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Beyond steps per day: other measures 
of real‑world walking after stroke related 
to cardiovascular risk
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Abstract 

Background:  Significant variability exists in how real-world walking has been measured in prior studies in individuals 
with stroke and it is unknown which measures are most important for cardiovascular risk. It is also unknown whether 
real-world monitoring is more informative than laboratory-based measures of walking capacity in the context of 
cardiovascular risk. The purpose of this study was to determine a subset of real-world walking activity measures most 
strongly associated with systolic blood pressure (SBP), a measure of cardiovascular risk, in people with stroke and if 
these measures are associated with SBP after accounting for laboratory-based measures of walking capacity.

Methods:  This was a cross-sectional analysis of 276 individuals with chronic (≥ 6 months) stroke. Participants wore an 
activity monitor for ≥ 3 days. Measures of activity volume, activity frequency, activity intensity, and sedentary behavior 
were calculated. Best subset selection and lasso regression were used to determine which activity measures were 
most strongly associated with systolic blood pressure. Sequential linear regression was used to determine if these 
activity measures were associated with systolic blood pressure after accounting for walking capacity (6-Minute Walk 
Test).

Results:  Average bout cadence (i.e., the average steps/minute across all bouts of walking) and the number of long 
(≥ 30 min) sedentary bouts were most strongly associated with systolic blood pressure. After accounting for covari-
ates (ΔR2 = 0.089, p < 0.001) and walking capacity (ΔR2 = 0.002, p = 0.48), these activity measures were significantly 
associated with systolic blood pressure (ΔR2 = 0.027, p = 0.02). Higher systolic blood pressure was associated with 
older age (β = 0.219, p < 0.001), male gender (β = − 0.121, p = 0.046), black race (β = 0.165, p = 0.008), and a slower 
average bout cadence (β = − 0.159, p = 0.022).

Conclusions:  Measures of activity intensity and sedentary behavior may be superior to commonly used measures, 
such as steps/day, when the outcome of interest is cardiovascular risk. The relationship between walking activity and 
cardiovascular risk cannot be inferred through laboratory-based assessments of walking capacity.
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Introduction
Low physical activity is an important modifiable risk 
factor for stroke and future cardiovascular events 
[1–5]. In fact, low physical activity may be the second 
most important modifiable risk factor for stroke, aside 
from blood pressure [6]. Thus, controlling a person’s 
risk factors for stroke often involves modifications to 
their activity behavior to reduce these risks [2]. This is a 
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particularly salient concept in people who have already 
sustained a stroke who typically demonstrate lower 
activity levels and greater sedentary behavior compared 
to persons without stroke [7–11].

The application of sensor technology has enabled 
rehabilitation professionals to measure real-world 
activity (i.e., activity that occurs outside the clinic or 
laboratory setting) to better understand the activ-
ity levels of individuals with stroke and its effects on 
cardiovascular risk [1, 12–14]. In general, two lines of 
work have garnered significant attention in the sensor 
field, one related to the measurement of activity and 
the other focused on understanding predictors of activ-
ity. In terms of measurement, the most common way 
that real-world walking activity has been quantified in 
stroke rehabilitation studies is by calculating average 
steps/day (ASPD) [15–19]. Using this measure, a per-
son’s daily stepping activity is monitored over a period 
of time (preferably at least 7  days) [20, 21], summed 
and averaged across the number of valid recording days 
[22, 23]. Thus, ASPD is easy to calculate and interpret, 
likely contributing to its ubiquitous use in studies in 
individuals with stroke. There is, however, significant 
variability in how real-world activity is measured in 
studies in people with stroke [7, 10, 11, 14, 24–29], with 
some studies emphasizing the importance of measur-
ing sedentary behavior [11, 25, 28, 30, 31] and others 
examining measures of activity intensity using meta-
bolic equivalents of task (METS) or cadence [14, 26, 27, 
32], among other measures. Thus, it remains unknown 
which measures of real-world walking activity are most 
important for cardiovascular risk in people with stroke.

A second line of work has focused on examining pre-
dictors of real-world walking activity in people with 
stroke [15, 28, 33–35]. This line of work has revealed that 
measures of walking capacity are strongly related to real-
world walking activity after stroke. A recent meta-analy-
sis by Thilarajah and colleagues found that the 6-Minute 
Walk Test, a measure of walking capacity, explains 37% 
of the variance in physical activity in people with stroke 
[15]. This suggests that measures of walking capacity 
are critically important and could potentially serve as 
a proxy for real-world walking activity in people with 
stroke. Real-world activity monitoring can be costly and 
cumbersome [36]; thus, if rehabilitation professionals 
were able to utilize laboratory-based measures of walk-
ing capacity as a proxy for real-world walking activity, 
this could potentially save time and resources. However, 
other work suggests that performance on laboratory-
based measures of walking capacity does not necessar-
ily translate to real-world walking behavior [18, 37–39]. 
Thus, whether real-world monitoring is more informative 
than laboratory-based measures of walking capacity in 

understanding the relationship with cardiovascular risk is 
not known at this time.

