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Abstract 

Background:  No objective criteria exist for diagnosis and treatment of visual-vestibular mismatch (VVM).

Objective:  To determine whether measures of electrodermal activity (EDA) and trunk acceleration will identify VVM 
when exposed to visual-vestibular conflict.

Methods:  A modified VVM questionnaire identified the presence of VVM (+ VVM) in 13 of 23 young adults 
(34 ± 8 years) diagnosed with vestibular migraine. Rod and frame tests and outcome measures for dizziness and 
mobility were administered. Participants stood on foam while viewing two immersive virtual environments. Trunk 
acceleration in three planes and electrodermal activity (EDA) were assessed with wearable sensors. Linear mixed 
effect (LME) models were used to examine magnitude and smoothness of trunk acceleration and tonic and phasic 
EDA. Welch’s t-test and associations between measures were assessed with a Pearson Correlation Coefficient. Effect 
sizes of group mean differences were calculated.

Results:  Greater than 80% of all participants were visually dependent. Outcome measures were significantly poorer 
in the + VVM group: tonic EDA was lower (p < 0.001) and phasic EDA higher (p < 0.001). Postural accelerations varied 
across groups; LME models indicated a relationship between visual context, postural, and ANS responses in the + VVM 
group.

Conclusions:  Lower tonic EDA with + VVM suggests canal-otolith dysfunction. The positive association between ver‑
tical acceleration, tonic EDA, and visual dependence suggests that increased vertical segmental adjustments are used 
to compensate. Visual context of the spatial environment emerged as an important control variable when testing or 
treating VVM.

Keywords:  Vestibular migraine, Autonomic nervous system, Virtual reality, Virtual environments, Intervention, Visual 
dependence
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Introduction
Individuals presenting with non-specific dizziness are 
often sensitive to conflict between visual and vestibu-
lar signals. This sensitivity has been named in the Inter-
national Classification of Vestibular Disorders by the 
Bárány Society as visual-vestibular mismatch (VVM) [1]. 
VVM is defined by a cluster of symptoms, including false 
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sensations of motion or tilting of the visual surround and 
visual distortions (i.e., blur), that are visually-induced and 
result from vestibular pathology or an unresolved conflict 
between visual and vestibular stimuli [1].

Dizziness due to VVM can be a challenge for clinicians 
because of the absence of an objective biometric meas-
ure that identifies criteria for diagnosis and treatment [2, 
3]. A validated assessment of VVM does exist [4], but it 
relies on anecdotal reports and has not yet been tested 
for reliability as a tool to identify presence of, or objec-
tively characterize VVM. The lack of measurable infor-
mation about the clinical progression of this disorder 
affects the quality of rehabilitative care [5, 6]. Individuals 
may present with varying severity of dizziness, and the 
effectiveness of a treatment intervention may be depend-
ent on its intensity [7]. Thus, effective rehabilitation and 
treatment methods for individuals with VVM have not 
yet been designed.

Our prior research revealed that a large proportion of 
individuals diagnosed with vestibular migraine also test 
positive for VVM (57%) and visual dependency (42%) [8]. 
A strong association between dizziness, visual depend-
ence, and VVM implies that dysfunction in the auto-
nomic nervous system (ANS) might be contributing to 
these orientation disorders [9]. Dizziness, nausea, and 
light headedness are autonomic signs that are elicited 
when vestibular and visual stimuli are in conflict [10]. 
Moreover, individuals with peripheral and central vestib-
ular dysfunction have been shown to exhibit symptoms 
and signs of autonomic dysfunction [10–13]. Electrolytic 
or chemical lesions in the caudal region of the medial 
vestibular nucleus reduced vestibular-elicited activity in 
sympathetic nerves. These results implicate the vestibu-
lar system in regulation of ANS activities that maintain 
the stability of the human body’s internal environment in 
response to changes in external conditions [11, 14, 15].

Sympathetic ANS responses can be assessed by using 
measures of electrodermal activity (EDA; [16–19]). 
Physiologic and subjective findings of a strong relation-
ship between ANS and vestibular symptoms suggest that 
tonic and phasic EDA responses could serve as objec-
tive measures of VVM when in environments presenting 
mismatched or conflicting vestibular and visual signals. 
Thus, we postulated that EDA would provide an insight 
into the modulation of central sympathetic activities in 
individuals with VVM [20].

