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Abstract 

Background:  Rehabilitation treatments and services are essential for the recovery of post-stroke patients’ functions; 
however, the increasing number of available therapies and the lack of consensus among outcome measures com-
promises the possibility to determine an appropriate level of evidence. Machine learning techniques for prognostic 
applications offer accurate and interpretable predictions, supporting the clinical decision for personalised treatment. 
The aim of this study is to develop and cross-validate predictive models for the functional prognosis of patients, high-
lighting the contributions of each predictor.

Methods:  A dataset of 278 post-stroke patients was used for the prediction of the class transition, obtained from the 
modified Barthel Index. Four classification algorithms were cross-validated and compared. On the best performing 
model on the validation set, an analysis of predictors contribution was conducted.

Results:  The Random Forest obtained the best overall results on the accuracy (76.2%), balanced accuracy (74.3%), 
sensitivity (0.80), and specificity (0.68). The combination of all the classification results on the test set, by weighted 
voting, reached 80.2% accuracy. The predictors analysis applied on the Support Vector Machine, showed that a good 
trunk control and communication level, and the absence of bedsores retain the major contribution in the prediction 
of a good functional outcome.

Conclusions:  Despite a more comprehensive assessment of the patients is needed, this work paves the way for the 
implementation of solutions for clinical decision support in the rehabilitation of post-stroke patients. Indeed, offering 
good prognostic accuracies for class transition and patient-wise view of the predictors contributions, it might help in 
a personalised optimisation of the patients’ rehabilitation path.
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Introduction
The World Health Organization defined stroke as: “rap-
idly developing clinical signs of focal (or global) distur-
bance of cerebral function, with symptoms lasting 24 h or 
longer or leading to death, with no apparent cause other 
than of vascular origin” [1]. In fact, stroke is the second 
leading cause of death worldwide [2] and despite the 
advances in healthcare contributing to the reduction of 
the mortality rate, millions of people have to deal with 
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physical and/or psychological burdens affecting their 
quality of life [3, 4].

Rehabilitation treatments and services are the key ele-
ments for the recovery of patients’ functions, independ-
ence, and quality of life [5]. However, given the increasing 
number of available therapies for rehabilitation, a lack of 
consensus among measures compromises the possibil-
ity to fully optimise the clinical outcomes and to deter-
mine an appropriate level of evidence for treatments. For 
this reason, an accurate and comprehensive assessment 
is essential, to deeply analyse the factors influencing 
patients’ recovery and support the clinical decision for 
personalised treatment.

The growing tendency toward evidence-based medi-
cine and data-driven rehabilitation promoted further 
interest in Clinical Decision Support Systems (CDSS) 
[6], showing among their functions and advantages the 
possibility to contain costs, bolster clinical workflow and 
efficacy, favour patients’ safety, support diagnosis, and 
promote treatment paths customisation. Within CDSS, 
knowledge-based and non-knowledge based systems can 
be distinguished, differentiating respectively in the use of 
evidence-based rules (determined on clinical experience 
or literature or patient-directed indications) or Artificial 
Intelligence (AI) algorithms. Despite the controversial 
aspects related to the reliability and safety of these sys-
tems, particularly important in clinical applications, the 
use of AI and Machine Learning (ML) for Intelligent 
Decision Support Systems is being widely explored [7].

For what concerns ML applications in post-stroke reha-
bilitation, research is still in a development phase, with 
extensively large numbers of studies evaluating longitu-
dinal associations among features and discharge or long-
term outcomes [8], and more limited studies dedicated to 
the development and validation of predictive models [9, 
10, 11]. However, cross-validated ML models for progno-
sis of functional level on stroke cohorts are indeed gener-
ating a growing interest [12]. The analysis of the literature 
reveals a great heterogeneity both in the selection of pre-
dictors, often limited to the available scales in use in the 
setting, and outcome measures [12].