These lines of work have exposed two critical knowl-
edge gaps. The first is that it remains unknown which 
measures of real-world walking activity are most impor-
tant for cardiovascular risk in people with stroke. While 
previous studies have selected measures of poten-
tial importance, the first objective of this work was to 
determine which measures of real-world activity are 
most important to identify cardiovascular risk in peo-
ple with stroke. Elevated systolic blood pressure (SBP) 
is an important cardiovascular risk factor and likely the 
strongest risk factor for stroke [3, 6, 40]. We therefore 
examined the relationship between measures of real-
world walking activity and SBP. The second knowledge 
gap is that it is not known whether real-world monitor-
ing is more informative than laboratory-based measures 
of capacity in the context of cardiovascular risk. There-
fore, our second objective was to determine if measures 
of real-world walking activity would be associated with 
SBP after accounting for measures of walking capacity 
(6-Minute Walk Test, 6MWT). We hypothesized that 
average steps/day, average number of walking bouts/
day, the percent time spent in sedentary behaviors, and 
the fragmentation index would be significantly associ-
ated with SBP and that these activity measures would be 
significantly associated with SBP after accounting for the 
6MWT.

Methods
Study design and participants
This was a cross-sectional analysis of baseline data from 
a multisite clinical trial with four sites: University of 
Delaware, University of Pennsylvania, Christiana Care 
Health System, and Indiana University (NCT02835313) 
[41]. To be included in this analysis, the following eligi-
bility criteria were employed: Inclusion: (1) Ages 21–85, 
(2) ≥ 6  months post stroke, (3) Able to walk at a self-
selected gait speed of ≥ 0.3 m/s without assistance from 
another person (assistive devices allowed), (4) Rest-
ing heart rate between 40 and 100 beats/min, (5) Rest-
ing blood pressure between 90/60 and 170/90  mmHg; 
Exclusion: (1) Evidence of cerebellar stroke, (2) Other 
potentially disabling neurologic conditions in addi-
tion to stroke, (3) Lower limb Botulinum toxin injec-
tion < 4  months earlier, (4) Current participation in 
physical therapy, (5) Inability to walk outside the home 
prior to stroke, (6) Coronary artery bypass graft, 
stent placement, or myocardial infarction within past 
3 months, (7) Musculoskeletal pain that limits activity, (8) 
Unable to provide informed consent as indicated by an 
inability to answer at least 1 orientation correctly (item 
1b on the NIH Stroke Scale) and inability to follow at 
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least one, two-step comment (item 1c on the NIH Stroke 
Scale). In addition, only participants with complete data 
for the activity measures, 6MWT and SBP were included 
in this analysis. All participants signed informed con-
sent approved by the Human Subjects Review Board 
at the University of Delaware or their respective insti-
tution prior to study participation (protocol number 
878153–50).

Theoretical framework
In order to determine which measures of real-world 
activity to include in our statistical analysis, we first con-
ducted a review of the literature in people with stroke [2, 
7–12, 14, 15, 17–19, 21, 22, 24, 25, 27, 28, 30, 34, 38, 42–
47] and other populations [26, 32, 48–58] that measured 
real-world walking activity. This literature search resulted 
in over 30 different measures of real-world activity. We 
then systematically eliminated measures that were deriv-
atives of each other (e.g., Peak 1, a measure of real-world 
activity intensity used in some studies [26, 52], is similar 
to Peak 30 [21, 52]) and measures that could be prob-
lematic in individuals with stroke. For example, METS 
is a common way that activity intensity is quantified [14, 
27, 59, 60]; however, there are limitations to using METS 
in people with stroke [61–63]. Prior work has shown 
that individuals with stroke expend greater energy dur-
ing walking compared to persons without stroke [63], 

suggesting that the use of METS in people with stroke 
may not be an accurate reflection of walking intensity. 
Once this smaller subset of measures was identified, the 
measures were then grouped under specific domains 
based on our knowledge of stroke and past literature sug-
gesting that different activity measures assess different 
constructs [11, 12, 14, 22, 26, 32, 44]. Figure 1 provides 
a visual representation of the end result of this process 
and shows our theoretical framework for conceptualizing 
activity behavior. The model shows that activity behav-
ior is comprised of four domains: activity volume, activ-
ity frequency, activity intensity, and sedentary behavior. 
Each of these domains is intended to reflect an important 
but unique aspect of a person’s overall walking activity 
behavior. Table 1 displays the activity measures of inter-
est, the domain of measurement, and how each measure 
was calculated.

Activity volume This domain is intended to capture 
a person’s overall volume of activity and encompasses 
measures such as averages steps/day (ASPD) [32] and 
time walking per day [24, 45] which provide an global 
representation of a person’s overall volume of activ-
ity over a particular period of time. Measures of activity 
volume, specifically ASPD, was associated with all-cause 
mortality in a large sample of adults living in the United 
States [52], suggesting that measures of activity volume 
may have important health implications. Furthermore, 

Activity Behavior

Activity
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Fig. 1  Theoretical Model. Activity behavior is comprised of four domains: Activity Volume, Activity Frequency, Activity Intensity, and Sedentary 
Behavior. The measures listed beneath each domain were considered measures of that domain in the current work
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these measures can be readily extracted from a variety of 
step activity monitors which could facilitate their imple-
mentation in clinical settings. However, past work also 
suggests that measures of activity volume may be insuf-
ficient for understanding the relationship between activ-
ity and health and that additional or alternative measures 
are needed [12, 14, 24, 25, 30, 32].

