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Abstract 

Background:  Myoelectric control based on hand gesture classification can be used for effective, contactless human–
machine interfacing in general applications (e.g., consumer market) as well as in the clinical context. However, the 
accuracy of hand gesture classification can be impacted by several factors including changing wrist position. The 
present study aimed at investigating how channel configuration (number and placement of electrode pads) affects 
performance in hand gesture recognition across wrist positions, with the overall goal of reducing the number of 
channels without the loss of performance with respect to the benchmark (all channels).

Methods:  Matrix electrodes (256 channels) were used to record high-density EMG from the forearm of 13 healthy 
subjects performing a set of 8 gestures in 3 wrist positions and 2 force levels (low and moderate). A reduced set of 
channels was chosen by applying sequential forward selection (SFS) and simple circumferential placement (CIRC) and 
used for gesture classification with linear discriminant analysis. The classification success rate and task completion 
rate were the main outcome measures for offline analysis across the different number of channels and online control 
using 8 selected channels, respectively.

Results:  The offline analysis demonstrated that good accuracy (> 90%) can be achieved with only a few channels. 
However, using data from all wrist positions required more channels to reach the same performance. Despite the 
targeted placement (SFS) performing similarly to CIRC in the offline analysis, the task completion rate [median (lower–
upper quartile)] in the online control was significantly higher for SFS [71.4% (64.8–76.2%)] compared to CIRC [57.1% 
(51.8–64.8%), p < 0.01], especially for low contraction levels [76.2% (66.7–84.5%) for SFS vs. 57.1% (47.6–60.7%) for CIRC, 
p < 0.01]. For the reduced number of electrodes, the performance with SFS was comparable to that obtained when 
using the full matrix, while the selected electrodes were highly subject-specific.

Conclusions:  The present study demonstrated that the number of channels required for gesture classification with 
changing wrist positions could be decreased substantially without loss of performance, if those channels are placed 
strategically along the forearm and individually for each subject. The results also emphasize the importance of online 
assessment and motivate the development of configurable matrix electrodes with integrated channel selection.
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Background
Myoelectric control is an attractive method for human–
machine interfacing with potential applications in mul-
tiple domains. It allows translating electrical muscle 
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activity recorded using electromyography (EMG) into 
control commands for different devices, from general-
purpose consumer electronics to assistive systems for the 
restoration of function and rehabilitation [1]. In recent 
years, the design of compact multichannel EMG inter-
faces that are convenient for daily life applications (e.g., 
implementing dry electrodes) has gained significant 
attention from both industry and academia [2], bring-
ing successful commercial solutions to the market. Some 
examples are the Myo-armband (Thalmic Labs, USA) and 
its more advanced successor from CTRL-Labs (Facebook, 
USA) for general-purpose applications or the more spe-
cialized COAPT (COAPT LLC, USA) system, designed 
for upper-limb prosthesis control. Furthermore, recent 
studies demonstrated that post-stroke paretic patients 
might benefit from the use of pattern recognition of sur-
face electromyographic (EMG) signals to control assistive 
devices for clinical neuro-rehabilitation [3, 4].

The myoelectric control based on pattern recognition 
relies on the ability of the user to produce distinguishable 
and repeatable contractions [2]. Surface EMG recorded 
during those contractions is used to train machine-learn-
ing algorithms to recognize the patterns and generate 
motion predictions based on muscle activity acquired 
online. Despite the high classification accuracy presented 
in the literature (> 90%), pattern recognition-based solu-
tions still lack robustness in daily life applications [5]. 
The classification performance is sensitive to multiple 
factors such as contraction levels [6], muscle fatigue [7], 
arm positions [8], and electrode shift [9], which affect 
the underlying muscle activity and change the patterns 
during online use with respect to those recorded during 
training.

One such factor that is known to affect the perfor-
mance of a hand gesture classifier is the orientation of 
the forearm [10–12]. Since the muscles responsible for 
wrist and finger motion reside within the same forearm 
compartments, any EMG activity generated during the 
wrist movement may interfere with the signals pro-
duced during hand gestures. Furthermore, the changes 
in forearm orientation can affect the relative position 
of the muscles with respect to surface electrodes. Mov-
ing the wrist while performing gestures is a common 
activity in daily living and hence, a robust myocontrol 
strategy should allow wrist movements without com-
promising gesture classification accuracy. In [12], the 
authors found that wrist rotations produced a displace-
ment of the “center of gravity” of the forearm mus-
cle maps. In [10], the authors evaluated the effect of 
wrist position on pattern classification and found that 
including data from different wrist positions improves 
the generalization of the classifier. A recent study dem-
onstrated that training the classifier using kinematic 

information from the wrist joint together with EMG 
recorded from intrinsic hand muscles, could reduce the 
classification error of several hand motions [11]. How-
ever, none of these studies evaluated the influence of 
the electrode set on the classification accuracy when 
multiple wrist positions are considered in the training 
data.

Electrode location plays an important role in achiev-
ing a robust myocontrol performance [13, 14]. A well-
established approach to recording EMG for upper limb 
myoelectric control is to distribute a few electrodes 
equidistantly around the proximal forearm. The uniform 
placement provides an acceptable trade-off between ease 
of use (simple configuration) and performance [13, 15, 
16]. However, such placement might not properly cap-
ture muscle activity patterns due to varying wrist posi-
tions compared to more targeted positioning. Moreover, 
the skin areas from where strong muscle activity (“hot 
spots”) is recorded while performing different gestures 
may change between individuals due to anatomical dif-
ferences. Therefore, the same electrode distribution 
might not be optimal for all subjects. Alternatively, a 
common approach to improve myocontrol perfor-
mance is to place the electrodes manually by a clinical 
expert based on palpation, established guidelines (e.g., 
SENIAM), and/or biomechanical knowledge [17]. Finally, 
recording from a larger surface of the skin using High-
Density EMG (HD-EMG) allows for capturing high-fidel-
ity spatial information regarding muscle activity without 
expert intervention [18]. This last approach could be used 
to determine individually for each subject the electrode 
locations where the strongest muscle activity (topograph-
ical “hot spots”) is observed during movements.

