.

	52.	 Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau 
D, et al. SciPy 1.0: fundamental algorithms for scientific computing in 
Python. Nat Methods. 2020;17:261–72.

	53.	 Hunter JD. Matplotlib: a 2D graphics environment. Comput Sci Eng. 
2007;9(3):90–5.

	54.	 Perez F, Granger BE. IPython: a system for interactive scientific computing. 
Comput Sci Eng. 2007;9(3):21–9.

	55.	 Wang Y, Member S, Wang Y, Cheng C, Jung T, Member S. Developing 
Stimulus presentation on mobile devices for a truly portable SSVEP-based 
BCI. IEEE. 2013.

https://doi.org/10.1016/j.clinph.2019.07.020
http://ebookcentral.proquest.com/lib/miami/detail.action?docID=4661477
http://ebookcentral.proquest.com/lib/miami/detail.action?docID=4661477
https://doi.org/10.1016/j.neuron.2020.10.015
https://doi.org/10.1038/s41551-020-0595-9
https://doi.org/10.1016/j.biomaterials.2014.08.006
https://doi.org/10.1016/j.biomaterials.2014.08.006
https://doi.org/10.1088/1741-2552/ac1add
https://doi.org/10.1038/s41587-020-0662-5
https://doi.org/10.1038/s41587-020-0662-5
https://doi.org/10.1056/NEJMoa1608085
https://doi.org/10.1056/NEJMoa1608085
https://doi.org/10.1016/j.apmr.2014.05.028
https://doi.org/10.1016/j.apmr.2014.05.028


Page 14 of 14Davis et al. Journal of NeuroEngineering and Rehabilitation           (2022) 19:53 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	56.	 Campbell A, Choudhury T, Hu S, Lu H, Mukerjee MK, Rabbi M, et al. 
NeuroPhone: brain-mobile phone interface using a wireless EEG headset. 
In: Proceedings of the 2nd ACM SIGCOMM workshop on networking, sys‑
tems, and applications on mobile handhelds, MobiHeld ’10, Co-located 
with SIGCOMM 2010. 2010;3–8.

	57.	 Blum S, Debener S, Emkes R, Volkening N, Fudickar S, Bleichner MG. 
EEG recording and online signal processing on android: a multiapp 
framework for brain-computer interfaces on smartphone. BioMed Res Int. 
2017;2017:3072870.

	58.	 Wang YT, Wang Y, Jung TP. A cell-phone-based brain-computer interface 
for communication in daily life. J Neural Eng. 2011;8(2):025018.

	59.	 Li Q, Ding D, Conti M. Brain-computer interface applications: security and 
privacy challenges. In: 2015 IEEE Conference on communications and 
networksecurity, CNS 2015. 2015;(SPiCy):663–6.

	60.	 Schalk G, Mcfarland DJ, Hinterberger T, Birbaumer N, Wolpaw JR. BCI2000: 
a general-purpose brain-computer interface (BCI) system. IEEE Trans 
Neural Syst Rehabil Eng. 2004;51(6):1034–43.

	61.	 Perego P, Maggi L, Parini S, Andreoni G. BCI++: a new framework for 
brain computer interface application. In: SEDE. Citeseer; 2009. p. 37–41.

	62.	 Renard Y, Lotte F, Gibert G, Congedo M, Maby E, Delannoy V, et al. 
OpenViBE: an open-source software platform to design, test, and use 
brain-computer interfaces in real and virtual environments. Presence. 
2010;19(1):35–53.

	63.	 Muller-Putz G, Breitwieser C, Cincotti F, Leeb R, Schreuder M, Leotta F, 
et al. Tools for brain-computer interaction: a general concept for a hybrid 
BCI. Front Neuroinform. 2011;5:30. https://​doi.​org/​10.​3389/​fninf.​2011.​
00030.

	64.	 Kothe CA, Makeig S. BCILAB: a platform for brain-computer interface 
development. J Neural Eng. 2013;10(5):56014.

	65.	 Brunner C, Andreoni G, Bianchi L, Blankertz B, Breitwieser C, Kanoh S, et al. 
BCI software platforms BT—towards practical brain-computer interfaces: 
bridging the gap from research to real-world applications. In: Allison BZ, 
Dunne S, Leeb R, Del R. Millán J, Nijholt A, editors. Berlin: Springer; 2013. p. 
303–31. https://​doi.​org/​10.​1007/​978-3-​642-​29746-5_​16.