Activity frequency Previous work suggests that the fre-
quency (i.e., bouts) in which activity is accrued through-
out the day differs in people with stroke compared to 
healthy controls [7, 24, 46]. In particular, past work has 
shown individuals with stroke engage in fewer overall 
bouts of walking activity [24, 46] and fewer long-distance 
bouts compared to older adults [24]. In addition, longi-
tudinal studies in individuals with stroke have demon-
strated that increases in activity volume (i.e., ASPD) may 
be partly explained by increases in the number of walking 
bouts [17, 64]. This suggests that the frequency in which 
activity is accrued may provide unique and important 
information beyond measures of activity volume (i.e., 
ASPD). The number of long (≥ 300 steps) [24, 46, 54] and 
short (< 40 steps) bouts [24, 46, 54] of walking activity as 
well as the overall number of walking bouts per day [24, 
45, 46] were considered measures of activity frequency.

Activity intensity Stroke prevention guidelines suggest 
that individuals with stroke should engage in moderate-
to-vigorous intensity aerobic physical activity to lower 
their risk of recurrent stroke and cardiovascular events 
[65]. This suggests that the cardiovascular intensity of 
walking activity may also be important when monitor-
ing real-world walking behavior in people with stroke. 
In support of this point, Fini and colleagues found that 
greater time spent in moderate-to-vigorous physical 
activity was associated with a reduction in some cardio-
vascular risk factors in people with stroke over a two-year 
monitoring period [14]. This study, among others [22, 25, 

43, 44], provide support that the cardiovascular intensity 
of real-world activity may be important in addition to the 
overall volume of activity. Measures of walking cadence 
have been utilized in prior studies as a proxy for the car-
diovascular intensity of walking [21, 26, 32, 47, 52]. Thus, 
Peak 30 and average bout cadence (i.e., the average steps/
minute across all bouts of walking) were considered 
measures of activity intensity in the current work [21, 32, 
47, 52]. Peak 30 captures the 30 highest, but not neces-
sarily consecutive, minutes of activity in a day and was 
previously shown to be associated with cardiometabolic 
risk factors in a large sample of adults [32]. Thus, Peak 
30 was intended to capture an individual’s highest step-
ping activity in a day. Average bout cadence, on the other 
hand, was intended to capture a slightly different aspect 
of activity intensity by quantifying an individual’s average 
rate (i.e., cadence) of stepping during bouts of walking 
[47].

Sedentary behavior There is growing consensus that 
sedentary time is an independent construct of active 
time [7, 8, 10, 25, 27, 28, 50, 66]. Previous studies have 
shown that time spent in sedentary behaviors is asso-
ciated with negative health outcomes, independent 
of active time [50, 67, 68]. Other studies have shown 
that breaking up the amount of time spent in seden-
tary behaviors has positive effects on cardiometabolic 
markers, such as blood glucose, systolic blood pres-
sure and body mass index [30, 57, 58]. Taken together, 
these findings suggest that in addition to measuring 
time spent in active behaviors, time spent in seden-
tary behaviors should also be measured when attempt-
ing to understand the relationship between activity 
and cardiovascular risk. The percentage of time spent 
in sedentary behaviors [14, 28, 55, 56], the number of 
long (≥ 30  min) sedentary bouts [11, 14, 48], and the 
fragmentation index [25, 30, 57, 58] were considered 

Table 1  Activity measure calculations

Domain Measure Calculation

Activity volume Average Steps/Day #stepstakenovervalidrecordingperiod
numberofvalidrecordingdays

Average Time Walking/Day #minuteswalkingovervalidrecordingperiod
numberofvalidrecordingdays

Activity frequency Average Number of Short Bouts/Day (< 40 steps) #shortwalkingboutsovervalidrecordingperiod
numberofvalidrecoridngdays

Average Number of Long Bouts /Day (≥ 300 steps) #longwalkingboutsovervalidrecordingperiod
numberofvalidrecordingdays

Average Number of Bouts/Day #walkingboutsovervalidrecordingperiod
numberofvalidrecordingdays

Activity intensity Peak 30 averagesteps/minfor30highestminuteseachday
numberofvalidrecordingdays

Average Bout Cadence sumofsteps/minforallactivebouts
numberofactivebouts

Sedentary behavior Percent Sedentary Time (#sedentaryminutesovervalidrecordingperiod
totalweartimeovervalidrecordingperiod )*100

Average Number of Long Sedentary Bouts/Day (≥ 30 min) #oflongsedentaryboutsovervalidrecordingperiod
numberofvalidrecordingdays

Fragmentation Index numberofsedentarybouts≥5minovervalidrecordingperiod
totalnumberofsedentaryminutesovervalidrecordingperiod
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measures of the sedentary domain. The fragmenta-
tion index is a measure that quantifies interruptions in 
sedentary behavior. Its calculation is shown in Table 1 
where a higher value indicates more interrupted sed-
entary behavior. This measure was intentionally chosen 
based on prior literature demonstrating positive effects 
of breaks in sedentary time on cardiometabolic mark-
ers of health [30, 57, 58].