One of the most recurrently addressed functional out-
comes is the Barthel Index (BI) scale [13], the gold stand-
ard tool for functional independence and basic daily 
living activities in the stroke population [14]. Among 
some examples in the literature, Sale et  al. [15] worked 
on 3 Support Vector Machine (SVM) models with nested 
cross-validation on a cohort of 55 sub-acute post-stroke 
patients, aiming at a prediction of the BI score at dis-
charge. The results indicated the great importance of the 
patients’ inflammatory and clinical descriptors at base-
line and that the specific stroke aetiology does not signifi-
cantly influence the results on the prediction (correlation 

coefficient: 0.75, Root Mean Square Error: 22.6, Mean 
Absolute Deviation Percentage: 84.0%). Lin et  al. [16] 
obtained 0.72 (0.04) and 0.68 (0.03) on the average 
(standard error) sensitivity and specificity respectively on 
a cross-validated SVM model predicting a three-classed 
discretised BI score.

We are fully convinced that, for a reliable application of 
CDSS, the assessment of the generalisability of the pro-
posed results is crucial. Such assessment, achieved by the 
implementation of proper validation approaches within 
the models, allows estimating how the solution will be 
accurate when processing new data. The same analy-
sis of the literature reveals a limited use of external [17, 
18, 19] or nested cross-validation approaches [15, 20], 
toward a more diffuse use of split-sample, bootstrap or 
non-repeated cross-validation methods. For this reason, 
the current study attempts to extend and generalise the 
results obtained by classical statistical analysis employ-
ing nested cross-validated ML algorithms, with a specific 
focus on the models’ interpretability.

Finally, as previously mentioned, a commonly raised 
issue concerning the ethical use of ML is the lack of inter-
pretability. Classical solutions are already known to pro-
vide model-based feature importance (e.g. regressions 
coefficients, Gini index in tree-based models, etc.…). 
Nevertheless, such rankings are built on the full dataset 
and are not patient-specific. In our work, we propose the 
use of Shapley values, via the Shapley Additive exPlana-
tions (SHAP, [21]) technique, allowing us to provide cli-
nicians with a patient-wise explanation of the prediction. 
A patient-specific interpretation analysis, explaining how 
single factors contribute to the outcome estimate for 
individual patients, would improve the quality of interac-
tion with the clinical team. Providing details on the pre-
dictors contributions in the outcome estimation for each 
patient can make the data-driven solution worth of the 
clinicians’ trust [22, 23].

In synthesis, our aim is to cross-validate on a retro-
spective database an interpretable model targeting the 
modified Barthel Index at discharge after intensive post-
stroke rehabilitation, analysing the contribution of each 
prognostic factor to the prediction through the use of the 
SHAP technique. This last analysis will give us the pos-
sibility to confirm the results obtained through statistics.

Methods
Sample
This study was based on data collected retrospectively 
on a cohort of 278 post-stroke patients admitted at two 
Intensive Rehabilitation Units (IRUs) of Fondazione 
Don Carlo Gnocchi (S. Maria alla Pineta, Massa, and 
S. Antonio Abate Hospital, Fivizzano) between January 
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2015 and August 2017. The inclusion criteria consid-
ered were the following:

•	 Diagnosis of ischemic or haemorrhagic stroke
•	 Age over 18 years
•	 Hospitalisation period between January 2015 and 

August 2017

The study was conducted following the Helsinki 
Declaration and it was approved by the local ethical 
committee (Comitato Etico Regionale per la Sperimen-
tazione Clinica della Toscana Area Vasta Nord-Ovest, 
Prot. N. 18178, 10/09/2020). The informed consent for 
the use of data was collected afterwards.

Each patient received at least three hours of rehabili-
tation per day. All patients underwent clinical obser-
vation, nurse management, and physiotherapy. The 
physiatrist prescribed speech/deglutologic training, 
neuropsychological treatment, and occupational ther-
apy, when needed, and psychological support was avail-
able for both patients and caregivers.