Of course, the symptoms observed with VVM could 
be the result of a disorder in the vestibular system itself. 
Individuals with unilateral and bilateral vestibular hypo-
function tend to exhibit greater postural sway than 
healthy controls [21]. Intimate connections between the 
vestibular nuclei and cerebellum, cerebellum and frontal 
eye fields, and vestibular nuclei and parietal lobe likely 

contribute to the dizziness and disorientation evoked by 
VVM [22–25]. We postulated that associating the EDA 
with measures of postural sway would provide insight 
about how vestibular and ANS mechanisms interrelate in 
response to a conflict in visual and vestibular inputs.

Our previous [26] study revealed significant differ-
ences in the EDA and postural measures of young adults 
with vestibular migraine compared with healthy young 
adults. In this study, we further explore the changes in 
postural sway and EDA in individuals with vestibular 
migraine when exposed to visual and vestibular conflict 
[27–30]. We hypothesized that individuals with vestibu-
lar migraine who also exhibit symptoms of VVM will 
present with increased EDA and increased postural sway 
compared to individuals with vestibular migraine without 
VVM when exposed to an immersive virtual reality (VR) 
environment that produces visual-vestibular conflict [31]. 
In the attempt to formulate an approach for future inter-
ventions, we also explored whether the environmental 
context (i.e., amorphous moving textures vs. meaningful 
moving images) altered the magnitude of the EDA and 
postural responses.

Methods
Subjects
This study was approved by the Temple University 
Institutional Review Board (protocol #25913) and the 
Ministry of Health of the Kingdom of Saudi Arabia (pro-
tocol # H-05-FT-083). The convenience sample con-
sisted of 23 young adults, 14 females and 9 males, with 
a previous diagnosis of vestibular migraine (average age 
34.74 ± 8 years) who presented to the outpatient Otoneu-
rology and Emergency Departments at Hafer Al-Batin 
Central hospital between the period of December 2020 
and February 2021. Data from the healthy participants 
have been previously reported [26].

Those willing to participate provided informed con-
sent. Of those, 13 participants with vestibular migraine 
tested positive for VVM (+ VVM) and 10 tested nega-
tive for VVM (−VVM) on the Visual-Vestibular Mis-
match Questionnaire (Table  1) [32]. In a separate visit, 
vestibulonystagmography (bi-thermal caloric, positional 
nystagmus, smooth pursuit, random saccade, gaze stabil-
ity, optokinetic nystagmus, and oculomotor testing) was 
performed on all participants who experienced migraine. 
Values of the abnormal caloric testing result were estab-
lished by the clinical laboratory as a directional prepon-
derance of 25% or greater.

Procedures
Participants stood on the center of a standard AIREX 
20" × 16.4" × 2" balance pad (Advanced Medical Tech-
nology Inc., Watertown, MA) with their arms at their 
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sides and their feet about shoulder-width apart. Partici-
pants were asked to maintain an upright standing posi-
tion with their eyes open while wearing a head mounted 
display (HMD) and watching a virtual visual scene for 
3 min. Each exposure to the dynamic visual environment 
was followed by a rest period of at least one min until any 
emerging symptoms of dizziness, nausea, or any discom-
fort were verbally reported as resolved. During the rest 
period, participants were seated and the HMD removed.

Virtual reality environment
Participants were exposed to a three-dimensional com-
plex visual environment generated by the software Pos-
turoVR 0.8.3 (Virtualis, France) projected on the Oculus 
Rift HMD (Oculus Rift, CA). The field of view (FOV) 
of this device is more than 90  deg horizontal (110  deg 
on the diagonal). Vision of the real world is completely 
blocked, thereby providing a strong sense of immersion.

Two virtual environments (a space scene [SPACE] and 
a pedestrian crossing scene [STREET]) were randomly 
presented in one visit (Fig.  1). The space scene was a 
projection of star-like objects, at different sizes and dis-
tances from the participant, that rotated in the yaw axis 
with no cues indicating verticality. This image has been 
previously demonstrated to induce strong sensations of 
self-motion during quiet stance [33–35]. The direction of 
motion was in the direction identified by each participant 
as their dominant hand. The street crossing scene was 
constructed of three-dimensional, recognizable objects 
(i.e., buildings, sidewalks, traffic signals, cars, pedestri-
ans) that moved in multiple directions at varied distances 
from the participant.

