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Abstract

Background: Brain—computer interfaces (BCl), initially designed to bypass the peripheral motor system to externally
control movement using brain signals, are additionally being utilized for motor rehabilitation in stroke and other
neurological disorders. Also called neurofeedback training, multiple approaches have been developed to link motor-
related cortical signals to assistive robotic or electrical stimulation devices during active motor training with variable,
but mostly positive, functional outcomes reported. Our specific research question for this scoping review was: for
persons with non-progressive neurological injuries who have the potential to improve voluntary motor control, which
mobile BCl-based neurofeedback methods demonstrate or are associated with improved motor outcomes for Neu-
rorehabilitation applications?

Methods: We searched PubMed, Web of Science, and Scopus databases with all steps from study selection to data
extraction performed independently by at least 2 individuals. Search terms included: brain machine or computer
interfaces, neurofeedback and motor; however, only studies requiring a motor attempt, versus motor imagery, were
retained. Data extraction included participant characteristics, study design details and motor outcomes.

Results: From 5109 papers, 139 full texts were reviewed with 23 unique studies identified. All utilized EEG and, except
for one, were on the stroke population. The most commonly reported functional outcomes were the Fugl-Meyer
Assessment (FMA; n = 13) and the Action Research Arm Test (ARAT: n = 6) which were then utilized to assess effec-
tiveness, evaluate design features, and correlate with training doses. Statistically and functionally significant pre-to
post training changes were seen in FMA, but not ARAT. Results did not differ between robotic and electrical stimula-
tion feedback paradigms. Notably, FMA outcomes were positively correlated with training dose.

Conclusion: This review on BCl-based neurofeedback training confirms previous findings of effectiveness in improv-
ing motor outcomes with some evidence of enhanced neuroplasticity in adults with stroke. Associative learning para-
digms have emerged more recently which may be particularly feasible and effective methods for Neurorehabilitation.
More clinical trials in pediatric and adult neurorehabilitation to refine methods and doses and to compare to other
evidence-based training strategies are warranted.
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Introduction
Neurofeedback training is a promising
neurorehabilitation strategy for improving motor

function that has emerged from the Brain Computer
Interface (BCI) field. In contrast to bypassing voluntary
motor control by linking the brain to a wearable device
that provides movement, BCI-mediated neurofeedback
training (BCI-NFT) in a rehabilitation context aims to
harness and link brain activity during real or imagined
movement to strengthen adaptive neural connections
and thereby enhance motor capabilities. BCI applications
were initially developed to enable individuals who are
virtually unable to communicate or perform motor
functional activities, e.g. those with locked in syndrome
or Amyotrophic Lateral Sclerosis, to generate reliable
brain activation signals representing their intent in order
to control assistive technology. While the possibilities of
exploiting brain control of devices are remarkable, the
current reality is that these systems are mainly capable
of producing a reliable signal to control an external
device such as a wearable exoskeleton (e.g. to take a step)
[1] or to discriminate among a limited group of preset
options (e.g. to move the right or left hand) [2], and often
require extensive training for proficiency that not all
who attempt this can achieve [3]. Advances in collection,
processing and identification or classification of brain
signals associated with motor intent gleaned from these
assistive or substitutive BCI technologies have led to the
design of rehabilitative or restorative BCIs to provide
a means of motor training for those with some degree
of, or potential for, voluntary motor ability. BCI-NFT
may be a particularly effective approach for individuals
with neurological disorders who have limited to no
residual motor activity [4, 5] and may not yet be able to
benefit from existing effective rehabilitation strategies
that require a baseline amount of active movement [5].
These patients, however, can still imagine or attempt to
move and the associated brain activity can be used as the
control command for BCI-NFT systems.

While BCI-NFT paradigms have been an active area
of research in neurorehabilitation for approximately
the last 15 years, neurofeedback has been utilized for
decades for many clinical applications such as the
treatment of attention deficit hyperactivity disorder [6],
anxiety [7], depression [8], schizophrenia [9], autism
spectrum disorder [10], drug addiction [11], insomnia
[12], seizures [13], and pain management [14], among
others. Neurofeedback is defined broadly as “a kind of

biofeedback, which teaches self-control of brain functions
to subjects by measuring brain waves and providing a
feedback signal” [15]. Generally, when treating different
behavioral conditions, specific brain signals are identified
as targets for modulation in a specified direction, e.g. up
or down regulation, with the intended training-induced
change in brain activity presumed to be linked directly
to a positive change in the target behavior. Since most
individuals have little if any inherent awareness of their
success in modulating brain activity, neurofeedback
training involves pairing their performance with an
external, often visual, cue that gives them feedback on
their success [16]. Based on the principle of operant
conditioning, individuals gradually learn to reinforce
the modulations that were deemed most successful and
eliminate those that were less or unsuccessful. While
some studies demonstrate that neurofeedback can be
effective in certain disorders, the preponderance of
evidence is inconsistent and neurofeedback for most
applications is still largely considered an alternative
treatment [15].

In neurorehabilitation, external neuromodulation
using transcranial magnetic stimulation (TMS) or
transcranial direct current stimulation (tDCS) paired
with motor training has demonstrated effectiveness in
stroke and cerebral palsy (CP) [17, 18]. Also a form of
neuromodulation, BCI-NFT instead requires the user
to activate their own neural pathways. This can be done
using either a non-specific or specific approach. An
example of a non-specific approach would be to identify
any strategy that successfully modulates the desired
rhythm and then use that conditioned response to control
a cursor on a computer or a device, which is the classic
approach to neurofeedback training. Although this type
of neurofeedback, may activate central nervous system
pathways, the induced plasticity is usually widespread
and not specific to the target circuit and may also require
much longer training [19, 20]. A second more task-
specific approach would be to think about or perform
a target movement or movements which then couples
movement-related  brain-states to time-correlated
sensory feedback; i.e. a component of the brain signal
produced by the motor intention or attempt is extracted
in real-time and used to activate an assistive device.
This paradigm, also referred to as associative learning,
aims to both augment the voluntary motor response
and reinforce the link between motor function and the
brain if the sensory feedback is appropriately timed to



Behboodi et al. Journal of NeuroEngineering and Rehabilitation

arrive during the most active state of brain activation.
Furthermore, this type of training has the potential to
increase the intensity or efficiency of rehabilitation by
providing high quality repetitive motion and augmented
feedback [21]. Therefore, BCI-NFT systems are being
increasingly deployed for motor training [22-27].
These are also reaching a level of technological maturity
whereby they can provide faster and more reliable
feedback for rehabilitation applications [28-32].