Although the use of HD-EMG in motion classification 
provides high performance [19–21], increasing the num-
ber of channels adds complexity to the overall system. 
Reducing the number of channels decreases the number 
of input features for classification, thereby simplifying 
the processing and decreasing the likelihood of overfit-
ting. Combined with “configurable” electrodes that allow 
channel selection, this could also decrease the complexity 
of the amplifier used to record the data [22, 23]. The elec-
trode channels relevant for classification can be selected 
automatically using feature selection methods [14, 24–
26]. In [24], the authors presented an offline performance 
comparison between methods for electrode reduction 
using common spatial filtering and sequential forward 
selection (SFS). The classification accuracy achieved with 
the two methods was not significantly different. A more 
recent study demonstrated similar classification accuracy 
in gesture recognition between channels selected by SFS 
compared to a selection method based on Fisher’s class 
separability index [27].
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As explained above, wrist orientation might affect the 
spatial distribution of muscle activity generated while 
performing gestures. In turn, this can change the elec-
trodes that are relevant for hand gesture recognition. 
However, none of the aforementioned studies inves-
tigated the combined impact of channel configuration 
and wrist position. The present study, therefore, aims 
at investigating whether the classification performance 
can benefit from the use of targeted electrode place-
ment that is robust to different wrist orientations, dur-
ing online control. We explored the impact of varying 
wrist orientations on the configuration of selected elec-
trodes in terms of their location, number, and consist-
ency across subjects. Previous research has shown that 
offline analysis is not a good predictor of online perfor-
mance [28], and hence the present experiment included 
an online control task. We hypothesized that a set of 
strategically placed electrodes would outperform the 
same number of electrodes placed uniformly along the 
circumference of the forearm.

Methods
Participants
Thirteen right-handed able-bodied subjects (29 ± 3.1 
years) participated in the study. Oral and written infor-
mation was provided to the participants before starting 
the experimental session and they signed the informed 
consent form. The study was conducted following the 
Declaration of Helsinki. According to the Danish Act on 
Research Ethics Review of Health Research Projects, the 
study did not require approval from the Research Ethical 
Committee (Journal number: 2019-000199).

Experimental setup
Participants sat comfortably on a chair in front of the 
computer screen, with the elbow flexed at approxi-
mately 90° (Fig. 1b, bottom panel). The skin of the fore-
arm was previously cleaned and shaved. Four electrode 
grids (GR10MM0808, OTBioelettronica, 8 × 8 channels, 
10  mm inter-electrode distance) were used to record 
EMG signals from 256 channels in a monopolar config-
uration from the right forearm (Fig.  1a). Three of them 

Fig. 1  Experimental setup. a Placement of the high-density electrode grids on the forearm of a participant. One electrode grid was placed on the 
ventral side of the distal forearm (grid 1) and three grids were positioned around the proximal forearm (grids 2 to 4). A red rectangle indicates the 
row of channels selected for uniform placement. b Lateral view of a participant with the arm in resting position (top) and with the elbow flexed at 
90° (bottom) during the experimental session
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were mounted in a circumference around the forearm, 
at approximately 20% of the forearm length distally from 
the elbow crease. The fourth electrode grid was placed 
consecutively on the anterior forearm. This electrode 
configuration allowed acquiring EMG activity from the 
muscles responsible for finger and wrist motion. Refer-
ence and ground self-adhesive Ag/AgCl electrodes (Neu-
roline 720, Ambu, Denmark) were placed on the wrist, 
over the radial styloid process, and on the elbow, over 
the olecranon process of the ulnar bone, respectively. 
The EMG was recorded using a multichannel bio-signal 
amplifier (Quattrocento, OTBioelettronica, Italy) con-
nected to the host computer via Ethernet. The signals 
were band-pass filtered through the built-in filters (2nd 
order Butterworth, bandwidth 10–500 Hz) and sampled 
at 2048 Hz.

Experimental protocol
The experimental task (Fig. 2) was to classify 8 hand ges-
tures (power grasp, one-finger pinch, two-fingers pinch, 
three-fingers pinch, lateral grasp, index pointing, hand 
open, and rest) in 3 wrist orientations (full supination, 
neutral, full pronation) and two muscle contraction levels 
(low and moderate). Training the classifiers with data col-
lected at different muscle contraction levels is a common 
approach to provide proportional control during pattern 
recognition-based myocontrol [29, 30].

The flow chart of the experimental protocol is shown 
in Fig. 3. The experimental protocol included two phases: 
data collection and online assesment. Offline analysis was 
conducted to select a subset of electrodes (see Channel 
selection) and assess the classification performance for 
different numbers of electrodes. In the online test, two 
electrode configurations with 8 channels as well as a full 
set of electrodes were compared during online control. A 

graphical user interface (GUI) was developed to guide the 
participants through the experiment.

Visual inspection of the EMG signals was conducted 
at the beginning of the experiment to remove channels 
corrupted by noise due to poor electrode-skin contact 
(e.g., usually up to 4 channels per subject). The identified 
channels were labelled as “corrupted” and discarded from 
further analysis.

Data collection
Maximum voluntary contraction (MVC) was recorded 
for each gesture in all wrist positions. Participants were 
asked to perform a sustained muscle contraction of the 
gesture prompted on the screen at their strongest, but 
still comfortable force level, and hold it for 3  s. Resting 
periods of 10 s were inserted between the gestures. The 
MVC values were calculated as the root mean square 
(RMS) computed over 250-ms windows of the EMG 
averaged over the contraction period (3 s) and across all 
the channels.

Recording procedure  HD-EMG recorded during 
two sustained contractions at low (30% of MVC) and 
moderate (60% of MVC) levels was acquired for each 
combination of hand gesture and wrist position. A 
pseudorandom sequence of 24 tasks, corresponding to 
each combination of gesture and wrist position (8 ges-
tures × 3 wrist positions), was shown to the participant 
through the GUI (Fig. 4a). Once the task was prompted, 
the subject had 5  s to rotate the wrist comfortably to 
the position indicated on the screen before the record-
ing started. The participants used the overall level of 
muscle activation to control the amplitude of the signal 
(green line in Fig. 4a) along the vertical axis, while the 
signal moved automatically along the horizontal axis. 

Fig. 2  Experimental task. The participants performed eight gestures in three wrist positions: a The three wrist positions (full pronation, neutral, full 
supination). b Eight gestures (from left to right and top to bottom: power grasp, one-finger pinch, two-fingers pinch, lateral grasp, three-fingers 
pinch, index pointing, hand open and rest). Each gesture was performed in all wrist positions at two muscle contraction levels
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The muscle activation level was estimated by computing 
the RMS of the EMG in 250-ms windows for each chan-
nel and then averaging across channels. The participants 

were asked to modulate their muscle contraction so that 
the generated signal tracked the reference muscle acti-
vation profile (blue line in Fig. 4a). The activation profile 

Fig. 3  Flow diagram of the experimental protocol. The experiment was divided into two phases: data collection (offline phase) and online 
assessment. During the offline phase, HD-EMG data was collected and features were extracted. After training the classifiers for different number 
of channels selected using SFS, CIRC and ALL, the offline classification accuracy was calculated using testing data. Once the offline analysis was 
completed, three electrode configurations (SFS, CIRC and ALL) were evaluated during an online gesture recognition task

Fig. 4  User interface. a Task for data collection. Participants were asked to perform the gestures shown by the graphical user interface and follow 
the muscle activation profile (blue line) by producing two sustained contractions with plateaus at 30% and 60% of the MVC for the respective 
gesture. The contraction level was estimated as the root mean square of windowed EMG across all the channels and provided as feedback to the 
user (green line). b Online test interface. Participants were asked to match a target gesture and wrist position while the predicted gesture was 
shown on the side. The task was considered successful if the subject matched the right gesture for two consecutive seconds while maintaining the 
contraction level inside the range indicated by the corresponding pair of dashed lines (i.e., low or moderate)
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comprised two trapezoids with 1-s ascending-descend-
ing slope, 4-s plateau, and 5-s separation. The plateaus 
were set at 30% and 60% of the MVC for the first and 
second trapezoid, respectively. The tasks were executed 
sequentially with 15-s rest between the tasks.