Data were collected at admission and discharge of 
intensive rehabilitation treatment, and the collected 
variables used in this study concerned demographics 
and clinical, functional and cognitive evaluations.

The Individual Rehabilitation Project, which included 
a standard assessment protocol, was defined according 
to the International Classification of Functioning, Dis-
ability and Health (ICF) [24], the SPREAD 2011 guide-
lines [25], and the IPER2 model [26].

Outcome
The functional recovery was the outcome considered 
in this work and it was measured as the class transi-
tion on the Modified Barthel Index (mBI) scale. More 
in detail, a categorisation of the mBI in six classes was 
performed both on the admission and discharge scale 
with the following cut-off values: 0–24, 25–49, 50–74, 
75–89, 90–99, 100 [27, 28]. In this study, for numeros-
ity reasons, classes corresponding to cut-offs of 90–99 
and 100 were collapsed, obtaining 5 different groups 
representing, in ascending order, total, severe, mod-
erate, mild and minimal disability levels (Fig.  1). The 
dichotomous outcome of class transition was obtained 
giving value 1 when the patients were experiencing a 
class improvement from admission to discharge.

Patients with admission mBI scores corresponding to 
the highest class were removed from the analysis, given 
their impossibility to transition toward a higher class 
that would necessarily lead to the attribution of a value 
of 0 in the outcome.

Predictors
For what concerns the independent variables, i.e. the 
candidate predictors for the selected outcome, the fol-
lowing features collected at admission were selected:

•	 Age
•	 Gender
•	 Bladder catheter presence
•	 Bedsores presence
•	 Stroke aetiology
•	 Comorbidity, assessed by the Cumulative Illness 

Rating Scale, CIRS (total score) [29]
•	 Disability in communication, independent from the 

cause (aphasia, dementia, deafness etc.…), assessed 
by Communication Disability Scale, SDC [30]

•	 Premorbid disability, assessed by the anamnestic 
Modified Rankin Scale, mRS [31]

•	 Deambulation, assessed by the Standardised Audit 
of Hip Fracture in Europe, SAHFE (total score) [32]

•	 Disability in Activities of Daily living, assessed by 
the Modified Barthel Index, mBI (total score) [13]

•	 Trunk control, measured by the Pain Trunk Con-
trol Test, TCT (total score categorised in four ordi-
nal groups based on the 25, 50 and 75 percentiles) 
[33]

•	 Pain, measured by a 10 points Numerical Rating 
Scale, NRS [34]

•	 Cognitive status, assessed by the Mini-Mental State 
Examination, MMSE (adjusted total score) [35]

All the listed features entered the model and under-
went descriptive analyses employing mean and stand-
ard deviation, or median and interquartile range when 
appropriate, for numerical variables and relative fre-
quencies for the categorical ones. Missing values on 
the features were treated via statistical imputation with 
median values or mode values for numerical or categor-
ical variables, respectively. The statistical imputation 
method was applied only to those variables for which 
the completeness percentage was at least 70%. Variables 

Fig. 1  Modified Barthel Index cut-off values and the associated 
disability levels



Page 4 of 11Campagnini et al. Journal of NeuroEngineering and Rehabilitation           (2022) 19:96 

completed in less than 70% of the records were dis-
carded due to exceeding number of missing values.

All the descriptive analyses of the features were per-
formed on IBM Corp. Released 2020. IBM SPSS Statistics 
for Windows, Version 27.0. Armonk, NY: IBM Corp.

Model implementation
ML methods were implemented in Python, specifically 
using Scikit-learn library [36]. After features normalisa-
tion, four different machine learning algorithms [Elas-
tic-Net regularized logistic regression, Support Vector 
Machine (SVM), Random Forest (RF), and k-Nearest 
Neighbours (kNN)] were trained, optimising on accu-
racy values, and validated with nested cross-validation. 
An inner fivefold cross-validation loop was deployed for 
hyper-parameters optimization, while an external ten-
fold loop was adopted for test set identification. Given 
the unbalanced distribution of the outcome classes, the 
models were optimised using the balanced  accuracy 
(BA) metric. For what concerns the models optimisation, 
in Table 1 reports the list of the parameters ranges over 
which each algorithm was optimised and it was done 
with the Optuna library.