The brain state used for generating the BCI generated
feedback for motor training is either motor imagery
(MI), i.e. imagining the target motion without execution,
or motor attempt (MA), which may or may not result
in overt movement depending on user’s capability.
MI continues to be a commonly utilized option for
the control of BCI-NFT systems [24, 25, 27, 33-35].
However, with MI, patients may have to actively suppress
the movement of the target limb while imagining the
movement, and it requires learning and prolonged
concentration which might be difficult for very young
or cognitively challenged individuals. A recent study
in children with CP [36] used age-specific metaphoric
instructions to simplify the MI task for the participants,
indicating that this is possible; however, it has also been
shown that even some healthy adults may not be able to
learn how to control BCI systems using MI [37-39]. It is
clearly more natural to attempt the movement as well as
more verifiable [40]. When the goal of the neurofeedback
therapy is strengthening or reestablishing a lost motor
function, controlling the BCI system by attempting to
move the target limb, rather than using MI, may improve
outcomes because MA maximizes the similarities
between the brain-state used to control the BCI and the
functional task. Therefore, the plasticity induced by the
training might be more pronounced and more likely to
persist beyond the therapy period [41]. A recent review
[42] concluded that using MA for BCI-NFT may be more
effective than using MI (p=0.07) based on a comparison
of two MA studies and seven MI studies. Although the
sensorimotor loop is disrupted in patients with lost
or limited voluntary movements due to neurological
disorders, some accessible brain pathways may still exist
[43]. Thus, rather than learning an effective MI strategy,
MA appears to be a better approach where possible for
motor rehabilitation to restore more normal timing of
motor preparation, execution, and resultant peripheral
input from the muscle effectors [43, 44] and to potentially
form a stronger or new sensorimotor loop [4, 22].

Several narrative reviews have been published in
recent years which discuss clinical outcomes, underlying
mechanisms, or technical advances and challenges
across a broad range of BCI and/or neurofeedback
applications, many of which also mention their use for
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motor rehabilitation [21, 30, 45-48]. Other reviews
have focused specifically on the effects of BCI-NFT in
motor rehabilitation; including four systematic reviews
addressing the stroke population. The review by Carvalho
et al. focused on upper limb recovery and only included
randomized controlled trials (RCTs) that reported at
least one clinical outcome (n = 9 studies) [49]. Similarly,
Bai et al. performed a meta-analysis on the effects of
BCI-NFT on the upper limbs from 33 studies including
18 single-group studies and 15 with a comparison
group [42]. Baniqued et al. reviewed 30 studies on BCI-
robots for hand rehabilitation, 19 of which were related
to preclinical development of these systems and 11 of
which were on their use in stroke [2]. Among these
systematic reviews, the meta-analysis by Cervera et al.
[50] is the only one that reviewed the effect of BCI-NFT
on both upper and lower limbs in the stroke population.
Studies which used BCI for both control and intervention
groups were excluded from their review, resulting in
nine RCTs included in this review. Both of the meta-
analyses by Cervera et al. [50] and Bai et al. [42] focused
on the Fugl-Meyer Assessment (FMA) score, showing
positive trends in favor of the BCI-NFT group. Bai et al.
showed a medium effect size favoring BCI-NFT for
improving upper extremity function after intervention,
while the long-term effects reported in five studies were
not significant [42]. In Cervera et al. the standardized
mean differences in the FMA scores were higher in
neurofeedback versus control groups, although the
between group differences did not reach the threshold of
clinical significance [50].

Although not definitive, the effectiveness of BCI-NFT
in stroke as reported in these meta-analyses generally
appears promising. However, it is also notable that results
across studies within these reviews varied considerably
as did the methods, with no one method touted as
superior. The aim of this review, therefore, is to evaluate
which BCI-NFT methods appear to be associated with
greater or poorer effectiveness in improving motor
skills, to potentially identify the key components for
successful interventions. Since our primary focus is
on methodological differences and their associations
with outcomes, rather than clinical effectiveness per se,
we decided to perform a scoping review. In contrast to
previous reviews, here we chose to only include those
studies where the participants were instructed to attempt
the target movement (MA), not simply to imagine it. We
also limited our focus to those using non-invasive brain
imaging techniques such as EEG and functional near-
infrared spectroscopy (fNIRS) because these are far more
accessible in clinical practice and more ecologically valid
since everyday movements can be practiced in upright
and more naturalistic settings. We aimed to include all
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studies on populations with neurological conditions that
are non-progressive and therefore have the potential to
respond to rehabilitation strategies aiming to improve
motor capabilities (e.g. adults and children post-stroke
or with cerebral palsy, among others). The ultimate goal
of this review is to provide recommendations to the field
of neurorehabilitation on the neurofeedback techniques
and protocols most likely to improve the outcome of
motor rehabilitation in those with non-degenerative
neurological disorders for future implementation into
therapy settings.

Methods

This scoping review was registered in the Open Science
Framework database (registration ID: DOI 10.17605/
OSEIO/2KHRX). and was conducted according to
the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses extension for Scoping Reviews
(PRISMA-ScR) Checklist [51]. Our research question
was formulated for scoping reviews to include the
intended Population, Concept, and Context (PCC) [52]:
For persons with non-progressive neurological injuries
who have the potential to improve their voluntary
motor control (Population), which non-invasive
mobile BCI-NFT methods, if any, demonstrate or are
associated with improved motor outcomes (Concept) for
Neurorehabilitation applications (Context)?