Feature extraction  After the data were collected, the 
EMG was segmented to include only those portions 
that corresponded to contractions. The contraction 
onset was defined by detecting when the muscle activity 
crossed the threshold of 10% MVC. For the rest class, 
4  s of data recorded during hand resting periods were 
used for the analysis. The extracted segments (8 hand 
gestures × 2 force levels × 3 wrist positions) were con-
catenated and labeled accordingly. Five time-domain 
(TD) features: mean absolute value (MAV), zero cross-
ing (ZC), slope sign change (SSC), wavelength (WL), 
and the logarithm of variance (LogVar), were extracted 
in sliding windows of 250 ms with 50% overlap. These 
features have been commonly used in literature for rec-
ognizing hand motions [1, 31]. The resulting dataset 
was randomly divided into a training (70%) and a testing 
dataset (30%) using a stratified holdout method.

Channel selection  The channel selection with SFS was 
performed using the training dataset. The SFS method 
started with an empty set of features and sequentially 
added new features to increase the classification accu-
racy. In the present study, the classification was imple-
mented using linear discriminant analysis (LDA), which 
has effectively become the golden standard in myocon-
trol for both academic and commercial applications. The 
performance of each candidate feature was validated 
through tenfold cross-validation. To obtain the chan-
nel subset, each of the features selected by the SFS was 
mapped back to the parent channel. As more than one 
feature may belong to the same channel, the final num-
ber of selected channels could be smaller than the num-
ber of selected features. To test the performance for the 
given number of selected channels (see Data Analysis), 
new features were sequentially added until the desired 
number of channels was reached for each subject. Once 
the desired number of channels was selected, all five 
features extracted for those channels were used in the 
further analysis. The focus of the present study was on 
selecting the channels (electrode pads) rather than indi-
vidual features. Therefore,  we followed a common prac-
tice in myoelectric control and used a well-established 
set of time-domain features [32] associated with each 
selected channel. This approach might not be optimal 
since some of the extra features might have a lower sep-
arability score. However, fixing the number of features 

across the methods allowed us to highlight the relevance 
of the channel locations for gesture classification.

Three methods to select the location of the electrodes 
from the HD-EMG interface were compared: the afore-
mentioned sequential forward selection (SFS), the cir-
cumferential evenly distributed placement (CIRC), and 
the full set of electrodes (ALL). The SFS method provides 
a subject-specific channel set based on the discrimina-
tive power of their features, while the CIRC method is a 
standardized uniform distribution “blind” to the muscle 
characteristics. Both methods were compared to ALL as 
a benchmark. For CIRC, the channels from the fourth 
row of the proximal matrices arranged equidistantly and 
circumferentially around the subject’s forearm were cho-
sen (Fig. 1a). If any of the channels included in the CIRC 
set was previously labelled as “corrupted”, the channel 
located immediately below was selected instead.

The resulting set of features obtained from the selected 
channels was then used to train an LDA classifier for 
recognizing 8 gesture classes. The classifier was trained 
using the features extracted from the training dataset 
and its performance was assessed by applying the trained 
classifier to the testing data. Depending on the analy-
sis performed (see Data analysis), the features extracted 
from the EMG corresponding to the same gesture at two 
contractions levels and in different wrist positions were 
labelled as the same gesture class. For example, when 
all wrist positions were considered for the analysis, the 
training samples labelled as gesture 1 (power grasp) con-
tained the features from the EMG recorded during power 
grasp contractions at two force levels and three wrist 
positions. Similarly, when the analysis was conducted 
over a single wrist position (e.g., pronation), the training 
samples for gesture 1 comprised the features from power 
grasp at two contraction levels with the wrist pronated.

Online assessment
Based on the results of the offline analysis (pilot tests), 
three channel configurations were selected to be tested in 
the online experiment: 8 channels selected using CIRC, 8 
channels selected using SFS, and the full set of channels 
(benchmark). The classification models for online control 
were trained using all collected data.

The online classification pipeline is illustrated in Fig. 3 
(bottom box). HD-EMG was recorded in windows of 
125 ms and concatenated with 50% of the data from the 
previous window. TD features were then extracted from 
the resulting 250 ms segment of EMG. A selected num-
ber of features was used as the input of the classifier 
based on the channel selection method that was active 
in the specific trial of the grasp recognition task. When 
the method ALL was active, all features (256 channels × 5 
TD features) were fed into the classifier. In case CIRC 
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or SFS was selected, only the features corresponding to 
the respective channel sets (8 channels × 5 TD features) 
were used for classification. Participants were unaware of 
which method was active during the online trials.

A GUI was developed to guide the participants during 
the online control task (Fig. 4b). At the beginning of each 
trial, the subject was shown the position of the wrist in 
the upcoming task for 5  s. During that time, they posi-
tioned the wrist accordingly. After the brief rest time 
(5  s), the target gesture was displayed. The target task 
(i.e., a combination of gesture and wrist position) and the 
online prediction of the trained classifier (a new predic-
tion every 125 ms) were shown in the top part, while the 
bottom part displayed the estimated muscle activation 
level and the target activation window. The subject was 
asked to perform the indicated movement so that the 
prediction of the classifier matched the target gesture 
continuously during 2 s (dwell time). The online predic-
tion was shown only while the muscle activation level 
was maintained within the target window; otherwise, 
a notification message indicated to the subject to cor-
rect the activation level. The online feedback allowed the 
subject to notice a wrong classification and potentially 
change how they performed the movement. The subject 
had 10  s to complete the task; otherwise, the task was 
considered failed. The success and failure were indicated 
with auditory and visual cues.

The online experiment was divided into two blocks. 
Each block included one repetition of each combination 
of hand gesture, wrist position, and channel set (CIRC, 
SFS, and ALL) in random order (i.e., 8 gestures × 3 wrist 
positions × 3 methods). The participants were asked to 
repeat each block at low (target window 10–35% MVC) 
and moderate force (target window 45–75% MVC). The 
order of the blocks was randomized.

Data analysis
The effect of wrist position on the complexity of the clas-
sification task was evaluated by computing the Bhat-
tacharyya distance as the index of separability between 
the classes [33]. The Bhattacharyya index was calculated 
as the mean distance across all pairs of classes.