Measures
During the baseline visit of the clinical trial, demo-
graphic information (i.e., age, gender, race) and stroke 
information (i.e., time since initial stroke) were col-
lected. Participants’ resting blood pressure was col-
lected in accordance with the American College of 
Sports Medicine (ACSM) guidelines [69]. Specifically, 
blood pressure readings were obtained with the par-
ticipant seated in a chair with back support for at least 
5  min, their legs uncrossed, and the arm supported at 
the level of the heart. A minimum of two readings were 
obtained with at least 1-min between readings. The two 
readings were averaged to represent the participant’s 
resting blood pressure [69]. However, if a difference 
of > 5  mmHg was observed between the first and sec-
ond readings, an additional reading was obtained, and 
the average of these multiple readings was used.

To measure walking capacity, participants completed 
the 6-Minute Walk Test (6MWT). Participants were 
instructed to walk continuously as fast as possible for 
6 min around a 42-m rectangular track [70]. Participants 
were instructed that they may stop and rest at any point 
during the test if needed but that the timer will continue. 
The 6MWT is a valid and reliable test of walking endur-
ance in people with stroke [71, 72].

To measure real-world walking activity, participants 
were provided with a Fitbit One or Fitbit Zip to wear 
on their non-paretic ankle. The Fitbit has demonstrated 
acceptable accuracy in detecting stepping activity in 
people with stroke particularly when placed at the non-
paretic ankle [73–76]. Participants were instructed to 
wear the device for 7 days; however, a minimum of 3 days 
of activity was required [20]. Participants were instructed 
to go about their usual activity while wearing the device 
and to remove it for water-based activities and sleep. 
Upon returning the device, a trained physical therapist 
inspected the data to ensure the minimum wear criteria 
was met. To determine valid recording days, the partici-
pant was queried about any inconsistencies or irregu-
larities in the data. The days in which participants were 
issued and returned the device were not counted towards 
the 3-day minimum, nor were any days in which the par-
ticipant did not wear the device during waking hours.

Data processing
Figure 2 displays a data pipeline that demonstrates how 
the data were processed and analyzed. Participants’ step 
data was exported into 60-s sampling epochs to calcu-
late the activity measures of interest [Fig.  2: “Raw Data 
(60-s epoch)”]. The first stage of data processing involved 
determining “wear” and “non-wear” time using the R 
package “accelerometry” [77]. Determining non-wear 
time is a critical decision when processing accelerometry 
data to reduce the risk of erroneously classifying seden-
tary time as non-wear time and vice-versa. We therefore 
employed a two-step process to determine an appropri-
ate “non-wear” window and increase our confidence in 
this decision (Fig. 2: “Testing non-wear intervals”). First, 
non-wear windows of 3  h through 6  h were tested, and 
the number of sedentary and non-wear minutes were 
compared using a within-subjects analysis of variance 
(ANOVA) where the non-wear window was the within 
subjects variable. Post-hoc testing was conducted if the 
model was statistically significant. Second, a clinician 
with expertise in stroke rehabilitation independently 
coded whether each minute was “non-wear”, “sedentary” 
or “active” time for a random subset of 10 participants, 
and these results were compared to those of the different 
non-wear windows. These steps revealed significant dif-
ferences (p < 0.05) in the number of sedentary and non-
wear minutes for the 3-h non-wear window compared to 
all other non-wear windows. Comparing these results to 
the clinician responses revealed the highest agreement 
with the 4-h non-wear window (> 85% agreement for all 
10 participants, mean agreement of 94.67%). We there-
fore determined the 4-h non-wear window was most 
appropriate. Under this definition, “non-wear” time was 
defined as any interval of at least 240 consecutive min-
utes (4 h) with 0 steps, allowing for 2 spurious minutes 
of activity of up to 2 steps each minute. Non-wear min-
utes were then removed from further analysis (Fig.  2: 
“Remove Non-Wear Time”). Any minutes that did not 
meet this criterion were defined as “wear” time. “Wear” 
time was further categorized as “active” or “sedentary” 
(Fig. 2: “Distinguish Wear Time as Active or Sedentary”). 
“Active” minutes were any minutes with at least 1 step, 
with the exception that a minute with only 1 step could 
not have a minute of 0 steps before and after it. All other 
“wear” minutes that did not meet this criterion were 
considered “sedentary” minutes. For example, a series 
of minutes with 0 steps, 1 step, 0 steps would be labeled: 
sedentary, sedentary, sedentary. A series of minutes with 
10 steps, 12 steps, 0 steps, 20 steps would be labeled: 
active, active, sedentary, active. The activity measures 
were calculated from the “active” and “sedentary” time 
(Fig.  2: “Processed Activity Measures”). For example, 
the average time walking/day was calculated from the 
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“active” minutes, and the percent sedentary time was cal-
culated using “sedentary” minutes (Table 1).