Search strategy

A medical librarian at the National Institutes of Health
was consulted to develop the optimal search strategy
to address our research question. A title and abstract
keyword search was conducted utilizing the following
search terms and general strategy adapted as needed
for the PubMed, Web of Science, and Scopus databases:
“motor” AND “Brain Computer Interface” OR “BCI”
OR Neurofeedback” OR “BMI” OR “EEG biofeedback’.
Only articles published in the English language were
considered. There was no restriction on the date of
publication with April 15, 2021 as the final search date.

Eligibility criteria

All clinical studies on the application of non-invasive,
mobile (i.e. EEG or fNIRS) BCI-NFT for motor
neurorehabilitation of individuals (children or adults)
with non-progressive neurological injuries (e.g., stroke
or CP) were included. We excluded studies that only
enrolled healthy participants or those with progressive
neurological conditions such as Parkinson’s Disease or
Amyotrophic Lateral Sclerosis. Studies using Magnetic
Resonance Imaging (MRI) or magnetoencephalography
(MEG) to deliver neurofeedback were excluded.
Systematic or scoping reviews were not included;
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however, reference lists of relevant reviews were scanned
for studies that may not have been captured in the
initial search. Further criteria for inclusion were that the
interventions had to utilize a feature of the participants’
cortical activity within the training session, and that
participants had to be attempting to perform a voluntary
motor task. Studies in which participants were using
motor imagery or action observation to generate the
brain activation signals used for neurofeedback were
excluded. Finally, since the goal was to examine how
methodological differences might affect motor outcomes,
only studies that reported these measures were included.

Selection criteria and data charting

Duplicates were initially eliminated within ENDNOTE.
Titles and abstracts were screened independently in
EndNote by two authors (AB, DD) to remove additional
duplicates and to identify studies that potentially met the
inclusion criteria. Disagreements on which articles to
retain were resolved through discussion. Full texts of all
potentially eligible papers were independently assessed
by the same two review authors, with disagreements
again resolved through discussion. Reference lists of
the final set of papers, as well as of relevant systematic
reviews, were also scanned to ensure that no studies were
missed. Then, three authors (AB, VH, WL) extracted
data independently from the final group of studies
satisfying all inclusion and exclusion criteria, with each
assigned a group of articles to extract data from using
a comprehensive pre-piloted data extraction form,
in Google Sheets format, and a group to verify data
extracted by another author.

Data items

Extracted information included: study population and
participant demographics; number of participants
in intervention and control conditions, motor task
performed during BCI-NFT and whether it was an upper
limb or lower limb task, control condition, dosage of BCI-
NFT, cortical activity feature(s) extracted to generate
the feedback, cortical region(s) the feature was selected
from, signal processing technique used for extracting
the feature(s) and generating feedback, feedback timing,
type of feedback (e.g., visual, robotic, functional electrical
stimulation), whether any other additional training (e.
g., conventional physical therapy) was provided before
and/or after BCI-NFT , and finally, all reported motor
outcome measures.

Statistical analysis
Where possible, mean differences in motor outcome
measures across specific feature categories (e.g. feedback
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types) were analyzed using a General Linear Model
(GLM) or independent t-tests. Pearson correlation
procedures were also used to relate specific training
aspects or features to motor outcomes (p<0.05 for all
analyses).

Results

Our search yielded 8707 citations across all databases
(see Fig. 1 for details of the search result and entire
screening process). After eliminating duplicates, 5190
unique articles remained. After title and abstract screen-
ing, 5051 articles were excluded. The full texts of the
remaining 139 studies were reviewed with respect to
inclusion-exclusion criteria. The criterion requiring the
closest examination and generating the most discus-
sion was whether participants were asked to attempt or
imagine movement to elicit neurofeedback, regardless
of whether or not they were able to perform the target
movement on enrollment.
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A total of 30 studies met all criteria and their data
were extracted. During this process, it became apparent
that some studies were from the same research
group so were examined closely for any duplication
of participants. Seven studies [41, 53-58] were
conducted under the same clinical trial (registered
at ClinicalTrails.gov, # NCT02098265) and used the
same pool of subjects which varied by study; therefore,
the most recent article with the most inclusive set of
participants was retained, with the others excluded to
avoid duplication. Similarly, outcome data from the
original trial by Ramos-Murguialday et al. [4] were
repeated to some extent in their long term follow-up
study on 28 of the 30 original participants [5], the latter
of which was therefore excluded. In contrast, although
similar protocols were utilized by Cisotto et al. [59] and
Silvoni et al. [60], both were included in the final list of
studies because participants were unique to each study.
The 2016 and 2019 RCTs by Mrachacz-Kersting et al.
[26, 61] also used similar protocols but participants

? PubMed Web of Science Scopus
o (n=2,698) (n=4,008) (n=2,000)
ks
=
Q
z
Research articles identified
—
(n=8,707)
| Record removed before screening:
"] duplicates (n=3,517)
t‘::o \ 4
'g Title and abstract review
g (n=5,190) Record excluded (n=5,051) :
& Not for motor rehabilitation (2,482)
| Not clinical trials (1,400)
"] No cortical feedback (308)
| Immobile brain imaging (208)
v No motor outcome (653)
Full text assessed for
- eligibility (n=139)
£ Record excluded (n=109):
..:_:o »| Healthy participants (4)
e \ 4 No movement attempt (105)
Studies met inclusion
exclusion criteria (n=30)
—
o | Articles with duplicate participants
s excluded (7)
= A 4
=
£ Studies included in the
review (n=23)
Fig. 1 The PRISMA flow chart of eligibility assessment based on inclusion/exclusion criteria
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differed in the two studies, so both were included. The
level of evidence, as defined by Sackett [62], varied
across studies with none in Level I, six in Level II (small
RCT) [4, 23, 26, 41, 63, 64], two in Level III [22, 61],
eight in Level IV [59, 65-71], and seven in Level V (case
study) [60, 72-77].