The outcome measure in the offline analysis was the 
classification accuracy of hand gestures using data from 
both contraction levels combined. The classification 
accuracy was computed when the classifier was trained 
and tested using the data from (1) each single wrist posi-
tion and (2) all wrist positions combined. The classifica-
tion accuracy reported for single wrist conditions was 
calculated as the average accuracy across the three wrist 
positions. Additionally, a comparison of classification 
accuracies between the electrode selection methods (SFS, 
CIRC, and ALL) was conducted separately for single and 

combined wrist positions across the different numbers of 
electrodes.

The outcome measures to evaluate the online control 
were completion rate, completion time, and the number 
of dwellings. The completion rate was calculated as the 
number of successfully completed trials over the total 
number of trials. The completion time and the number 
of dwellings were computed from the successful trials 
only. Completion time was defined as the time needed 
to complete the task. The number of dwellings quantified 
the stability of control and was defined as the number of 
times that the classifier output changed the prediction 
while the participant maintained the contraction level 
within the target window.

The normality of the data distribution was assessed 
using the Shapiro–Wilk test. When data sets were non-
normally distributed, the non-parametric Friedman’s test 
was used. Post hoc pairwise comparisons were performed 
using the Wilcoxon Signed-Rank test and corrected for 
multiple comparisons using Bonferroni correction. For 
normally distributed data, repeated measures analysis 
of variance (RM-ANOVA) was used. Paired t-tests were 
conducted for pairwise comparison and adjusted for 
multiple comparisons with Bonferroni correction. The 
significance threshold was set at p < 0.05.

Results
Impact of wrist position on classification complexity
Figure  5 illustrates the effect of wrist position on the 
spatial pattern of muscle activity captured using HD-
EMG. In the example, a representative subject performed 
two gestures: lateral grasp (Fig.  5a) and index pointing 
(Fig.  5b), in all wrist positions. For both hand gestures, 
the localized areas of muscle activity shifted visibly with 
respect to the surface electrodes when the position of the 
wrist changed from full pronation to full supination. Dur-
ing lateral grasping, the muscle “hot spots” recorded by 
the volar matrices gradually moved towards the medial 
aspect of the forearm. During pointing, the activity was 
concentrated in the dorsal and lateral matrix, and the 
“hot spots” shifted more proximally.

The previous examples show that the changes in 
the muscle maps produced by the wrist rotations can 
increase the variability inside the gesture class. Indeed, 
when the data from all wrist positions were considered in 
the analysis, the separability between the clusters of fea-
tures decreased as illustrated in Fig. 6. The SFS features 
projected to the 3D space using principal component 
analysis exhibited significant overlap when data from all 
wrist positions were included (Fig. 6b). The feature clus-
ters are however well separated when using only the data 
from the wrist in the neutral position (Fig. 6a).
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Fig. 5  Representative muscle maps obtained by interpolation of muscle activity recorded using HD-EMG. Each grey circle indicates an electrode 
from the grid and the color shows the root mean square (RMS) of the EMG in μV, over a 250-ms data window (see color legend). a Maps generated 
from to the two matrices placed distally and proximally over the ventral side of the forearm (flexors). Data were recorded from a subject performing 
a sustained lateral grasp in the three wrist positions. b Maps corresponding to the two matrices placed over the dorsal and lateral side of the 
proximal forearm (extensors). Data recorded from the subject performing a sustained index pointing in the three wrist positions. Varying the 
position of the wrist produced different spatial distributions of muscle activity for the same hand gesture

Fig. 6  An illustrative example of the effect of wrist position on the separability of 8 classes in the projected feature space. a Scatter plot of the first 
three principal components of the feature vectors when including data in neutral position. b Scatter plot of the first three principal components 
when considering data from all wrist positions. PG power grasp, OP one-finger pinch, TP two-fingers pinch, LG lateral grasp, TP three-fingers pinch, 
IP index pointing, HO hand open, RE hand rest
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To quantify the impact of the wrist position on the 
complexity of classification, the Bhattacharyya distance 
between classes in the SFS feature space was calculated 
for all wrist positions (Fig. 7). Statistical analysis showed 
a main effect (χ2 = 18.6, p < 0.001) of the wrist position. 
The distance between classes was significantly lower 
(p < 0.05) when using data combined from all wrist posi-
tions compared to using data from any single wrist posi-
tion. In particular, the difference was largest (p < 0.01) 
when comparing data from the neutral position to all 
combined. Between single wrist positions, the distance 
was significantly larger (p < 0.05) when using data from 
the neutral position compared to pronation. No signifi-
cant difference in the distance was found between supi-
nation and pronation.

Offline performance
Figure 8 shows the average classification accuracy for the 
different numbers of channels for single and combined 

Fig. 7  Separability index between gesture classes computed using 
Bhattacharyya distance for multiple classes. The distances were 
calculated from the SFS feature space using data from different wrist 
positions (single: P (pronation), N (neutral), S (supination); and all 
combined: comb)

Fig. 8  Classification performance for different number of channels. a Classification accuracy for the channels selected using SFS. b Comparison 
between electrode selection methods using data from single wrist positions and c using data from three wrist positions combined. “Wrist single” 
corresponds to the average classification accuracy obtained when training and testing the classifier using data from single wrist positions. “Wrist 
comb.” is the average classification accuracy when the classifier was trained and tested using data from the three wrist positions combined
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wrist positions (Fig. 8a) when using CIRC and SFS chan-
nel selection methods (Fig. 8b and c). Expectedly, as the 
number of channels (n) increases, the accuracy improves 
monotonically until reaching a plateau (n > 8). The maxi-
mum accuracy in all conditions (> 98%) was achieved 
when using the full electrode set (ALL). Nevertheless, 
high accuracy (> 90%) could be achieved in all cases with 
a substantially smaller number of electrodes (n > 7). The 
statistical analysis revealed that including the data from 
the 3 wrist positions combined, significantly decreased 
the accuracy of both channel selection methods. More 
specifically, when using SFS there was a significant dif-
ference (p < 0.05) in performance between single versus 
combined conditions when more than 4 channels were 

used (except for 17, 18, and 21 channels). Similar results 
were obtained with CIRC where the accuracy was signifi-
cantly higher (p < 0.05) for single wrist condition regard-
less of the number of channels.

Additionally, when comparing the classification accu-
racy of SFS versus CIRC, no statistically significant dif-
ference was found for any number of channels for single 
(Fig. 8b) and combined (Fig. 8c) wrist positions. Moreo-
ver, the classification accuracy was similar when the clas-
sifier was trained and tested using data from combined 
wrist conditions at a single contraction level (low and 
medium), with no statistical difference between the two 
methods.