Statistical analysis
A two-step statistical analysis was employed to best 
address each of our study objectives. To address our first 
objective of identifying a subset of activity measures most 
strongly related to SBP, two variable selection techniques 

were utilized. For the primary analysis, lasso regression 
was employed. Lasso regression applies a penalty, con-
trolled by the parameter λ, that shrinks the regression 
coefficients closer towards zero such that some of the 
variables (i.e., activity measures) are dropped from the 
model [78, 79]. The result is a simpler model containing 
a subset of variables whose coefficients were not zero. 
Those “surviving” variables are therefore interpreted as 

Raw Data
(60-sec epoch) 

Remove Non-
Wear Time

Test non-wear
intervals 

Lasso
Regression

Best Subset
Selection 

Lowest AIC10-fold cross-
validation x 100 

Final Regression
Model with 

Covariates & 6MWT

Measures
Common among

all Models

Subset of
Activity

Measures

Lowest Residual
Sum of Squares

Highest
Adjusted R2

Identify optimal
value of λ

Optimal
value of λ
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Refit model using
all data and

optimal λ

Subset of
Activity

Measures

Subset of
Activity

Measures

Subset of
Activity

Measures

Distinguish Wear
Time as Active
or Sedentary

Processed
Activity Measures

Fig. 2  Data Pipeline. 6MWT 6-Minute Walk Test
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most strongly related to the outcome. For this work, the 
optimal value of λ was chosen using tenfold cross-valida-
tion which was replicated 100 times to achieve a stable 
solution (Fig.  2: “10-fold cross-validation × 100”) [78]. 
The optimal value of λ was considered the value associ-
ated with the smallest mean squared error on the test 
data [78, 79]. Once this optimal value of λ was identified, 
the model was then re-fit using all of the data and the 
optimal value of λ (Fig. 2: “Refit model using all data and 
optimal λ”). This process resulted in a subset of walking 
activity measures most strongly related to SBP. The lasso 
regression was performed using R Statistical Software 
(v3.6.1) [80] and the “glmnet” package [81].

To increase our confidence in the subset of activity 
measures retained from lasso, we also utilized the best 
subset method and compared these results to that of 
lasso. Unlike lasso, which performs variable selection by 
shrinking coefficients, the best subset method performs 
variable selection by fitting separate regression models 
for all possible combinations of predictors to determine 
which model (i.e., subset of predictors) is “best” [78, 82]. 
For this work, we determined which model was “best” 
by examining the AIC (Akaike information criterion), 
adjusted R2, and the model with the lowest residual sum 
of squares (Fig.  2) [78]. As lower AIC values indicate a 
better model, we rank-ordered all 1024 possible models 
from lowest to highest AIC and selected the model with 
the lowest AIC value [78]. As higher adjusted R2 values 
indicate better fit, we rank-ordered all possible mod-
els from highest to lowest adjusted R2 and selected the 
model with the highest adjusted R2 value [78]. As the 
residual sum of squares (RSS) always decreases as more 
variables are added to the model, we utilized the number 
of variables retained from lasso (p) and identified the best 
p-variable model with the lowest RSS. For example, if 
lasso retained 2 variables as most strongly related to SBP, 
we identified the best 2-variable model with the lowest 
RSS. The result of this step was three models (i.e., subsets 
of predictors) with the lowest AIC, highest adjusted R2, 
and lowest RSS. The best subset models were conducted 
using the regsubsets function within the “leaps” package 
[83] in R as well as the Regression Best Subsets extension 
in SPSS Version 28.0, Armonk, NY: IBM Corp. These 
results were compared to that of lasso (Fig. 2: “Measures 
Common among all Models”). Measures that were com-
mon among all approaches were fit in a separate linear 
regression model.

Sequential linear regression was used to address our 
second objective of understanding if the subset of activity 
measures selected were significantly related to SBP after 
accounting for walking capacity (Fig. 2: “Final Regression 
Model with Covariates & 6MWT”). In this approach, 
predictors are entered in blocks and the change in R2 

value is evaluated after each block entry to determine if 
the block is significantly related to SBP after adjusting 
for the previous blocks [84]. The first block of predic-
tors included covariates, specifically age, gender, race, 
and time since initial stroke. Gender was coded as male 
(0) or female (1). Race was categorized as white, black, 
and other which consisted of individuals who identified 
as races other than black or white (e.g., Asian) or identi-
fied as being more than one race. Race was then dummy 
coded as white compared to black and white compared 
to other. Walking capacity (i.e., 6MWT) was entered into 
the second block. The third block consisted of the com-
mon activity measures among lasso and best subset mod-
els. Thus, this two-step approach allowed us to discern 
the extent to which the activity measures were associ-
ated with SBP after accounting for covariates and walking 
capacity by evaluating the change in R2 value associated 
with each block of predictors which would not have 
been possible with a one-step approach. All regression 
assumptions were tested and met. The sequential linear 
regression was conducted in SPSS Version 28.0, Armonk, 
NY: IBM Corp.