The performances of the different models were com-
pared in terms of accuracy and BA, obtained with the fol-
lowing calculation:

with: TP: True positive values in the confusion matrix; 
TN: True negative values in the confusion matrix; FP: 

BA =

TP

(TP+FN )
+

TN

(TN+FP)

2

False positive values in the confusion matrix; FN: False 
negative values in the confusion matrix.

Moreover, their predictions were further combined 
in two different ways, obtaining two additional results. 
First, predictions of all models were concatenated and 
the mode of the predictions vector was considered as the 
final prediction (majority voting). Then, predictions pos-
terior probabilities of both classes were summed and the 
class with the highest cumulative posterior probability 
was chosen as the final prediction (weighted posterior vot-
ing) [37].

Further, on the best performing solution, chosen on 
inner loop results, the SHAP method was used for inter-
pretability analyses aiming at understanding the effects 
of the features on the outcome prediction on test-set 
patients. More specifically, the interpretability of the 
model is achieved through the calculation of the Shapley 
values from game theory, allowing for a better under-
standing of the contribution of each feature entering the 
model. Thus, given a specific feature instance, its Shap-
ley value will be calculated as the average value, among 
all possible feature coalitions, of the difference between 
the prediction of the model with and without the specific 
instance.

Results
From a total number of 278 patients, a final sample of 
273 patients was obtained after the removal of patients 
with the highest mBI class at admission (the median 
and IQR of the mBI scores of the removed patients was 
94 [IQR = 8]). In the selected sample, the median length 

Table 1  Description and ranges of optimisation of the parameters for each algorithm trained

Classifier Parameters (description) Values range

Logistic Regression c (inverse of the regularisation strength) 0.001–1000

l1_ratio (to select the weight of L1 and L2 penalties) 0.1–0.9

kNN n_neighbors (to select the number of neighbours) 10–50

weight (to select a uniform or distance-based weight on the samples) “uniform”, “distance”

algorithm (to select the type of algorithm to compute the nearest neighbours) “brute”, “ball-tree”, “kd_tree”

leaf_size (parameter selectable only for tree-based algorithms that affect its speed and memory) 5–100

p (power of the Minkowski metric for the distance calculation) 1–5

SVM gamma (kernel coefficient) 10–6–106

C (inverse of the regularisation strength) 10–6–106

kernel (kernel type to be used in the algorithm) “rbf”, “linear”

RF n_estimators (number of trees in the forest) 5–25

max_depth (maximum depth of the tree) 1–10

max_features (to select the number of features to consider when looking for the best split) 2–10

criterion (to select the function type to estimate the quality of the split) “gini”, “entropy”

min_samples_leaf (to select the minimum number of samples to have a leaf node) 3–10

min_samples_split (to select the minimum number of samples to split and internal node) 5–20

bootstrap (to activate or not the bootstrap approach when building the trees) “true”, “false”
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of stay was of 40 days (IQR = 15). A total of 181 (66.3%) 
patients experienced class transition, however, among 
the remaining 92 (33.7%), 66 patients had an improve-
ment on the continuous mBI value, 25 patients remained 
stable, and only 1 patient underwent a decrease in the 
mBI scale. All the identified variables were included in 
the analyses, as the percentage of missing values never 
exceed the 30% threshold, and the missing values pre-
sent were filled with median imputation. The descriptive 
analyses of the features fed into the model are shown in 
Table 2.