Participants

Table 1 provides a summary of details extracted from all
included studies. A total of 223 individuals participated
across studies; 153 of whom were in the BCI-NFT
condition. All participants were adults, with 153 males
and 70 females. Except for one study, on 12 participants
with incomplete spinal cord injury, seven of whom
were in the experimental group [64], the rest were on
the stroke population. Nineteen studies only included
participants more than 6 months post-stroke, and three
studies, all RCTs, only focused on participants within
the first 6 months of stroke; with 24 [26], 14 [23], and 20
participants [63]. Remsik et al., included four participants
less than 6 months and 17 more than 6 months post-
stroke [41]. Thus, in all there were 149 participants more
than 6 months post stroke and 62 participants less than 6
months post stroke with 113 and 33 of those, respectively,
participating in the BCI-NFT.

Intervention

Motor task

The motor tasks targeted mostly involved the upper limb.
Only four studies targeted the lower limbs [26, 61, 70,
77], all focused on ankle dorsiflexion. The upper limb
motor tasks included shoulder ab/adduction (n = 1)
[63], reaching (n = 5) [59, 60, 65, 68, 74], grasping (n =
5) [4, 41, 64, 66, 67], reaching and grasping (n = 2) [71,
73], hand and wrist extension (n = 2) [22, 23], and finger
extension (n = 4) [69, 72, 75, 76].

Comparison conditions

Eight studies [4, 22, 23, 26, 41, 61, 63, 64] had a control
or comparison condition, six of which were RCTs [4, 23,
26, 41, 63, 64]. The RCT by Remsik et al. used a delayed
intervention period from 8 to 10 weeks as the control
condition with nine participants then crossing over to
the neurofeedback group [41]. In Chen et al., the control
group attempted the motor task without BCI feedback
[23]. In Jang et al. Functional electrical stimulation (FES)
was delivered intermittently and was not driven by neural
activity in controls with the target muscle group the same
as for the experimental group [63]. In the Mrachacz-
Kersting et al. 2019 RCT, both neurofeedback and
control groups received electrical stimulation activated
by the same cue-based BCI system, The intensity of
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stimulation in the control group, however, was much
lower (%70 of motor threshold) than in the experimental
group who received electrical stimulation at a functional
level (at or above the motor threshold) [26]. In Ramos-
Murguialday et al., sham robotic assistance, i.e., random
movement of the robot not linked to brain activity,
was the control [4]. For the cohort studies, [22, 61,
64] Mrachacz-Kersting et al. and Biasiucci et al. used
“sham” FES, delivered randomly and not driven by neural
activity, as the comparison [22, 61], whereas in Osuagwu
et al. FES was delivered at set time intervals in the
comparison condition [64]. Notably, Mrachacz-Kersting
et al. changed the control condition from sham FES to
low-intensity ES in their 2019 RCT. In two case reports
by Takahashi et al. [77] and Ono et al. [76], subjects
participated in both the neurofeedback (BCI driven FES)
and comparison conditions (FES during motor attempt).

Dosage

The number of training sessions varied from 1 to 80
sessions, with six studies below 10 sessions [60, 61, 68, 71,
72, 77], 11 between 10 to 15 sessions [22, 23, 26, 41, 59,
65-67, 69, 70, 75], and six with more than 15 sessions [4,
63, 64, 73, 74, 76]. It is noteworthy that Takahashi et al.
[77] and Mrachacz-Kersting et al. [61] demonstrated
improvements after only one session of BCI-NFT.

Feedback type

Visual, robotic, or functional electrical stimulation were
used during the motor training to augment voluntary
effort and as additional sensory feedback. Fourteen
studies used functional electrical stimulation (FES) alone
(n = 10) [22, 26, 61, 63, 68, 70, 73-76], or combined
with visual feedback (n = 4) [41, 64, 72, 77]. In a unique
approach, Remsik et al. electrically stimulated the
tongue along with visual and FES feedback to potentially
enhance sensory input to cortical regions [41]. Robotic
devices were used to provide proprioceptive feedback as
well as motor assistance in seven studies, combined with
visual feedback (n = 4) [59, 60, 66, 67] or alone in three
studies [4, 23, 65]. Visual feedback was used alone in two
studies [69, 71].

Neurofeedback paradigms

The summary of the experimental conditions and signal
processing details can be found in Table 2. EEG was used
in all 23 studies, likely due to its exceptional temporal
resolution that enables this type of application. All stud-
ies had a calibration phase prior to training during which
subjects attempted to execute the target task or to rest
while EEG signals were recorded. These data were used
to either identify the threshold between rest and motion
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in the selected features (n = 8) [4, 26, 61, 63, 71, 73, 74,
77], or to train a classifier (n = 15) using machine learn-
ing algorithms such as the linear classifier of BCI2000
software package (n = 5) [41, 59, 60, 69, 72], linear discri-
minant analysis (LDA; n = 5) [23, 64, 70, 75, 76], support
vector machine (SVM; n = 3) [65-67], Gaussian classi-
fier [22], or Logistic Regression Classifier [68]. During
BCI-NFT, the trained classifiers or thresholds were used
to detect when the brain activation indicated the motor
attempt.

The BCI2000 software package, used in 5 studies,
is a commercially available neurofeedback package
which streamlines EEG processing by using the highest
explained variance (r2) between the motor attempt and
rest condition across all electrodes of interest and target
brainwave frequency bins, i.e., a two-dimensional feature
space. The electrodes (e.g., C3 and C4) and frequency bins
(e.g., 10-12 Hz), that resulted in the highest r2 for each
participant were selected and then fed into the BCI2000
linear classifier to generate the feedback command. In
studies that used classifiers, a high number of electrodes,
12-47, were typically used to train the classifier. In
studies not using BCI2000, a feature space was generated
similarly with electrodes as one dimension and a range of
frequency bins, often 2 or 3 Hz bins within the 8—30 Hz
frequency band, as the other dimension for training the
classifier, e.g., LDA or SVM. A subject-specific subset of
this space would be used during the online classification
for BCI detection of movement attempt.