Fig. 9  The channels selected using SFS across all participants. The distribution of the matrices over the forearm is shown in the icon on the 
top-left corner. The top square represents the distal matrix, and the 3 bottom squares represent the three matrices placed around the proximal 
forearm. Colored circles are the selected channels. Each participant is represented by a different color and the participant number is indicated 
inside the circle. For channels selected for 2 participants, the circle is filled by the colors assigned to the respective participants. In case where more 
than 2 participants share the same channel, the participant numbers are indicated with an arrow (yellow circles). a Five channels selected across 
participants when the classifier was trained in the neutral wrist position. b Eight channels selected across participants when the classifier was 
trained using the data from all wrist positions combined
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Figure  9 illustrates the channels selected using SFS 
across all participants when the classifiers were trained 
using the data from a single position (neutral, Fig. 9a) and 
all wrist positions combined (Fig.  9b). The two-channel 
sets resulted in similarly high performance (mean ± SD) 
in the two conditions, i.e., 92.3 ± 6.5% for 5 channels 
versus 92.4 ± 1.5% for 8 channels. Importantly, the dis-
tribution of the channels was highly subject-specific, as 
most of the channels (46 channels for wrist single and 
60 channels for wrist combined) were unique to a sin-
gle participant, while only a few of them (9 channels and 
18 channels) were selected in two or more participants. 
Therefore, the channels with discriminative information 
differ substantially between participants. The distribu-
tion of the selected channels was not uniform across the 
recording surface of the forearm. When all wrist posi-
tions were included in the training data, channels from 
the two electrode grids placed from the lateral to the 
medial side of the forearm were selected similarly (50 
times) compared to the two matrices placed over the ven-
tral side of the forearm (54 times). In addition, the chan-
nels located on the distal electrode placed on the ventral 
side were selected more often (33 times) than the chan-
nels from the electrode grid placed on the same side but 
proximally (17 times).

Online performance
Figure  10 illustrates the quality of online predictions 
from one representative participant using the three chan-
nel selection methods (ALL, SFS, and CIRC). When the 

subject used the full set of channels (ALL), most tasks 
(20 out of 21) were successfully completed (Fig. 10, left) 
and the prediction profiles (blue line) matched very well 
the target class profiles (gray line). A small delay at the 
beginning of each task corresponds to the subject’s reac-
tion time. After the delay, the participant successfully 
produced and maintained the target class with a few mis-
classified samples. With SFS, the participant completed a 
similar number of tasks (18 out of 21) with similar pre-
diction profiles, though it seems that the “power grasp” 
was somewhat more challenging for the subject.

In the case of the CIRC method, the classification 
accuracy decreased substantially as indicated by the fre-
quent oscillations in the prediction profiles. Hence, the 
subject had difficulties generating as well as maintaining 
the target class. Overall, he/she completed only 10 out 
of 21 tasks and without any successful trials for two of 
the target gestures (i.e., lateral grasp and hand opening). 
The inability to successfully complete any trial on at least 
two or more gestures was commonly observed in other 
participants when using CIRC (9 out of 13 participants), 
while this was much less frequent when using the other 
two methods (1 out of 13 participants using SFS and 2 
out of 13 participants using ALL).

Figure  11 shows the summary results of the online 
tests for the three channel selection methods grouped 
by contraction levels. A significant main effect of elec-
trode configuration was found [F(2,16) = 12.8; p < 0.001] 
on the completion rate computed when both contrac-
tion levels were considered. Statistical analysis showed 

Fig. 10  Online classification results at the low contraction level from a representative subject. The colored lines represent the classification output 
(each 125 ms), while the grey line indicates the target class. Each row corresponds to a different gesture, and includes three consecutives tasks, one 
in each wrist position (randomized order). Black asterisks indicate the tasks that were completed successfully. PG power grasp, OP one-finger pinch, 
TP two-fingers pinch, LG lateral grasp, TH three-fingers pinch, IP index pointing, HO hand open
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that the completion rate [median (lower–upper quartile)] 
obtained using SFS [71.4% (64.8–76.2%)] was signifi-
cantly larger (p < 0.01) compared to CIRC [57.1% (51.8–
64.8%)]. Moreover, the completion rate achieved using 
CIRC was significantly smaller (p < 0.01) compared to 
ALL [73.8% (65.4–77.9%)]. A significant interaction was 
found between muscle contraction level and the chan-
nel selection method [F(2,16) = 4.4; p < 0.03]. Analysis 
of simple main effects showed a significant effect of the 

channel selection method only for the low contraction 
level [F(2,20) = 19.9; p < 0.001]. Post hoc tests revealed 
that at low contraction level, the accuracy using CIRC 
[57.14% (47.6–60.7%)] was significantly lower (p < 0.01) 
compared to ALL [80.95% (67.8–84.5%)] and SFS [76.19% 
(66.7–84.5%)]. No significant differences were found 
between SFS and ALL. For the moderate contraction 
level, the participants achieved a completion rate of 
71.4% (58.3–79.8%) using ALL, 66.7% (44.1–75%) using 

Fig. 11  Summary results of the online experiment. The boxplots show the distribution of a completion rate, b completion time and c the number 
of dwellings over all trials, and separately over the trials at low and moderate contraction levels. Outliers are indicated with “+” symbol. (*p < 0.05, 
**p < 0.01)



Page 13 of 16Pelaez Murciego et al. Journal of NeuroEngineering and Rehabilitation           (2022) 19:78 	

SFS, and 57.4% (52.3–70.2%) using CIRC, with no statis-
tically significant difference in completion rate between 
the methods. Additionally, no significant difference in 
completion rate was found when comparing the same 
method between the two contraction levels.

Overall, the participants took a similar amount of time 
to complete the tasks using ALL [5.2  s (4.5–5.6  s)], SFS 
[5.2  s (4.9–5.9  s)], and CIRC [5.4  s (5.2–5.8  s)], without 
significant difference between the methods when consid-
ering the data from both contraction levels. However, a 
statistically significant difference was found between the 
electrode configuration methods [χ2(2) = 7.8, p < 0.02] 
when the target contraction level was low. Post hoc analy-
sis showed that for low contraction level, the participants 
were significantly faster (Z = −  2.5, p < 0.05) using ALL 
[5.1  s (4.3–5.9  s)] compared to CIRC [5.4  s (5.3–6.1  s)], 
but no statistical difference was found compared to SFS 
[5.39 s (4.7–5.9 s)].

Similar to the previous results, the number of dwellings 
calculated across both contraction levels was similar for 
ALL, SFS, and CIRC with 3.4 (3.1–5.2), 3.9 (3.0–5.4), and 
4.1 (3.8–4.6), respectively. Statistical analysis showed a 
significant main effect of contraction level [F(1,8) = 52.0, 
p < 0.001] on the number of dwellings. Overall, the par-
ticipants had fewer dwellings when the target contrac-
tion was at the moderate level, indicating better control 
stability. The electrode selection method did not have a 
significant main effect on the number of dwellings for any 
contraction level.