For all the classifiers a test set accuracy close to 75% on 
the class transition was obtained. Specifically, the kNN, 
SVM, RF and logistic regression obtained accuracies of 
77.3%, 74.4%, 76.2%, and 73.3%, respectively. Addition-
ally, the majority voting solution obtained 77.2% accu-
racy and the weighted one achieved the highest value 
with 79.1% (Fig. 2). For what concerns the performances 
in terms of BA, the kNN, SVM, RF and logistic regres-
sion obtained BAs of 69.5%, 72.6%, 74.3%, and 64.1%, 
respectively. The weighted and majority voting solutions 
reached 73.3% and 73.8%, respectively. Thus, when look-
ing at the BA results, the RF algorithm performed better 
on the test set.

Interpretability analysis was carried out on the best 
performing solution on the validation set (SVM, vali-
dation BA = 80.1%). The obtained results showed that 
higher values of TCT, bedsores absence, higher SDC 
values, mild disability level on the mRS, presence of 
ischemic stroke, and absence of bladder catheter strongly 
and positively impacted the class transition (Fig.  3A). 
Additionally, the patient-wise contribution of each fea-
ture is presented in Fig. 3B.

In Fig.  4, the contributions of each feature are repre-
sented for specific patients belonging to the test set. Both 
cases are predicted by the model as non-transitioning 
on the outcome; however, the first patient, on the top 
(panel A), is an example of the correctly classified out-
come, the bottom one (panel B) is an example of misclas-
sified. More specifically, on the abscissa of the graph, are 
represented the Shapley values and in bold the overall 
contribution of the features. In both cases, the overall 
contribution is lower than the “base value”, indicating the 
prediction toward a non-transition of the mBI class. The 
normalised values of the main contributing features are 
also presented.

Discussion
The need for the application of more generalizable and 
robust methods for outcomes prediction in the post-
stroke population has been advocated [8, 12, 38], in order 
to foster the implementation of CDSS within clinical 
routine. This aspect could have great importance in the 

rehabilitation context, both to improve patients’ out-
comes and to contain costs of care. About this point, 
on a cohort of 1197 stroke patients, it has been demon-
strated that the length of stay in the rehabilitation set-
ting, accounting for the 70% of the total stroke costs, is 
strongly associated with the initial stroke severity and 
the improvement in the recovery [39]. Thus, promoting 
the optimisation of the rehabilitation path, and improv-
ing the clinical recovery is the key target for data-driven 
solutions. In order to reach a full implementation of data-
driven based clinical decision support tools, it is crucial 
to develop robust and interpretable predictive models.

In this process, functional outcomes, such as the Modi-
fied Barthel Index scale, are a good first-step target, as 
they allow a comprehensive and higher-level evaluation 
of the patients’ independence [24]. In absence of a vali-
dated Minimal Clinical Important Difference on the mBI 
scale, the mBI in this study was dichotomised and con-
sidered as class transition, to determine a more clinically 
relevant functional recovery [28]. All the implemented 
classifiers obtained good accuracies, and the weighted 

Fig. 2  Confusion matrix of the different classifiers. For each 
algorithm, the actual and predicted values are presented in rows and 
columns, respectively
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results obtained through the sum of posterior probabili-
ties obtained the highest accuracy (79.1%) (Fig. 3).

To compare the results obtained by Lin et  al. [16] on 
the mBI categorised in three classes, sensitivity and spec-
ificity for the best classifier (RF) were obtained from the 
aggregated predictions performed on the test set folds. 
The results showed higher values both in terms of speci-
ficity (0.68 in the previous study and 0.68 in our case) 
and sensitivity (0.72 and 0.80 in our case). However, the 
comparison of these numbers should be done in light of 
the technical differences of the implemented solutions, 
specifically concerning the different outcome types and 
validation approaches. In fact, in our work, concerning 
the validation of the model, nested cross-validation was 
implemented for each classifier, similarly to what Sale 
et  al. [15] proposed, ensuring a more robust analysis of 
results generalisability. Indeed, it has been shown that 
exclusively relying on cross-validation accuracy for both 
model selection, hyper-parameter tuning and evaluation 
of the results can carry a significant bias on the predic-
tion (the so-called cross-validation bias [40]). Thus, an 
approach as nested cross-validation can ensure a reduc-
tion of the cross-validation bias, replicating error estima-
tions similar to those obtained with independent external 
validation [40, 41, 42].