Electrodermal activity (EDA)
EDA is a measure of skin conductance and consists of 
a tonic component, also known as skin conductance 
level (SCL), which changes slowly over time (baseline) 
and reveals the active state of the sympathetic nervous 

Table 1  Demographic and clinical characteristics of participants 
with vestibular migraine (n = 23)

Positive visual-vestibular mismatch (+ VVM); Negative visual-vestibular 
mismatch (−VVM); standard deviation (SD); *p < 0.05; **p < 0.01; *** p < 0.001

Variable  + VVM [13] −VVM [10]

Gender

 Female 10 (77%) 4 (40%)

 Male 3 (23%) 6 (60%)

Age (years)

Mean ± SD 34 ± 9 34 ± 8

BMI (kg/m2)***

Mean ± SD 30 ± 8 26 ± 5

Handedness

 Right-handed 13 (100%) 9 (90%)

 Left-handed  −  1 (10%)

Rapid assessment of physical activity

 Active 4 (31%) 1 (10%)

 Under active 8 (61%) 8 (80%)

 Sedentary 1 (8%) 1 (10%)

Activities of balance confidence***

Mean ± SD 71 ± 22 95 ± 12

RFT (visual dependency)
Mean ± SD (angle deviation)**

14 ± 4 10 ± 4

 Dependent 11 (85%) 8 (80%)

 Non-dependent 2 (15%) 2 (20%)

Visual vertigo analog scale***

Mean ± SD 52 ± 13 5 ± 10

Dizziness handicap inventory***

Mean ± SD 48 ± 24 9 ± 19

Vertigo symptoms scale-short for***

Mean ± SD 14 ± 7 5 ± 6

Origin

 Vestibular 7 (54%) 1 (10%)

 Autonomic 6 (46%) 8 (80%)

 Both – 1 (10%)

Fig. 1  Images of the space (left) and street (right) virtual scenes
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system. A phasic component of the EDA, known as the 
skin conductance response (SCR), changes rapidly in 
response to external new, unexpected, and/or arousal-
driven stimuli [17]. Sudden shifts of phasic activity above 
the tonic activity designate the SCR peaks.

Changes in EDA were recorded using the wireless 
Shimmer3 GSR + sensor unit (Shimmer-North America, 
Cambridge MA) that measures changes in skin conduc-
tivity produced by increases in the activity of sweat glands 
at a sampling rate of 128 Hz. The sensor was placed over 
the palmar surface of the medial metacarpal-phalanges of 
the third and fourth fingers of the non-dominant hand. 
Participants were instructed to close their eyes and relax 
until the investigator observed that activity detected and 
displayed by the Shimmer sensor unit remained close to 
a baseline.

Postural control
Trunk triaxial linear acceleration data were tracked with 
a Shimmer3 IMU wearable sensor with a sampling rate of 
128 Hz placed over the L5 vertebral region.

Self‑reported outcomes measures
The presence of VVM, dizziness, balance confidence, and 
the level of physical activity of each individual were eval-
uated at the beginning of the experiment using validated 
clinical tools. The Visual-Vestibular Mismatch Ques-
tionnaire (VVMQ) [32] presents situational questions to 
determine the presence of the cluster of symptoms that 
define VVM. The Visual Vertigo Analog Scale (VVAS) 
[36] ranks the intensity of dizziness in environments with 
dynamic visual input. The Dizziness Handicap Inventory 
(DHI) [37] quantifies the self-perceived impact of diz-
ziness on activities of daily life. The Vertigo Symptoms 
Scale-Short Form (VSS-SF) [38] uses a five-point Lik-
ert scale to determine the frequency of symptoms. The 
Activities of Balance Confidence (ABC) scale [39] is a 
self-reported measure of balance confidence during vari-
ous  motor activities.  The Rapid Assessment of Physical 
Activity [40] assesses the daily level of physical activity. 
Combined, these scales provide a general overview of 
whether dizziness and instability are affecting quality of 
life and daily functional activity.

The presence of visual dependency was confirmed with 
a Rod and Frame test (RFT) available on the PosturoVR 
0.8.3 software (Virtualis, France) and projected on to the 
Oculus Rift [8]. At the beginning of each trial, the vir-
tual rod was set randomly at a 45  deg angle to the left 
or right. The rod was then rotated manually (1 deg/but-
ton press) by the investigator toward a vertical position. 
Participants were instructed to raise their hand to signal 
when they perceived that the rod had achieved a vertical 
position. Throughout these trials, the contextual square 

frame was tilted 28 deg to the left. The same procedure 
was repeated four times and the measure of angular devi-
ation from vertical averaged for later analysis.