Results
Two-hundred and seventy-nine participants had com-
plete data for the activity measures, 6MWT and SBP 
when this analysis was conducted. Three participants 
were removed due to systolic blood pressures below eli-
gibility criteria, resulting in a final sample size of 276 par-
ticipants. Table  2 displays the demographic and clinical 
characteristics of our study sample. The ASPD [9, 14, 21, 

Table 2  Demographic and clinical characteristics of study 
sample (n = 276)*

*Continuous variables that were normally distributed are presented as mean 
(standard deviation, SD) and non-normal variables are presented as median 
(interquartile range, IQR). mmHg millimeters of mercury, kg/m2 kilograms per 
squared meters, m meters

Characteristic Participants

Age (years) 65.0 (IQR 17.0)

Gender (male/female) Male: n = 143 (51.8%)
Female: n = 133 (48.2%)

Time Since Initial Stroke (months) 23.0 (IQR 41.0)

Race White: n = 169 (61.2%)
Black: n = 64 (23.2%)
Other: n = 38 (13.8%)
Prefer Not to Respond: n = 5 (1.8%)

Systolic blood pressure (mmHg) 128.13 (SD 16.26)

Body mass index (kg/m2) 29.79 (IQR 8.19)

6-Minute Walk Test (m) 311.87 (IQR 181.85)

Number of valid step activity days 8.0 (IQR 5.0)

Average steps/day 4175.0 (IQR 3149.5)

Percent sedentary time 82.1 (IQR 11.04)
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33] and percent sedentary time [10, 27, 85–87] of partici-
pants in our sample are comparable to samples in other 
reports.

Table  3 displays the subset of measures identified for 
the lasso and best subset models. For the lasso model, a 
λ value of 0.03 resulted in the lowest mean squared error 
(0.87) on the test data (Fig. 3). Figure 4 displays how the 
coefficients shrink with increasing λ values. Scanning the 
X-axis from left to right shows that the coefficient for 
average time walking/day was shrunk to 0 first, whereas 
the coefficients for long sedentary bouts and average 
bout cadence remained above 0 the longest (note: as λ 
approaches infinity, all coefficients are shrunk to 0). Refit-
ting the model using all data and this value of λ resulted 
in only two activity measures whose coefficients were > 0, 
average bout cadence and long sedentary bouts. Thus, 
lasso regression selected average bout cadence and long 
sedentary bouts as most strongly related to SBP.

The best subset models associated with the lowest 
AIC and highest adjusted R2 also contained only aver-
age bout cadence and long sedentary bouts (Table 3). As 
lasso identified two activity measures as most strongly 
related to SBP, we also examined the best two-variable 
model associated with the lowest RSS. This model also 
contained only average bout cadence and long seden-
tary bouts (Table 3). Thus, all models for best subset and 
lasso resulted in the same conclusion, that average bout 
cadence and long sedentary bouts were most strongly 
associated with SBP.

Average bout cadence and long sedentary bouts were 
then included in block 3 of the sequential linear regres-
sion model. Collectively, the block of covariates was 
significant (ΔR2 = 0.089, p < 0.001), suggesting the covari-
ates explained a significant amount of variance in SBP 
(Table 4). The addition of walking capacity (i.e., 6MWT) 
did not significantly improve the model (ΔR2 = 0.002, 
p = 0.480). In support of our hypothesis, the activity 
measures explained a significant amount of variance in 
SBP after accounting for covariates and walking capac-
ity (ΔR2 = 0.027, p = 0.020). The full model was signifi-
cant (p < 0.001) and explained 11.8% of the variability in 
SBP. The coefficients for age (β = 0.219, p < 0.001), gender 
(β = − 0.121, p = 0.046), black race (β = 0.165, p = 0.008), 

and average bout cadence (β = −  0.159, p = 0.022) were 
significant (Table  5). These results suggest that higher 
systolic blood pressure was associated with older age, 
male gender, black race, and a slower average bout 
cadence.

Discussion
The two primary objectives of this work were to (1) deter-
mine a subset of real-world walking activity measures 
most strongly related to SBP in people with stroke and 
(2) determine if this subset of walking activity measures 
was significantly associated with SBP after accounting for 
measures of walking capacity (i.e., 6MWT). We found 
that average bout cadence (a measure of activity inten-
sity) and the number of long sedentary bouts (a measure 

Table 3  Subset of activity measures identified using lasso regression and best subset models

Model Model Performance Subset of Activity Measures

Lasso Optimal λ: 0.03
Mean Squared Error: 0.87

Average Bout Cadence, Long Sedentary Bouts

Best Subset: Lowest AIC AIC: 1535.84 Average Bout Cadence, Long Sedentary Bouts

Best Subset: Lowest Residual Sum of Squares Residual Sum of Squares: 70,495.52 Average Bout Cadence, Long Sedentary Bouts

Best Subset: Highest Adjusted R2 Adjusted R2: 0.02 Average Bout Cadence, Long Sedentary Bouts
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Fig. 3  Relationship between Lambda and Mean Squared Error. The 
Y axis represents the mean squared error (MSE). The X axis represents 
values of lambda. The figure shows that as the strength of the penalty 
increases, MSE decreases to a point and then increases. The lambda 
value associated with the lowest MSE on the test data was 0.03. This 
point represents the lambda value at which model performance on 
the test data was best. The model was then refit using all data and 
this optimal value of lambda



Page 9 of 14Miller et al. Journal of NeuroEngineering and Rehabilitation          (2022) 19:111 	