In addition to the development and nested cross-vali-
dation of the classifiers, an analysis of the interpretability 
of the best performing model was also performed. More 
specifically, the analysis of interpretability is conducted 
through the application of game-theory approaches that 
evaluate the weight of each feature on the prediction in 
a patient-specific manner [43]. Up to our knowledge, 
the only paper addressing these methods on stroke pre-
dictive models is the paper from Qin et  al. [44], using 
prognostic models for the prediction of mortality. This 
technique gives an insight into the roles and mutual 
interactions among features and fosters the transla-
tional applicability of ML models in the clinical context. 
Indeed, the understanding of which aspects contribute 
to the given outcome prediction can empower the clini-
cal users of the information on when such solutions can 
be trustworthy. Especially in the case of the misclassified 
patients, the variables obtained from the patients’ assess-
ments, together with the factors contributing to the pre-
diction in the model, can make the clinician understand 
and further analyse these cases. Moreover, enhancing 
the concept of personalised treatment optimisation, the 
interpretability through the use of Shapley values allows 
for patient-specific analyses of features contributions. 
As an example, Fig. 4 is representing the specific feature 
contributions for two patients of the test-set, classified 

Table 2  Descriptive analyses of the sample, concerning the independent variables, collected at admission, and the outcome (class 
transition), collected at discharge

Predictors are presented according to the type of variables; numerical and categorical

CIRS Cumulative Illness Rating Scale, SDC Communication Disability Scale, mRS modified Rankin Scale, SAHFE Standardised Audit of Hip Fracture in Europe, mBI 
modified Barthel Index, TCT​ trunk control test, NRS Numerical Rating Scale, MMSE Mini-Mental State Examination

Variables Descriptives Mean 
(std)/Median [IQR] or 
frequencies

Predictors (collected at admission)

 Categorical features Gender (0: Male; 1: Female) 0: 134; 1:144

Bladder catheter (0: Absent; 1: Present) 0: 179; 1: 99

Pressure ulcers (0: Absent; 1: Present) 0: 233; 1: 45

Stroke aetiology (1: Ischemic; 2: Haemorrhagic; 3: Both) 1: 208; 2: 55; 3: 15

 Numerical features Age 79 [IQR = 14]

CIRS 22 [IQR = 6]

SDC 2.72 (1.35)

mRS (premorbid) 1 [IQR = 2]

SAHFE 5 [IQR = 0]

mBI 16 [IQR = 41]

TCT​ 36 [IQR = 87]

NRS 0.91 (2.23)

MMSE 22.00 [IQR = 8.25]

Outcome (collected at discharge)

Class transition (0: No transition; 1: Transition) 0: 186; 1: 92

mBI 57 [IQR = 62]
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Fig. 3  Contributions of the predictors entering the model with best validation accuracy (SVM classifier) on the class transition. In panel A, a bar plot 
of the contributions of each predictor to the two classes (in blue and red) is shown. In panel B, a beeswarm plot showing the Shapley values for 
each patient and feature-wise is presented. The colour of the dots is indicating how the sign of the feature is contributing to the prediction