In 17 studies, detection of the motor attempt triggered
the feedback without controlling its intensity (go-no
go) [4, 22, 23, 26, 41, 61, 63-65, 68, 70-76]. In two of
those, Osuagwu et al. [64] and Remsik et al. [41], which
had both proprioceptive and visual feedback, the visual
feedback was modulated in a finite number of steps based
on each BCI detection result. In three other studies [66,
67, 77], however, proprioceptive feedback intensity was
increased in a finite number of steps, and in three studies,
two proprioceptive [59, 60] and one visual feedback [69],
feedback intensity was proportional to the brain signal
intensity.

In Cisotto et al. [59] and Silvoni et al. [60] a robot
provided assistive force proportional to ERD power of
the selected subject-specific frequency band and, to
promote concentration, visual feedback was provided
based on the time it took participants to reach the target.
In Norman et al. the brightness of a graphical object on
the screen would change proportional to ERD power in
the subject-specific frequency range [69]. In 2018 and
2020 studies by Chowdhury et al. [66, 67], detection of
the hand opening and closing attempt, every 500 ms,
triggered a robotic three-finger exoskeleton to open
one step. Matching visualization of virtual hand motion

(2022) 19:104
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was presented synchronously. Osuagwu et al. used a
novel feedback strategy that enabled experimenters to
adjust the difficulty level of the neurofeedback training
[64] by adjusting the number of consecutive movement
detections required for triggering FES.

Here almost all of the included studies except
Mrachacz-Kersting et al. 2016 [61] and 2019 [26] and
Bhagat et al. [65], which used MRCP (0.1-1 and 0.05—
10 Hz, respectively) included frequencies in the Mu
and/or Beta bands. The frequency ranges considered to
be Mu and Beta bands differed slightly across studies
and were in some cases truncated for the application.
The majority of them (n = 12) included both Mu and
Beta bands, referred to by some as the sensorimotor
rhythms, or portions of each [22, 23, 59, 64, 66—68, 70—
72,75, 76]. Three studies only used the Mu band[4, 41,
73], four only used the Beta band [60, 69, 74, 77], and
Jang et al. [63] used a combination of the Theta (47
Hz) and Beta bands.

Unlike classic neurofeedback studies as well as the
many studies included here which used an operant
conditioning paradigm, Mrachacz-Kersting et al. [26,
61] deployed an associative learning paradigm instead.
They used the timing of the peak negativity, also referred
to as contingent negative variation, in movement-
related cortical potentials (MRCP), in the 0.05-10 Hz
range of the EEG, to predict a dorsiflexion attempt and
trigger FES assistance to the tibialis anterior muscle
in a cue-based BCI-NFT system [78]. MRCP have
several well-recognized and distinct features, including
peak negativity, an electrical potential associated with
movement planning around 500 ms before the motion
[21]. Therefore, using this feature one can predict the
movement, whereas in methods using ERD, detection
usually occurs with the motor attempt, which may delay
the triggering of a device. Predicting the movement
as accurately as possible is a critical component of
associative learning.

However, the protocol used in their studies [26, 61] also
deviated from others in that the mean timing of the peak
negativity was estimated in advance of the intervention
and this fixed value was used during training, rather than
real-time detection. An argument could be made that
perhaps these studies should not have been included here
because a feature of the brain activation was not utilized
during the training sessions. However, we decided to
retain them because the timing used in training was
informed by individual brain data with the goal to
improve the paradigm and these may offer a feasible and
possibly more reliable solution than some alternatives for
motor attempt paradigms, although the degree to which
this improved detection was not assessed.
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Other studies utilized other solutions in an effort
to increase detection accuracy when MRCP are used.
Ibanez et al. used two classifiers, Naive Bayes and Match
filter in the frequency and time domains, respectively,
and combined results using a Logistic Regression Clas-
sifier to detect the reaching and grasping attempt and
thereby trigger FES assistance to the anterior deltoids,
triceps and wrist extensor muscles [68]. The frequency-
domain classifier, Naive Bayes, used ERD power in the
6—-30 Hz frequency range to classify the motor attempt;
the match filter used 0-1 Hz EEG signals , i.e., MRCP, to
predict a motor attempt in a self-paced BCL

Bhagat et al. [65] and Chowdhury et al. [67] used elec-
tromyography (EMG) in combination with EEG to acti-
vate the feedback. Bhagat et al. trained an SVM classifier
in the time domain using low frequency MRCP signals,
0.01 to 1 Hz, to detect motion; this detection, if corrobo-
rated by EMG activation, triggered the robotic assistive
force [65]. Chowdhury et al. used four EMG channels
for detection along with 12 EEG electrodes to create
their feature space [67]. Only EEG-EMG channel pairs
that showed a statistically significant correlation were
selected as features for training an SVM classifier and
thereby activating the feedback.

Outcome analysis

Thirteen studies reported the mean FMA difference in
the experimental group, pre to post intervention, rang-
ing from 0.77 to 17.0 across studies, six of which showed
significant improvements (see Table 3). The mean change
across the 13 studies was 6.53 £ 4.46. Four studies addi-
tionally reported the FMA pre-post change score differ-
ence between the control and experimental groups [4,
22, 23, 26], two of which showed significantly greater
improvements in the neurofeedback group [22, 26].
Mean change across the three studies was 4.06 £ 0.57.
The mean Action Research Arm Test (ARAT) change
score from pre to post intervention within the experi-
mental group, reported in six studies [41, 65-67, 73, 74],
ranged from 1.3 to 23.8 with the ARAT improvement
significant in three [65—-67]. Mean change across the six
studies was 8.34 % 9.00.