−0.2

−0.1

0.0

0.1

0.2

1e−04 1e−03 1e−02 1e−01
Log Lambda

C
oe

ffi
ci

en
t V

al
ue

Average Steps/Day
Average Bout Cadence
Average Number of Bouts/Day
Average Number of Long Bouts
Average Number of Long Sedentary Bouts
Average Number of Short Bouts
Fragmentation Index
Peak 30
Percent Sedentary Time
Average Time Walking/Day

Fig. 4  Coefficient Shrinkage with Increasing Lambda. The Y axis represents the value of the coefficients. The X axis represents values of lambda, 
where a higher value indicates a greater penalty (i.e., greater shrinkage). As lambda increases (i.e., from left to right on the X axis), the value of the 
coefficients shrink towards zero. The coefficient for Average Time Walking/Day is shrunk to zero first, followed by Peak 30, Fragmentation Index, 
Average Number of Short Bouts, Average Steps/Day, Percent Sedentary Time, Average Number of Bouts/Day, Average Number of Long Bouts, 
Average Number of Long Sedentary Bouts, and finally Average Bout Cadence. At a lambda value of 0.03, only Average Bout Cadence and Average 
Number of Long Sedentary Bouts remained in the model

Table 4  Linear regression model predicting systolic blood 
pressure

Variables R2 Model p ΔR2 ΔR2 p

Covariates (Age, gender, race, time 
since initial stroke)

0.089 < 0.001 0.089 < 0.001

Walking capacity (6-Minute Walk Test) 0.091 < 0.001 0.002 0.480

Activity measures (Average Bout 
Cadence, Long Sedentary Bouts)

0.118 < 0.001 0.027 0.020

Table 5  Standardized regression coefficients of linear regression 
model predicting systolic blood pressure

Variable β p

Age 0.219 < 0.001

Gender − 0.121 0.046

Time Since Initial Stroke − 0.057 0.338

Race: Black 0.165 0.008

Race: Other − 0.045 0.454

6-Minute Walk Test 0.114 0.088

Average Bout Cadence − 0.159 0.022

Long Sedentary Bouts 0.090 0.129
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of sedentary behavior) were most strongly associated 
with SBP in people with stroke and that these measures 
were related to SBP after accounting for walking capac-
ity. There are two primary take-home messages from this 
work: (1) in the context of cardiovascular risk average 
bout cadence and the number of long sedentary bouts 
are important measures of walking activity, and (2) lab-
oratory-based measures of walking capacity are not suffi-
cient for understanding the relationship between walking 
activity and cardiovascular risk in people with stroke.

While previous studies have selected measures that 
represent activity domains of interest, our objective was 
to determine which measures might be most important 
among a battery of measures that have been utilized in 
previous studies [2, 7–12, 14, 15, 17–19, 21, 22, 24–28, 
30, 32, 34, 38, 42–58]. Our finding that a higher aver-
age bout cadence and less long sedentary bouts are most 
strongly associated with lower SBP suggests that these 
walking activity measures may be most important for 
cardiovascular risk in people with chronic stroke. Our 
finding that a higher average bout cadence, a measure of 
real-world walking intensity, was associated with lower 
SBP is supported by physical activity recommendations 
for people with stroke which suggest that the intensity of 
activity is important for maximal health benefits and car-
diovascular risk reduction [2, 65]. This is also supported 
by a longitudinal study by Fini and colleagues that found 
the duration and bouts of moderate-to-vigorous physical 
activity [measured using metabolic equivalents (METS)] 
was associated with cardiovascular risk factors over a 
two-year monitoring period in people with stroke [14].

We also found that a greater number of long sedentary 
bouts was associated with a higher SBP. This is supported 
by past work in individuals with stroke [14] as well as 
past work in other populations demonstrating a dose–
response relationship between the duration of bouts 
spent in sedentary behaviors and risk for cardiovascu-
lar disease [48]. This finding also supports the notion 
that sedentary time may be its own unique construct 
independent of active time [7, 8, 10, 25, 27, 28, 50, 66]. 
However, individually, long sedentary bouts was not sig-
nificant in our regression model (Table 5). Therefore, our 
finding that the block representing the activity measures 
was significant in our model (Table  4) was likely being 
driven by average bout cadence, whose individual regres-
sion coefficient was significant. This is also supported by 
the lasso model in which average bout cadence was the 
last measure to be dropped from the model (Fig. 4). Col-
lectively, this could suggest that if measurement options 
are limited, average bout cadence should be prioritized, 
followed by long sedentary bouts.

Despite its ubiquitous use in stroke rehabilitation 
clinical trials [15–19], ASPD was not found to be related 

to SBP in our sample of participants with stroke. One 
reason for this may be due to the fact that our outcome 
of interest for this work was SBP, a measure of cardio-
vascular risk. A common purpose for measuring ASPD 
in prior work has been to understand if a laboratory- or 
clinic-based intervention translates to changes in real-
world walking behavior [16, 18, 37, 38], which was not 
the outcome of interest in the current work. This could 
suggest that how real-world walking activity is quanti-
fied may need to differ based on the context. For exam-
ple, when attempting to understand how a laboratory 
or clinic-based intervention translates to real-world 
walking behavior or to obtain a global assessment of 
a stroke survivor’s walking activity levels, ASPD may 
be a reasonable choice. However, when attempting to 
understand how a stroke survivor’s real-world activity 
affects their cardiovascular risk, our results suggest that 
average bout cadence and long sedentary bouts may be 
superior measures. This suggests that careful consid-
eration should be given to which measure(s) are used to 
quantify real-world walking activity depending on the 
purpose of measuring this behavior after stroke.