Discussion
This study demonstrated that dexterous hand gestures 
could be successfully decoded during an online control 
task including different wrist positions and muscle con-
traction levels using only a small number of EMG chan-
nels. The results showed that introducing multiple wrist 
positions increased the difficulty of the classification 
task. Consequently, more channels need to be presented 
as input into the classifier to achieve the same accuracy 
as when recognizing the same gestures in a single wrist 
position. Additionally, despite the two channel selection 
methods (SFS and CIRC) resulting in a similar perfor-
mance during offline analysis, SFS outperformed CIRC 
during online control, especially during grasping using 
low levels of muscle contraction. Finally, the channels 
selected using SFS exhibited significant inter-subject 
variability. The insights obtained in the present study are 
important for the application of myoelectric control in 
general applications and/or clinical contexts.

The impact of wrist position in offline analysis
As illustrated in Fig. 5, varying the wrist position changes 
the spatial distribution of the EMG responses produced 
by the hand gestures. The muscle activation patterns 
associated with the same gesture are thus more variable, 
which increases the spread of the features within individ-
ual classes and leads to lower class separability (Fig. 7). In 
pattern recognition, the separability between classes is 
highly correlated with classification accuracy [28, 34].

Surprisingly, the classification accuracy in the offline 
analysis was not significantly affected by the electrode 
selection method (SFS or CIRC), regardless of the wrist 
position (single versus combined) and contraction level 
(low versus medium). Therefore, the offline classification 
accuracy did not benefit from the more targeted “place-
ment” of EMG channels, as the simple uniform arrange-
ment of the channels around the proximal aspect of the 
forearm provided similar performance. A direct com-
parison of the obtained results with those reported in 
the literature is difficult, because of the differences in the 
experimental setup, electrode configuration, and/or task 
(e.g., number of classes, hand gestures, contraction lev-
els, and arm orientation) across studies. Nevertheless, the 
offline performance in the present study was in line with 
that reported in the literature, where the mean classifi-
cation accuracy ranged from approx. 90–96%, using less 
than 12 electrodes placed around the arm, forearm and 
hand [10, 11, 24–27, 35, 36]. In contrast to our proposed 
method, most of these studies included in their analy-
sis the  data from the intrinsic muscles of the hand [11, 
24–27, 35, 36] and/or wrist kinematic information [10, 
11]. Moreover, bipolar disposable electrodes were used in 
[10, 11, 25, 26, 35, 36] while HD-EMG was employed in 
only two cases [24, 27]. In [24, 27], the authors achieved 
high classification accuracy (above 95%) using 10 chan-
nels selected from the HD-EMG interface, similarly as in 
the present study. However, contrary to our work, these 
studies placed EMG electrodes on both hand and arm 
muscles, considered only a single force level and did not 
include an online assessment, nor evaluated proportional 
control.

Including the data from multiple wrist positions 
decreased the performance (Fig.  8), as also reported in 
[25, 36]. Interestingly, in [11], the authors did not find a 
significant difference in classification accuracy between 
single and multiple wrist positions. However, the study 
considered only 4 hand gestures, and hence, the clas-
sification task might have been too simple to detect the 
impact of wrist position. As shown in [26], increasing the 
number of classes affects the complexity of the classifi-
cation task and requires more channels to maintain the 
same performance.
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The channels selected using SFS were highly subject-
specific, with only a few channels selected for more than 
one subject (Fig.  9). The selected channels were spread 
across the matrices, but not uniformly. Interestingly, 
quite a few channels were selected from the matrices that 
were placed over the hand and wrist extensor muscles, 
which means that the classification also used “indirect” 
information from the muscles that served a support-
ing role (e.g., extensors stabilized the wrist while flexors 
controlled finger motion to produce the desired grasp). 
Further insight regarding the contribution of such sup-
porting/stabilizing muscle activity to the classifica-
tion performance could be obtained by correlating the 
observed muscle activity to the muscle biomechanical 
function using musculoskeletal models [37]; however, 
this analysis was outside the scope of the present study. 
In the case of multiple wrist positions, the channels 
closer to the wrist joint were selected more often com-
pared to those located proximally. This can be explained 
by the fact that the muscles moving the fingers (i.e., digi-
torum superficialis and profundus) are located superfi-
cially in this area while in the proximal forearm they are 
located below the muscles flexing the wrist (e.g., flexor 
carpi radialis).

Targeted placement improves performance during online 
classification
Interestingly, despite the electrode selection was not rele-
vant for offline performance, the results of the online test 
demonstrated that the channels selected using SFS out-
performed the same number of channels selected using 
CIRC. The CIRC configuration has been commonly used 
in myocontrol applications for hand gesture recognition 
[38–40]. However, the present study implies that plac-
ing the electrodes uniformly around the forearm might 
not be the best approach when facing a more challeng-
ing classification task, such as online gesture recognition 
with changing wrist positions.

The online experiment emphasized the gap between 
offline classification accuracy and online control per-
formance, which has been noted in the literature [41]. 
During online control, the participants received feed-
back, which they could use to improve their performance 
within as well as across trials [28]. In the present experi-
ment, the online task might have provided the partici-
pants with an opportunity to actively exploit potential 
intrinsic advantages of the targeted placement to reach 
overall higher performance. Moreover, when perform-
ing gestures during data collection, the participants were 
guided using a GUI (Fig.  4), and hence a well-defined 
and controlled procedure ensured that the gestures 
and thereby the recorded muscle activity was consist-
ent and reproducible. During the online test, however, 

the participants were free to vary their movements and 
they were additionally pressured by time. In contrast to 
the CIRC channels that were confined to a small proxi-
mal area of the forearm, the SFS selected the most dis-
criminative channels spread across a wider forearm area. 
The resulting classifier was, therefore, more robust to the 
aforementioned variations in the muscle activation pat-
terns during the online assessment.

The difference between SFS and CIRC was particularly 
pronounced for the low muscle contraction level, where 
the performance of SFS was similar to that of ALL elec-
trodes and significantly higher compared to CIRC. In 
general, as the contraction intensity increases, the fea-
ture vectors become more separated in the feature space 
and this allows better discrimination between the classes 
[42]. In the present study, the number of dwellings that 
characterize the stability of predictions over time was 
significantly lower for moderate compared to low con-
tractions. The better performance of SFS, therefore, 
reemphasizes the conclusion that the targeted placement 
might be advantageous when the classification task is 
more complex. The targeted placement might be particu-
larly relevant for clinical applications, where participants 
with residual limbs or impaired motor function present 
overall lower muscle contraction levels and altered mus-
cle structures or recruitment properties [43]. Therefore, 
clinical rehabilitation might benefit from an electrode 
configuration that selects the best channels individually 
for each patient considering their particular condition. 
However, this hypothesis needs to be tested by conduct-
ing assessments in patient populations. Nevertheless, 
subject-specific targeted placement can be relevant also 
for general-purpose myoelectric control, for instance, 
gesture recognition in virtual reality, where low forces 
might be more natural and lead to better user experi-
ence (increased comfort and decreased muscle fatigue). 
A “smart” matrix electrode can be envisioned in which a 
small set of pads can be selected and routed to a “low-
dimensional” output connector [23]. Such electrodes 
would allow exploiting the benefits of targeted place-
ment while still using a compact EMG amplifier with 
only a few input channels. The muscle contraction level 
did not significantly affect the completion time. Although 
the prediction was more stable for the moderate level, 
the participants in this case also needed more time to 
increase the contraction to reach the target window.