	66.	 Zickler C, Riccio A, Leotta F, Hillian-Tress S, Halder S, Holz E, et al. A brain-
computer interface as input channel for a standard assistive technology 
software. Clin EEG Neurosci. 2011;42(4):236–44.

	67.	 Teplan M. Fundamentals of EEG measurement. Vol. 2. 2002.
	68.	 Zulauf-Czaja A, Al-Taleb MKH, Purcell M, Petric-Gray N, Cloughley J, Vucko‑

vic A. On the way home: a BCI-FES hand therapy self-managed by sub-
acute SCI participants and their caregivers: a usability study. J Neuroeng 
Rehabil. 2021;18(1):44. https://​doi.​org/​10.​1186/​s12984-​021-​00838-y.

	69.	 Romanelli P, Piangerelli M, Ratel D, Gaude C, Costecalde T, Puttilli C, et al. A 
novel neural prosthesis providing long-term electrocorticography record‑
ing and cortical stimulation for epilepsy and brain-computer interface. J 
Neurosurg. 2019;130(4):1166–79.

	70.	 Kohler F, Gkogkidis CA, Bentler C, Wang X, Gierthmuehlen M, Fischer 
J, et al. Closed-loop interaction with the cerebral cortex: a review of 
wireless implant technology. Brain-Comput Interfaces. 2017;4(3):146–54. 
https://​doi.​org/​10.​1080/​23262​63X.​2017.​13380​11.

	71.	 Pfurtscheller G, Aranibar A. Evaluation of event-related desynchronization 
(ERD) preceding and following voluntary self-paced movement. Electro‑
encephalogr Clin Neurophysiol. 1979;46(2):138–46.

	72.	 Pfurtscheller G. EEG event-related desynchronization (ERD) and synchro‑
nization (ERS). Electroencephalogr Clin Neurophysiol. 1997;103(1):26.

	73.	 Huang D, Qian K, Fei D, Jia W, Chen X, Bai O. Electroencephalography 
(EEG)-based brain-computer interface (BCI): A 2-D virtual wheelchair 
control based on event-related desynchronization/synchronization and 
state control. IEEE Trans Neural Syst Rehabil Eng. 2012;20(3):379–88.

	74.	 Lee K, Liu D, Perroud L, Chavarriaga R, Millán JdR. A brain-controlled exo‑
skeleton with cascaded event-related desynchronization classifiers. Robot 
Auton Syst. 2017;90:15–23.

	75.	 Leeb R, Perdikis S, Tonin L, Biasiucci A, Tavella M, Creatura M, et al. 
Transferring brain–computer interfaces beyond the laboratory: suc‑
cessful application control for motor-disabled users. Artif Intell Med. 
2013;59(2):121–32.

	76.	 Bundy DT, Souders L, Baranyai K, Leonard L, Schalk G, Coker R, et al. Con‑
tralesional brain-computer interface control of a powered exoskeleton 
for motor recovery in chronic stroke survivors. Stroke. 2017;48(7):1908–15.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://doi.org/10.3389/fninf.2011.00030
https://doi.org/10.3389/fninf.2011.00030
https://doi.org/10.1007/978-3-642-29746-5_16
https://doi.org/10.1186/s12984-021-00838-y
https://doi.org/10.1080/2326263X.2017.1338011

	Design-development of an at-home modular brain–computer interface (BCI) platform in a case study of cervical spinal cord injury
	Abstract 
	Objective: 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Introduction
	Methods
	Overview of system design
	Subject
	System implementation
	Input device—neural data acquisition
	Output device—end effector

	Experimental setup
	Data collection

	Signal processing
	Graphical User Interface mobile application
	Dynamic display
	Calibration

	Computer application
	Modular design
	Bluetooth communication
	Remote data collection

	Deployable for at-home use

	Results
	Bench testing
	Bluetooth communication delays
	Software profiling

	Home testing
	Signal decoding and classification

	Caregiver management

	Discussion
	Mobile phone application
	Portable system
	Modular system
	Subject interaction with the at-home BCI platform
	Limitations

	Conclusion
	Acknowledgements
	References