Several other motor outcomes were reported less fre-
quently across studies. Grip strength (GS) was reported
in five studies. Mean GS improvement, pre to post
intervention, ranged from 3.87 kg [41] to 9.83 kg [67],
both of which were statistically significant, p = 0.046
and p < 0.005, respectively. Mean GS post intervention
increases were not significant in the other three studies
[65, 66, 72]. Muscle spasticity was assessed in five stud-
ies using the Modified Ashworth Scale (MAS); however,
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no statistically significant changes were reported. Active
dorsiflexion range of motion (ROM) improved in two
studies [70, 77]: in McCrimmon et al., 5 of 9 participants
showed an increase of 2.5° or greater with a significant
positive linear trend from pre to post intervention for the
group as a whole (p < 0.01), and in Takahashi et al., the
mean change of 8.7° was also significant (p < 0.001) [77].
Mean active wrist extension ROM was improved by 16.8°
for the BCI-FES group versus 3.4° for the FES group in
the study by Osuagwu et al.; however, no statistical com-
parison was reported [64].

Mean Stroke Impact Scale (SIS) improvements of
5.4 [41], 10.5 [68] and 21.3 [71] were reported in three
studies, none of which were significant. Despite no
significant changes immediately post intervention,
Remsik et al. [41] showed a significant SIS improvement
of 6.2 (p = 0.05) at follow-up. A small, statistically
significant improvement in gait speed of 0.08 m/s (p =
0.007) was reported only in the neurofeedback group
by Mrachacz-Kersting et al. (2016), as measured by the
10 Meter Walk Test (10mWT) after only 20 min (30
pairs of MA and associative feedback) of neurofeedback
training [61]. McCrimmon et al. in contrast showed
no significant improvement in walking speed in the
neurofeedback group [70] after 12 training sessions; the
linear trend from pre to post intervention, however, was
significantly positive. Mrachacz-Kersting et al. (2019)
found significant 10mW'T improvements in the control
and neurofeedback groups (both p < 0.008) with no
statistical between group difference [26]. Further, they
reported that five participants in the experimental group
and three in the control group who could not walk pre-
intervention were able to walk after 12 training sessions
[26]. Significant 10mW T improvements were also found
in the control group with no between group difference.
All other motor outcomes reported in each study are
listed in Table 1. The trends for these outcomes were
mostly positive or unchanged except for reaction time,
which worsened significantly after training [59, 60].

Statistical analyses

Independent t-tests were conducted to assess the effect
of feedback type (robotic: n = 3, and FES: n = 9) and
co-interventions (yes or no) on FMA differences within
experimental groups in the 13 studies which reported
these data. Despite higher mean FMA values for FES
compared to robotic feedback (7.6 £ 4.8 vs 5.3 +2.8;p =
0.47), outcomes were not significantly better. Conversely,
the ARAT mean difference was higher for robotic (n = 3)
vs FES feedback (n = 3) (11.59 + 10.53 vs 5.10 + 7.34),
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Table 3 Summary of the Fugl-Meyer Assessment (FMA) results for the Upper Extremity (UE) and the Lower Extremity (LE) and the
Action Research Arm Test (ARAT) results reported in the individual studies for the Neurofeedback Training (NFT) and Control (C) groups

Study FMA-UE (NFT) FMA-UE FMA-LE (NFT) FMA-LE ARAT (total, NFT) ARAT (sub-scores)
(NFT vs (NFT vs
Q) @]

Bhagat 2020 [65] 3.92% - - - 5.35*% -

Biasiucci 2018 [22] 6.7* 4.6 - - - -

Chen 2020 [23] 842 3.71 - - - -

Chowdhury 2018 [66] - - - - 5.66* -

Chowdhury 2020 [67] - - - - 23.75% -

Ibanez 2017 [68] 1.5 - - - - -

Jovanovic 2020 [73] 17* - - - 14* Grasp: 3; Grip: 8; Pinch: 1; Gross Move: 4

Marquez- Chin 2016 [74] 6 - - - 0 -

McCrimmon 2014 [70] - - 244 - - -

Mrachacz- Kersting 2016 [61] - - 0.77* - - -

Mrachacz- Kersting 2019 [26] - - 8.5% 4.5% - -

Mukaino 2014 [75] 8 - - - - -

Ono 2013 [76] 7 - - - - -

Ramos- Murguialday 2013 [4]  3.40 345 - - - -

Remsik 2019 [41] - - - - 1.3% Grasp: 0.7; Grip: 0.1; Pinch: 0.4; Gross Move:
0

Vourvopoulos 2019 [71] 1.25 - - - - -

Mean 732 392 390 4.5 834 -

Standard Deviation 4.46 0.60 4.07 - 9.00 -

FMA-UE Fugl-Meyer Assessment Upper Extremity, FMA-LE Fugl-Meyer Assessment Lower Extremity, ARAT Action Research Arm Test, NFT Neurofeedback Training

Group, C Control Group
Significant values (p < 0.05) indicated by Asterisk

but was also not significant. The inclusion of co-inter-
ventions showed no consistent or statistically significant
effect on FMA and ARAT scores (for FMA: none=6.4 +
5.6 [n = 9], yes = 6.7 £ 2.04 [n=4]; p = 0.92, for ARAT:
none=>5.16 & 6.32 [n = 4], yes = 14.7 £ 12.8 [n=2]; p =
0.47). Mean FMA change also did not differ significantly
by the level of evidence as assessed with a general linear
model (Il = 6.8 £2.4 (n = 4), IIl = 0.77 (n = 1), [V = 4.8
+46(Mn=4),V=95=+51(n=4);p=027).

The effect of differences between classic versus associa-
tive learning paradigms on FMA within the experimental
group was also assessed using an independent t-test. The
two studies that used associative learning [26, 61] had a
slightly lower mean FMA score when compared with
studies that used operant conditioning (n=8) [4, 22, 23,
65, 68,70,71,75,76] of 4.6 vs 6.9, respectively. The differ-
ence, however, was not significant (p = 0.54).