Some recent studies investigated online gesture rec-
ognition in combination with wrist movements [26, 
35, 36]. In [26], the authors demonstrated that record-
ing EMG from intrinsic muscles improves online ges-
ture classification in a single wrist position. In [35], 
the authors found that the online classification error 
produced by changing wrist position could be reduced 



Page 15 of 16Pelaez Murciego et al. Journal of NeuroEngineering and Rehabilitation           (2022) 19:78 	

by placing the electrodes over the intrinsic muscles of 
the hand. Alternatively, the present study showed that 
the number of electrodes for classification with chang-
ing wrist positions can be substantially reduced with-
out significant loss of performance, but only if the 
electrodes are strategically placed along the forearm. 
Containing the channels within the forearm, instead of 
placing them on the intrinsic hand muscles, simplifies 
the setup and facilitates the use of myocontrol applica-
tions involving hand gesture recognition.

Conclusion
The present study investigated the selection of electrodes 
from a high-density matrix required to reach a high accu-
racy when recognizing hand gestures despite changing 
wrist positions. The results demonstrated that consider-
ing multiple wrist positions indeed increased the com-
plexity of classification, but still high performance could 
be achieved using only a few electrodes. The online con-
trol task showed that targeted, subject-specific placement 
is important for performance, especially for low levels of 
muscle contractions. These are relevant insights for the 
use of myoelectric control, in particular considering the 
recent trends that regard this approach as an attractive 
solution for general-purpose human–machine interfac-
ing across applications, domains, and activities.

Abbreviations
ALL: Full set of electrodes; CIRC: Circumferential placement of electrodes; 
EMG: Electromyography; GUI: Graphical user interface; HD-EMG: High-density 
electromyography; HO: Hand open; IP: Index pointing; LG: Lateral grasp; MAV: 
Mean absolute value; LogVar: Logarithm of variance; OP: One-finger pinch; 
PG: Power grasp; SFS: Electrode placement selected using sequential forward 
selection; SSC: Slope sign change; TD: Time-domain; TP: Two-finger pinch; TH: 
Three-finger pinch; WL: Wavelength; ZC: Zero-crossing.

Acknowledgements
Not applicable.

Author contributions
SD, ES and LP conceptualized the study and designed the experimental pro-
tocol. LP implemented the protocol and conducted the experiments. LP, MH, 
ES and SD analyzed the data and drafted the manuscript. All authors read and 
approved the final manuscript.

Funding
This work was funded by the WEARPLEX project with Grant agreement ID: 
825339 under the Horizon 2020 EU funding—ICT-02-2018.

Availability of data and materials
Data and materials can be made available upon reasonable request to the 
authors.

Declarations

Ethics approval and consent to participate
The participants were informed about the methods of the study before the 
experiment and they signed a consent form. The experiment was designed 
and conducted according to the Declaration of Helsinki. The North Denmark 

Region Committee on Health Research Ethics has notified us that this study 
does not require approval from the research ethics system, cf. the Danish Act 
on Research Ethics Review of Health Research Projects. It has journal number: 
2019-000199.

Consent for publication
Not applicable.

Competing interests
SD is an Associate Editor for the Journal of NeuroEngineering and 
Rehabilitation. 

Received: 21 January 2022   Accepted: 6 July 2022

References
	1.	 Farina D, et al. The extraction of neural information from the surface EMG 

for the control of upper-limb prostheses: emerging avenues and chal-
lenges. IEEE Trans Neural Syst Rehabil Eng. 2014;22(4):797–809.

	2.	 Roche AD, Rehbaum H, Farina D, Aszmann OC. Prosthetic myoelectric 
control strategies: a clinical perspective. Curr Surg Rep. 2014;2(3):1–1.

	3.	 Bos RA, Nizamis K, Koopman BFJM, Herder JL, Sartori M, Plettenburg DH. 
A case study with symbihand: an sEMG-controlled electrohydraulic hand 
orthosis for individuals with duchenne muscular dystrophy. IEEE Trans 
Neural Syst Rehabil Eng. 2020;28(1):258–66.

	4.	 Lu Z, Tong KY, Zhang X, Li S, Zhou P. Myoelectric pattern recognition for 
controlling a robotic hand: a feasibility study in stroke. IEEE Trans Biomed 
Eng. 2019;66(2):365–72.

	5.	 Kyranou I, Vijayakumar S, Erden MS. Causes of performance degradation 
in non-invasive electromyographic pattern recognition in upper limb 
prostheses. Front Neurorobot. 2018;12(September):1–22.

	6.	 Campbell E, Phinyomark A, Scheme E. Current trends and confounding 
factors in myoelectric control: limb position and contraction intensity. 
Sensors (Switzerland). 2020;20(6):1–44.

	7.	 Tkach D, Huang H, Kuiken T. Study of stability of time-domain features 
for electromyographic pattern recognition. J NeuroEngineering Rehabil. 
2010;7:1–3.

	8.	 Liu J, Zhang D, Sheng X, Zhu X. Quantification and solutions of arm 
movements effect on sEMG pattern recognition. Biomed Signal Process 
Control. 2014;13(1):189–97.

	9.	 Pan L, Zhang D, Jiang N, Sheng X, Zhu X. Improving robustness against 
electrode shift of high density EMG for myoelectric control through com-
mon spatial patterns. J Neuroeng Rehabil. 2015;12(1):110.

	10.	 Khushaba RN, Al-Timemy A, Kodagoda S, Nazarpour K. Combined influ-
ence of forearm orientation and muscular contraction on EMG pattern 
recognition. Expert Syst Appl. 2016;61:154–61.

	11.	 Adewuyi AA, Hargrove LJ, Kuiken TA. Resolving the effect of wrist posi-
tion on myoelectric pattern recognition control. J Neuroeng Rehabil. 
2017;14(1):1–11.

	12.	 Gazzoni M, Celadon N, Mastrapasqua D, Paleari M, Margaria V, Ariano 
P. Quantifying forearm muscle activity during wrist and finger move-
ments by means of multi-channel electromyography. PLoS ONE. 
2014;9(10):e109943.

	13.	 Celadon N, Dosen S, Paleari M, Farina D, Ariano P. Individual finger classi-
fication from surface EMG: influence of electrode set. Proc Annu Int Conf 
IEEE Eng Med Biol Soc EMBS. 2015;2015:7284–7.

	14.	 Hwang H-J, Hahne JM, Müller K-R. Channel selection for simultaneous 
and proportional myoelectric prosthesis control of multiple degrees-of-
freedom. J Neural Eng. 2014;11(5): 056008.