Data analyses
EDA measures
Raw EDA data was processed with MATLAB R2020b 
(The MathWorks, Inc., Natick, Massachusetts, USA) 
using the Ledalab-toolbox V3.4.9 (www.​ledal​ab.​de) 
through continuous decomposition analysis (CDA) 
to decompose the skin conductance data into its pha-
sic (SCR) and tonic (SCL) components [41]. The CDA 
method can be applied to full-length data which provides 
a complete decomposition model of the original data. 
All mathematical models of CDA are based on a physi-
ological rationale to avoid underestimation biases due 
to overlapping responses. However, the integrated skin 
conductance response (ISCR), defined as the area (time 
integral) of the phasic component within the response 
window, reflects the phasic EDA response to a given 
event or stimulus. It equals SCR multiplied by the size of 
the response window [Microsiemens ( µS) ∗ seconds(s)]. 
The detection threshold for significant peaks was set to 
0.01 µS as recommended by the Society for Psychophysi-
ological Research [18]. To prevent the common skewed 
distribution of electrodermal response measures, the 
standardized ISCR was computed as [41]:

Postural acceleration measures
Trunk linear acceleration data was processed using 
MATLAB R2020b (The MathWorks, Inc., Natick, Mas-
sachusetts, USA) which provides a formula for calculat-
ing the Root Mean Square (RMS) and the Normalized 
Path Length (NPL). RMS and NPL were calculated for 
the antero-posterior (AP), medio-lateral (ML), and verti-
cal (VERT) planes where a higher values indicate greater 
postural instability [42–45]. RMS is the mean power of 
the entire trial time and NPL is the sum of the absolute 
values of acceleration over time divided by the length of 
time that it takes to travel that distance, thus describing 
smoothness of the trunk motion. RMS and NPL were 
computed using the following formulae [45]:

where t is time duration, N  is the number of time sam-
ples, and pj is the acceleration data at time sample j . Data 
were low-pass filtered using a 4th order Butterworth 
filter with a cutoff frequency of 1.25  Hz. Each trial was 

ISCR = log(1+ |ISCR|)× sign(ISCR)

RMS = N−1

j=1
pj

N

2

NPL =
1

t

N−1

j=1

|pj+1 − pj|

http://www.ledalab.de
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plotted individually and inspected visually to ensure that 
the data were free from significant artifacts.

Statistical analyses
EDA and six postural acceleration measures (RMS 
and NPL each in ML, AP, and VERT axes) were ana-
lyzed using R version 4.0.4 (R Foundation for Statistical 
Computing, Vienna, Austria). Correlations for continu-
ous variables were computed with Pearson correlation 
coefficients with a two-tailed test. A Shapiro–Wilk test 
revealed the data were normally distributed.

Linear mixed-effect (LME) models were constructed 
to statistically assess the effects of the virtual visual envi-
ronments (SPACE and STREET) across groups (+ VVM 
and −VVM) and time. Response variables included 
ISCR, NPL, and RMS with the subject as a random 
effect and a slope fit for each trial. LME models were fit 
using restricted maximum likelihood estimation [46]. 
After examining the full-effects model for EDA phasic, 
EDA tonic, RMS, and NPL responses in the AP, ML, and 
VERT planes, non-significant terms and interactions 
were removed. The final model for estimating the change 
in EDA phasic response included the interaction of group 
with time.

Specific differences between the virtual environments 
and groups were examined with a Wilcoxon signed rank 
test. Effect sizes were calculated using the following for-
mula [47]:

where r is the effect size, Z is the Z statistic, N  is the 
sample size. Effect sizes were classified as follows: no 
effect (0.0 to < 0.1); small effect (0.1 to < 0.3); medium 
effect (0.3 to < 0.5); and large effect (≥ 0.5) [47]. For 
t-tests, the usual Cohen’s d effect size measure was com-
puted [47].

Data from self-reported outcome measures were ana-
lyzed using IBM SPSS Statistics v.23 (IBM Corporation, 
Armonk, N.Y., USA) and reported as mean ± standard 
deviation or as a percentage of participants. The signifi-
cance level was set at α = 0.05 for all analyses. Bonferroni 
post-hoc adjustments were used to adjust for multiple 
comparisons. Differences in demographics and clinical 
outcome scores between the + VVM and −VVM groups 
were assessed using Welch’s t-test. Individuals were 
assigned positive or negative results on the RFT based on 
the criterion of an angle of deviation greater than 5 deg to 
indicate visual dependency [8].

Results
Self‑reported outcome measures
Significant differences were observed on the measures of 
balance confidence (Activities of Balance Confidence or 

r = Z/
√
N

ABC scale), intensity of dizziness (Visual-Vertigo Analog 
Scale or VVAS), impact of dizziness on daily activities 
(Dizziness Handicap Inventory or DHI), and frequency of 
symptoms (Vertigo Symptoms Scale or VSS-SF) (Table 1). 
The + VVM group had significantly lower scores on the 
ABC than the −VVM group (t(131.85) = 12.07, p < 0.001). 
Additionally, the −VVM adults exhibited significantly 
lower (better) scores than the + VVM group on the DHI, 
the VVAS, and the VSS-SF (t DHI (174.54) = −17.12, 
p  <  0.001), (t VVAS (166.68) = − 36.52, p  <  0.001), (t VSS-SF 
(197.44) = − 13.26, p < 0.001, respectively).