Pearson correlation between FMA improvement after
BCI-NFT and the number of training sessions showed
a moderate positive relationship (r = 0.67, p = 0.01).
Despite a similar correlation value between ARAT score
and the number of sessions; this was not statistically sig-
nificant (r = 0.70, p = 0.20).

Discussion

Similar to generally positive trends from other reviews
assessing clinical effectiveness of BCI-NFT paradigms,
all studies identified here reported largely positive, albeit
not always statistically significant, motor outcomes.
Our meta-analyses demonstrated that the FMA mean
change in the experimental group exceeded the minimal
clinically important difference (MCID) of 5.5 points as
did 8 of the 13 studies reporting this; however, none of
values from the 4 studies which subtracted the control
group mean reached the MCID. Only one of six studies
reporting the ARAT showed a value that exceeded the
MCID (i.e. >17 points). We identified a dose response
with a greater number of sessions directly and moder-
ately related to greater effectiveness with 12 sessions
the maximal number of sessions in studies with FMA
results. Given this, it is possible that more prolonged
training would produce even larger effects. While out-
comes did not vary significantly based on level of evi-
dence, designs that include control groups should be
strongly encouraged as should blinding of outcomes, so
that there can be far greater confidence in the results that
are reported. Another key consideration in rehabilitation
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is the persistence of effects beyond the training period.
Long term effects were assessed in only four studies [22,
41, 65, 70]; overall the improvements persisted at fol-
low up, which ranged from 1 [70] to 36 weeks [22]. The
improvement in ARAT lasted at least 4 weeks in Remsik
et al. [41]. Bhagat et al, demonstrated that FMA-Upper
Extremity (UE) and ARAT scores remained significantly
higher than baseline 2 weeks and 2 months post inter-
vention [65]. More notable, however, was the follow-up
period in Biasiucci et al., where significant improvement
in FMA-UE and Medical Research Council were main-
tained 9 months post intervention [22]. In addition to
the included studies, Ramos-Murguialday et al. [5] con-
ducted a follow-up study to their 2013 study [4] (included
in this review) using the same participants and demon-
strated significant FMA, Motor Activity Log and Goal
Attainment Scale improvements which lasted more than
6 months post intervention.

There were no clear study design features other than
session number that altered the magnitude of positive
effects. We were particularly interested in whether the
type of feedback provided influenced the motor outcome.
In animal models, the role of muscle spindle feedback
is crucial for locomotor recovery and spinal circuit
reorganization, and is presumed to also be important in
humans [79]. Both FES and robotic movement assistance
during BCI-NFT paradigms provide proprioceptive input
because they elicit or augment muscle stretch which
thereby activates muscle spindles, Golgi tendon organs
and cutaneous receptors [5, 24, 26, 33, 80]. However,
in unloaded conditions, (e.g. weight support provided
by a robotic device), proprioceptive signaling relies
almost exclusively on muscle spindles [79]. Ono et al.
[81] showed the superiority of proprioceptive feedback,
provided by a hand robot, to visual feedback in a cohort
study of 12 stroke patients. Although robotic feedback
can provide afferent proprioceptive feedback and has
been used extensively [4, 24, 33] FES depolarizes more
motor and sensory axons, thus should provide greater
proprioceptive feedback [82]. Therefore, we expected
to find that FES feedback was superior; however, in our
sample, there was no difference in effectiveness between
FES and robotic feedback. This is in contrast with
the Bai et al. systematic review, which demonstrated
that FES had a significantly larger effect on functional
recovery than visual and robotic feedback [42]. Some
of the studies here also incorporated visual feedback
of detection success which can further upregulate the
reward system in the brain and thereby enhance motor
learning [83]. The presence of cointerventions also did
not significantly augment effectiveness, suggesting that
these alone did not account for the positive outcomes.
The more recent associative learning paradigms failed to
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demonstrate better outcomes. No other training features
were prevalent enough for statistical comparisons.

Most studies on BCI-NFT for motor rehabilitation are
focused on the stroke population, despite their potential
benefit for other nondegenerative neurological disorders
such as CP, which is the most common motor disor-
der in the pediatric population. It has been shown that
individuals with CP can self-regulate their brain activ-
ity to control BCI systems to activate assistive devices
[84, 85]. Two BCI-NFT studies on the CP population,
excluded here because they utilized motor imagery,
aimed to improve hand function by self-regulation, i.e.,
reduction of mu band activity. Bobrov et al, utilizing a
hand exoskeleton for feedback, trained 14 children with
CP [36]. Significant gains in hand function were found
for the FMA, ARAT and Jebsen-Taylor Test, after 7-10
weeks of training. This protocol was previously used by
their group for training patients post-stroke in multiple
studies [86—88]. The second study in CP [89] showed a
decrease (improvement) in a serial reaction time task
with the non-dominant hand, after only three sessions
of BCI-NFT (8 min each) using visual feedback. Motor
attempt paradigms that directly link movement associ-
ated brain signals to external devices and do not require
them to actively try to modulate brain activity or to con-
sistently imagine a specific movement make BCI-training
far more feasible and accessible to a broader range of
patients, even very young children.

One observation from our review is that the terminol-
ogy used across studies to describe the intervention is
not consistent. The term “neurofeedback” has been used
extensively in clinical applications, including motor reha-
bilitation, particularly those that involve operant condi-
tioning [34, 48, 56, 59, 61, 63, 66, 71, 89-92]; however,
this term alone was not sufficient for a comprehensive
literature search. We found it necessary to also search
for BCI and BMI terms, which greatly increased the yield
of our search strategy but also resulted in a very large
numbers of excluded studies. BCI systems have a broad
range of applicability including for activating robotic,
prosthetic or communication devices and enhancing cog-
nitive functioning in disorders such as attention deficit
hyperactivity disorder (ADHD) [16] or post-stroke [46]
by training them to self-regulate their cortical activity.
Some authors referred to motor training applications as
rehabilitative or restorative BCls, to contrast these with
assistive BCI for those who lack movement capabilities.
One very recent study included here [21] did not use
either term (neurofeedback or BCI) but instead used the
term “brain state-dependent stimulation” to describe
their system for retraining motor function that did not
include the BCI component in this case to illustrate that
it is the precisely timed afferent volley that is the essential
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component for changes in cortical excitability. Here
they used a pre-determined timing of peripheral nerve
stimulation delivery with respect to the cue, instead of
real-time detection, calculated from previously collected
MRCP data. While we used the term “BCI-neurofeed-
back” here to encompass the two main terms used in the
preponderance of studies on rehabilitation applications,
motor rehabilitation paradigms have diverged from clas-
sic operant conditioning neurofeedback paradigms and
as they continue to evolve, may warrant new more rel-
evant descriptors.