The activity measures (i.e., average bout cadence and 
long sedentary bouts) explained a significant amount 
of variability in SBP after accounting for covariates and 
6MWT, which was not significantly associated with 
SBP. This result suggests that: (1) measures of real-
world walking activity are distinct from laboratory-
based measures of walking capacity, specifically the 
6-Minute Walk Test, and that the two do not measure 
the same abilities post-stroke, and (2) an individual’s 
performance on the 6-Minute Walk Test is not suf-
ficient for understanding the relationship between 
walking activity and cardiovascular risk in persons 
with stroke. Physical activity is related to important 
cardiovascular risk factors for stroke [1–5, 32], which 
is supported by the current work. Our results serve as 
an extension of prior work by demonstrating that this 
relationship cannot be inferred through laboratory-
based assessments of walking capacity. Our real-world 
walking activity measures were calculated from numer-
ous days of activity monitoring and are therefore likely 
a more accurate reflection of a person’s actual walking 
performance in the real world than a measure of walk-
ing capacity conducted at a single point in time in the 
laboratory. This is supported by our finding that the 
walking activity measures were significantly associ-
ated with SBP, whereas the 6MWT was not, and by 
previous work demonstrating that laboratory-based 
measures of walking capacity do not necessarily trans-
late to real-world walking behavior [18, 37–39]. Taken 
together, these findings suggest that when attempting 
to understand (and possibly modify) real-world walking 
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behavior as it relates to cardiovascular risk reduction, 
laboratory-based measures are likely insufficient and 
real-world monitoring is imperative.

Limitations
There are several limitations to consider when inter-
preting the results of this work. First, we made several 
assumptions when determining non-wear time of the Fit-
bit device which could have affected our activity measure 
calculations. For example, a minute with 0 steps could 
be a minute of sedentary time or a minute of non-wear 
time. To increase our confidence in these assumptions, 
we tested multiple non-wear windows and leveraged the 
opinion of an expert clinician. Despite these efforts, it is 
possible that we incorrectly identified non-wear time as 
sedentary time and vice-versa in some cases. However, 
the median percent sedentary time in our sample (82.1%, 
IQR 11.04%) is comparable to previous reports in indi-
viduals with stroke [10, 27, 85–87], increasing our confi-
dence in these assumptions. Second, we were constrained 
to a 60-s sampling epoch for our activity measure calcu-
lations which likely caused an underestimation of activity 
bouts [24, 88] and overestimation of time spent in active 
behaviors [88]. Future studies could consider replicat-
ing our procedures with a device that permits a smaller 
sampling epoch and compare results. Third, while 
cadence has been previously used to quantify the inten-
sity of real-world activity in persons with stroke [10, 22, 
29, 43] and other populations [26], this may not be the 
most appropriate measure of real-world activity intensity 
in people with stroke. Stroke often results in neuromotor 
impairments that can impact gait speed [89] and meta-
bolic efficiency of gait [62, 63] which might confound the 
relationship between cadence and heart rate, which is 
why we did not hypothesize these measures to be most 
important. Thus, additional studies are needed to deter-
mine the relationship between cadence and heart rate in 
people with stroke. Fourth, this work is cross-sectional, 
and we therefore do not know if changes in average bout 
cadence and long sedentary bouts result in changes in 
SBP in people with stroke. Future longitudinal studies 
are needed to confirm our findings. Finally, we used a 
theoretical approach based on a review of the literature 
to develop our theoretical model (Fig. 1) and determine 
which activity measures to include in our statistical anal-
ysis. Alternatively, we could have utilized a data-driven 
approach to determine which activity measures to 
include in the analysis. Thus, future work may consider 
replicating our procedures using a data-driven approach 
and compare results. In a similar vein, future studies 
could consider empirically testing our theoretical model 
using confirmatory factor analysis to better understand 

the relationships between the activity measures and their 
hypothesized measurement domains.

Conclusions
Measures of real-world walking activity, specifically aver-
age bout cadence and long sedentary bouts, were most 
strongly associated with SBP in people with chronic 
stroke. This suggests that the intensity of real-world 
walking and sedentary behavior may be important for 
cardiovascular risk in persons with stroke. These activ-
ity measures were associated with SBP after accounting 
for covariates and walking capacity, suggesting that real-
world activity monitoring is critical for understanding 
the relationship between walking activity and cardio-
vascular risk in people with stroke and this relationship 
cannot be inferred from laboratory-based measures of 
walking capacity. Longitudinal studies are needed to 
determine if changes in average bout cadence and seden-
tary bouts affect SBP and cardiovascular risk in individu-
als with stroke.
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