Fig. 4  Examples of features contributions (normalised values) to the prediction for a patient correctly classified as transitioning (panel TP) and one 
as non-transitioning (panel TN) and a misclassified patient as transitioning (panel FP) and non-transitioning (panel FN). Details: Patient TP presented 
the following characteristics: Male, 62 years old, ischemic stroke, absence of catheter, absence of bedsores, CIRS = 27, mRS = 0, SDC = 4, TCT = 100, 
NRS = 4, MMSE = 18, SAHFE = 2, mBI at admission = 73, mBI at discharge = 94. Patient TN presented the following characteristics: Female, 87 years 
old, haemorrhagic stroke, presence of catheter, absence of bedsores, CIRS = 29, mRS = 1, SDC = 2, TCT = 0, NRS = 0, MMSE = 22, SAHFE = 5, mBI 
at admission = 0, mBI at discharge = 6. Patient FP presented the following characteristics: Male, 55 years old, ischemic stroke, absence of catheter, 
absence of bedsores, CIRS = 20, mRS = 0, SDC = 2, TCT = 61, NRS = 0, MMSE = 11, SAHFE = 4, mBI at admission = 42, mBI at discharge = 42. Patient 
FN presented the following characteristics: Female, 74 years old, ischemic stroke, presence of catheter, absence of bedsores, CIRS = 20, mRS = 0, 
SDC = 42, TCT = 0, NRS = 0, MMSE = 28, SAHFE = 5, mBI at admission = 15, mBI at discharge = 87
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as non-transitioning, specifically showing a correct clas-
sification (panel A) and misclassification (panel B) of the 
model. In panel B, it is visible how the clinical complexity 
of the patient, i.e. the presence of the bedsore, a global 
disability and the presence of the bladder catheter, is con-
tributing in the decision of the model toward a non-tran-
sition on the mBI class. This information can be crucial 
for the clinicians in order to select the proper rehabilita-
tion plan for the specific patient.

The analysis of the weights of factors with the SHAP 
method showed great importance on functional aspects 
such as the trunk control, communication level, disabil-
ity level, bladder catheter and the pressure ulcers, rather 
than the mBI level at admission (Fig. 3). Additionally, the 
type of stroke, among ischemic, haemorrhagic or both, 
was confirmed as a predictor. Specifically, the presence 
of haemorrhage, either alone or in combination with 
ischemic stroke type, resulted in a worse outcome, rep-
resenting a proxy of stroke severity at the entrance. This 
hypothesis was indeed confirmed by a statistically signifi-
cant difference in mBI total score at admission between 
the two groups, with lower values for those experiencing 
haemorrhage (Mann-Whitney test, p-value = 0.007).

The results on trunk control are in line with the litera-
ture, showing that trunk control is an essential predictor 
of functional outcomes and activities of daily living [16, 
45]. In fact, trunk control has a deep connection both 
with mobilisation tasks and the use of extremities. Trunk 
control is not only representing the ability to keep bal-
ance during the sitting and upright position but the capa-
bility to perform stabilisation and selectively control the 
movements of both the upper and lower trunk [46]. It is 
well known that the proximal stabilisation of the trunk is 
related to higher control of distal extremities and efficient 
walking is guaranteed by a proper rotation of the shoul-
ders with respect to the pelvis. Also, Lin et al. [16], spe-
cifically developing predictive models on a three-classes 
mBI, obtained the trunk control as one of the key features 
involved in recovery.

Also related to mobilisation, the presence of markers 
of clinical complexity, such as bedsores or bladder cath-
eter, was reported among the most significant predic-
tors in the model. Especially in the first year post-stroke, 
immobility-related complications can be very common 
and negatively influence the functional outcome and the 
independence in basic activities of daily living. A study 
from Sackley et  al. [47], on a cohort of 122 patients, 
reported 22% of patients suffered from bedsores within 
12  months of observation. The same study additionally 
reported through preliminary analyses how the number 
of complications is negatively correlated with the Barthel 
Index score at three months post-stroke.