Motor attempt paradigms demonstrated several
consistent features across studies. Although fNIRS is
commonly used for mobile brain imaging, all studies here
used EEG. Even within the 139 full texts we reviewed,
only three used fNIRS for their BCI [90, 91, 93]. This
is similar to a recent review by Mane et al. [46] on BCI
application for stroke rehabilitation, in which 47 of 50
studies used EEG alone with one using EEG plus MEG
[94], one used MEG [95] and one used fNIRS [90]. EEG
benefits from a far higher temporal resolution than fNIRS
[48, 96],and less expensive and more accessible than
MEG, and therefore, it has been used almost exclusively
in BCI-NFT applications.

The precise temporal association between the afferent
sensory feedback and the motor command was deemed
to be the reason for significant functional improvements
in several studies [22, 61]. The effect of stimulation timing
was evaluated by Mrachacz-Kersting et al. using healthy
participants [97] and they found that when the timing of
stimulation delivery was either before or after the motor
planning phase of the MRCP, which typically occurs
within 500 ms of movement onset [21], no plasticity was
induced. Using precise temporal association, this group
demonstrated significant functional improvements after
a single session consisting of 30-50, motor attempt-
FES pairings for about 20 min [61] in those more than 6
months post stroke which is remarkable since the median
range for BCI-NFT protocols here was 10-15 sessions.
For FMA-Lower Extremity (LE), significant changes were
even larger and reached the MCID after 12 sessions of
training [26], in their later (2019) study. The synchronous
activation of the motor cortex and peripheral effectors
may induce plasticity using the principle of Hebbian
associativity; and thereby, strengthen the connectivity
of the corticospinal tract with the sensory and motor
cortices. This was evaluated in both of their studies, by
measuring the motor evoked potential (MEP) using TMS;
corticospinal excitability was significantly higher only
in the experimental group 30 seconds post-intervention
[26, 61]. Although associative learning paradigms were
not shown here to be more effective, the numbers of
studies are limited; therefore, the jury is still out and
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more comparative data are needed. Biasiucci et al. [22]
also considered the time contingency between motor
decoding and FES as the main reason for their impressive
clinical improvement, which lasted at least 30 weeks post
intervention. Using EEG data as an outcome measure
they verified the hypothesized enhanced functional
connectivity in the affected cortex
post-intervention.

sensorimotor

Recommendations for the field

The small number of studies with the same functional
outcomes included in this review limited the ability
to identify specific protocols or features with superior
efficacy or effectiveness. Many paradigms aimed to
produce reliable (minimal false positives or negatives) but
varied in the timing of activation of an external assistive
device with movement onset, ideally recommended to
occur within a 300 ms window [98]. Therefore, it seems
reasonable that paradigms that use EEG activity prior
to movement to predict movement intention rather
than real-time detection of movement onset would be
preferable, if not essential, considering the time delays
related to EEG processing and communication between
system software and hardware. MRCP contain signals
that precede movement; however, the time between
these and movement onset or device activation can
fluctuate within and across individuals, and perhaps
are even more variable for those with brain injuries. To
account for this, machine leaning algorithms, such as
the Gaussian classifier utilized by Biasiucci et al. [22],
and Naive Bayes deployed by Ibanez et al. [68] that can
predict or classify the motor attempt online, might be a
more precise alternative than relying on the consistency
of the MRCP signals such as peak negativity timing
with respect to motor onset. These could reduce the
calibration time and thereby optimize therapy time, and
account more effectively for individual variability, This
could perhaps be improved even further using transfer
learning algorithms to train a predictive model once and
then transfer this across participants, thus eliminating
the calibration phase [99]. Proprioceptive feedback was
used almost exclusively for these motor rehabilitation
applications, rather than visual feedback alone, which is
logical since these also serve assistive as well as sensory-
enhancing roles. More data on the short- and longer-
term efficacy of FES compared to robotic feedback are
still needed. Modulation and progression or weaning of
feedback over time are important future considerations
to maximize motor learning and neuroplasticity. While
we did not compare effectiveness of motor imagery to
motor attempt, the latter is more intuitive and clearly
more feasible across a broader range of patients.
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Limitations

Some limitations are that this scoping review did
not, by design, include all studies on the use of BCI-
NFT, but it does provide a comprehensive review
on the current state of the science on motor attempt
paradigms for neurorehabilitation. Another possible
limitation is that we did not restrict the studies by the
level of evidence; however, significant mean differences
in outcomes across levels were not found. The limited
use of consistent outcomes across studies also restricts
the number of studies included in any meta-analysis,
reinforcing the need for greater efforts in rehabilitation
research to enable the accumulation of larger datasets
with common data definitions and outcomes. Still, given
the limitations, several studies demonstrated clinically
significant functional changes after short durations of
training, far shorter than typically needed for producing
the same magnitude of effects with motor training
alone.

Conclusion

In conclusion, the specific focus on enhancing
neuroplasticity within a task-specific paradigm
with BCI-NFT provides a solid neurophysiological
mechanism for potential behavioral changes that
we believe are only beginning to be realized. Future
efforts should be directed towards deploying these in
younger patient populations with greater neuroplastic
potential and designing these systems for broad clinical
implementation and for larger efficacy trials that
compare these to other forms of neuromodulation or
other evidence-based motor training approaches at
equivalent doses.
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