	15.	 Jiang N, Rehbaum H, Vujaklija I, Graimann B, Farina D. Intuitive, online, 
simultaneous, and proportional myoelectric control over two degrees-
of-freedom in upper limb amputees. IEEE Trans Neural Syst Rehabil Eng. 
2014;22(3):501–10.

	16.	 Atzori M, et al. Electromyography data for non-invasive naturally-con-
trolled robotic hand prostheses. Sci Data. 2014;1:1–13.

	17.	 Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recom-
mendations for SEMG sensors and sensor placement procedures. J 
Electromyogr Kinesiol. 2000;10(5):361–74.



Page 16 of 16Pelaez Murciego et al. Journal of NeuroEngineering and Rehabilitation           (2022) 19:78 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	18.	 Rojas-Martínez M, Mañanas MA, Alonso JF. High-density surface EMG 
maps from upper-arm and forearm muscles. J Neuroeng Rehabil. 
2012;9(1):1–17.

	19.	 Barsotti M, Dupan S, Vujaklija I, Došen S, Frisoli A, Farina D. Online finger 
control using high-density EMG and minimal training data for robotic 
applications. IEEE Robot Autom Lett. 2019;4(2):217–23.

	20.	 Muceli S, Jiang N, Farina D. Extracting signals robust to electrode 
number and shift for online simultaneous and proportional myoelectric 
control by factorization algorithms. IEEE Trans Neural Syst Rehabil Eng. 
2014;22(3):623–33.

	21.	 Dai C, Hu X. Extracting and classifying spatial muscle activation patterns 
in forearm flexor muscles using high-density electromyogram recordings. 
Int J Neural Syst. 2019;29(1):1850025.

	22.	 Popović-Bijelić A, Bijelić G, Jorgovanović N, Bojanić D, Popović MB, 
Popović DB. Multi-field surface electrode for selective electrical stimula-
tion. Artif Organs. 2005;29(6):448–52.

	23.	 Torah R et al. Introduction to EU-H2020 project WEARPLEX: wearable 
multiplexed biomedical electrodes. 2019.

	24.	 Geng Y, Zhang X, Zhang YT, Li G. A novel channel selection method for 
multiple motion classification using high-density electromyography. 
Biomed Eng Online. 2014;13(1):1–16.

	25.	 Adewuyi AA, Hargrove LJ, Kuiken TA. Evaluating eMg feature and classifier 
selection for application to partial-hand prosthesis control. Front Neuro-
robot. 2016;10(October):1–11.

	26.	 Li G, Schultz A, Kuiken T. Quantifying pattern recognition based myoe-
lectric control of multifunctional transradial prostheses. IEEE Trans Neural 
Syst Rehabil Eng. 2010;18:185.

	27.	 Wang D, Zhang X, Gao X, Chen X, Zhou P. Wavelet packet feature assess-
ment for high-density myoelectric pattern recognition and channel 
selection toward stroke rehabilitation. Front Neurol. 2016;7(NOV):1–10.

	28.	 Franzke AW, Kristoffersen MB, Jayaram V, Van Der Sluis CK, Murgia A, 
Bongers RM. Exploring the relationship between EMG feature space 
characteristics and control performance in machine learning myoelectric 
control. IEEE Trans Neural Syst Rehabil Eng. 2021;29:21–30.

	29.	 Scheme E, Englehart K. Training strategies for mitigating the effect of 
proportional control on classification in pattern recognition-based myoe-
lectric control. J Prosthetics Orthot. 2013;25(2):76–83.

	30.	 Leone F, et al. Simultaneous sEMg classification of hand/wrist gestures 
and forces. Front Neurorobot. 2019;13(June):1–15.

	31.	 Krasoulis A, Kyranou I, Erden MS, Nazarpour K, Vijayakumar S. Improved 
prosthetic hand control with concurrent use of myoelectric and inertial 
measurements. J Neuroeng Rehabil. 2017;14(1):1–14.

	32.	 Englehart K, Hudgins B. A robust, real-time control scheme for multifunc-
tion myoelectric control. IEEE Trans Biomed Eng. 2003;50(7):848–54.

	33.	 Basseville M. Distance measures for signal processing and pattern recog-
nition. Signal Process. 1989;18(4):349–69.

	34.	 Nilsson N, Håkansson B, Ortiz-Catalan M. Classification complexity in 
myoelectric pattern recognition. J Neuroeng Rehabil. 2017;14(1):1–18.

	35.	 Earley EJ, Hargrove LJ, Kuiken TA, Earley EJ. Dual window pattern recogni-
tion classifier for improved partial-hand prosthesis control. Front Neuro-
sci. 2016;10(February):1–12.

	36.	 Earley EJ, Hargrove LJ. The effect of wrist position and hand-grasp pattern 
on virtual prosthesis task performance. in Proceedings of the IEEE RAS 
and EMBS International Conference on Biomedical Robotics and Biome-
chatronics. 2016; 2016: 542–547.

	37.	 Kapelner T, Sartori M, Negro F, Farina D. Neuro-musculoskeletal mapping 
for man-machine interfacing. Sci Rep. 2020;10(1):1.

	38.	 Amsuess S, et al. Context-dependent upper limb prosthesis con-
trol for natural and robust use. IEEE Trans Neural Syst Rehabil Eng. 
2016;24(7):744–53.

	39.	 Pizzolato S, Tagliapietra L, Cognolato M, Reggiani M, Müller H, Atzori M. 
Comparison of six electromyography acquisition setups on hand move-
ment classification tasks. PLoS ONE. 2017;12(10):e0186132.

	40.	 Vujaklija I, Shalchyan V, Kamavuako EN, Jiang N, Marateb HR, Farina D. 
Online mapping of EMG signals into kinematics by autoencoding. J 
Neuroeng Rehabil. 2018;15(1):1–9.

	41.	 Côté-Allard U, et al. Deep learning for electromyographic hand gesture 
signal classification using transfer learning. IEEE Trans Neural Syst Rehabil 
Eng. 2019;27(4):760–71.

	42.	 Patel GK, Castellini C, Hahne JM, Farina D, Dosen S. A classification 
method for myoelectric control of hand prostheses inspired by muscle 
coordination. IEEE Trans Neural Syst Rehabil Eng. 2018;26(9):1745–55.

	43.	 Nizamis K, Rijken NHM, van Middelaar R, Neto J, Koopman BFJM, Sartori 
M. Characterization of forearm muscle activation in duchenne muscular 
dystrophy via high-density electromyography: a case study on the impli-
cations for myoelectric control. Front Neurol. 2020;11(April):1–14.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Reducing the number of EMG electrodes during online hand gesture classification with changing wrist positions
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Methods
	Participants
	Experimental setup
	Experimental protocol
	Data collection
	Recording procedure 
	Feature extraction 
	Channel selection 

	Online assessment

	Data analysis

	Results
	Impact of wrist position on classification complexity
	Offline performance
	Online performance

	Discussion
	The impact of wrist position in offline analysis
	Targeted placement improves performance during online classification

	Conclusion
	Acknowledgements
	References