Finally, the communication level was another impor-
tant aspect emerging from our results. In this work, the 
disability on the communication level was measured with 
the SDC scale. Despite the mBI scale does not directly 
measure communication components, it is noticeable 
the importance of communication levels on functional 
recovery. In the literature, the role of communication 
limitations, such as aphasia, is controversial [48, 49]. Like 
other measures of disability, SDC does not explain the 
specifics of the disorders (aphasia, apraxia, dysarthria, 
dementia, deafness) which, individually or in combina-
tion, can impair communication. The SDC evaluates the 
difficulties in communication as assessed by the clini-
cian after an anamnestic interview and clinical examina-
tion. It may be affected by a combination of neurological 
problems, being this way an indicator for an aggregate 
of problems and a severity index. Hence, a disability in 
communication is necessarily associated with a reduced 
comprehension of therapeutic instructions and may pre-
vent the development of the therapeutic relationship 
between the patient and the rehabilitation team, pos-
sibly delaying or compromising recovery [49]. Interest-
ingly, in our study, the beeswarm plot (Fig. 3) is showing 
how the levels from 0 to 2, connected to total to mod-
erate limitations in communicating, are predictive of an 
absence in class transition, whilst on the contrary levels 3 
and 4 (mild and absent communication limitations) have 
strong positive predictive value on the class transition, as 
already reported for severe brain injuries [50].

Despite the retrospective nature of the study, the pro-
posed ML methodology was validated through a nested 
cross-validation approach, ensuring high-level confi-
dence of the achieved results in terms of generalisation 
capability. The results obtained were promising and 
could contribute to first-step evidence for the realisa-
tion of interpretable CDSS. As already suggested for 
different conditions, addressing explanation techniques 
for the output of intensive post-acute rehabilitation [26, 
51] provided a data-driven focus on the importance of 
trunk control, bedsores and communication levels in the 
recovery of functional outcome of post-stroke patients 
at discharge from intensive rehabilitation. These aspects, 
which are in strong agreement with clinical evidence and 
practice [26, 51], further fostered the reliability and trust-
worthiness of the predictive model developed.

Limitations and implications for future research
Despite further strategies could be investigated from the 
technical point of view, (e.g. oversampling techniques), 
the selection of the variables should be mostly discussed 
and possibly improved in future research. Indeed, the 
retrospective nature of the study implied the use of a 
restricted selection of variables related to limited aspects 
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of the patients’ rehabilitation. For this reason, a prospec-
tive observational design was developed for a multifacto-
rial analysis of post-stroke patients’ characteristics [52] 
and their role for the prediction of functional recovery.

Additionally, the selection of the outcome measure 
deserves some additional comments. As it was stated 
within the introduction, the development of predictive 
models is the first step in the direction of tools for the 
clinical decision support. Thus, as a preliminary stage, we 
decided to address to a more generic outcome that could 
broadly quantify the functional outcome of the patient at 
discharge. For this reason, we selected the class transi-
tion on the Modified Barthel Index, over other measures 
such as the discharge score, the difference between dis-
charge and admission scores, efficiency, or effectiveness 
[53], due to its easier interpretation. We are aware some 
limitations may affect this choice, such as the fact that 
a linear relationship between the score and the clinical 
conditions of the patients is assumed, or that even a small 
change in the total score could lead to a transition, or the 
fact that transitions of one or more classes are equally 
considered. However, class transition was chosen since 
it provides and easily interpretable index of weather the 
rehabilitation stay is associated to a discrete change in 
the patient’s disability in activities of daily living. Addi-
tionally, the class transition was selected as a measure of 
a discrete change in the overall disability burden [27, 54], 
given that the Minimal Clinical Important Difference, 
MCID, has not been validated yet on the mBI with range 
0–100.

Conclusions
This study focused on the first-step analyses for the devel-
opment of computational solutions for the clinical decision 
support. More specifically, a predictive model for func-
tional outcome of post-stroke patients was developed and 
cross-validated obtaining good accuracies and patient-wise 
interpretable results of the features contributing to the pre-
diction. This work could be helpful for complementing the 
assessment of post-stroke patients in the rehabilitation care 
with evidence-based data and opening the way toward the 
development of solutions for an optimised and personal-
ised treatment.
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