RFT testing indicated that 85% of participants in 
the + VVM group and 80% of participants in the -VVM 
group tested positive for visual dependence; because 
this result was not significantly different, the impact 
of visual dependence was not explored further. It 
should be noted, however, that the angle of deviation 
from vertical reported on the RFT was significantly 
higher for the + VVM group than the −  VVM group 
(t(23.30) = − 3.11, p = 0.004).

Postural acceleration measures
The six postural acceleration measures (i.e., RMS and 
NPL each in ML, AP, and VERT axes) revealed large vari-
ability between the two groups across the three minutes 
of exposure to the VR environment (Fig. 2). A Wilcoxon 
signed-rank test revealed significant differences across 
time between the + VVM and −VVM groups, primarily 
in the vertical plane of motion. There was also a signifi-
cant difference with a large effect size at the initiation of 
STREET motion in the measures of RMS-ML (W = 94, 
p = 0.01, r = 0.5) and NPL-ML (W = 119, p = 0.01, 
r = 0.7).

RMS and NPL measures in the AP and ML directions 
did not exhibit significant differences in either environ-
ment (Table 2). There were differing effects of the SPACE 
and STREET environments on the RMS-VERT measures 
of the two groups (Fig. 2). A large effect size was observed 
in the RMS-VERT group means in SPACE (t(40) = −2.30, 
p = 0.02, d = 0.78) and in STREET (t(40) = −2.63, 
p = 0.01, d = 0.89). Significant differences between groups 
were also seen in NPL-VERT with medium to large 
effect sizes across the whole trial period during both 
SPACE (t(40) = −  2.54, p = 0.01, d = 0.43) and STREET 
(t(40) = -3.02, p = 0.004, d = 0.87) (Fig. 2 and Table 3).

EDA measures
The −VVM group presented with higher tonic lev-
els of EDA than the + VVM group (Fig.  3). A signifi-
cant fixed effect of time was observed (F(4,417) = 4.57, 
p = 0.001) where the + VVM group exhibited an esti-
mated − 0.48 μS less EDA tonic activity than the − VVM 
group (t(417) = −  4.31, p < 0.001). With both virtual 
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environments, tonic EDA responses of the − VVM group 
were highest at the initiation of a trial and then dropped 
below zero by the end of a trial.

A significant fixed effect of time was also observed 
for the phasic EDA response (F(4,417) = 6.47, p < 0.001). 
The phasic EDA response in the + VVM group was 

approximately 0.82 μS greater than the −VVM group 
(t(417) = 4.35, p < 0.001). The + VVM group started 
with a lower baseline phasic EDA level than the −VVM 
group (Fig.  3) in both virtual environments, but this 
difference was only significant for the SPACE scene 
(W = 91, p = 0.03, d = 1.05). In the first minute of expo-
sure to virtual scene motion, the phasic EDA response of 
the + VVM group rose to that of the −VVM group. At 
the end of the trial, the −VVM group phasic EDA activ-
ity dropped to close to the level of the + VVM group (see 
Fig. 3).

Effect of visual context
The relationship between the visual environment and 
the dependent variables (RMS and NPL in the ML, 
AP, and VERT axes) was explored with LME models 
across groups (+ VVM and −VVM) and time (Table 4). 
The STREET environment had a significant effect 
(F(1360.30) = 19.72, p < 0.001) on trunk motion in the ver-
tical plane (i.e., NPL-VERT). There was an estimated 4.29 
μS increase in the + VVM group compared to the −VVM 
group (t(42) = 2.45, p = 0.01). In the other two planes, 
NPL values were lower in the + VVM than in −VVM 
group. The estimated fixed effect revealed that NPL-AP 
with the STREET scene was approximately − 0.57 μS less 
in the + VVM than the −VVM group (t(364) = −  2.29, 
p = 0.02); NPL-ML was − 1.09 μS less in the + VVM than 
− VVM group (t(368) = − 2.69, p = 0.005).

Fig. 2  Mean and standard deviations of the RMS (left) and NPL (right) responses in the vertical plane for the + VVM (black line) and − VVM (grey 
line) participants across the period of the trial during the two visual motion scenes (SPACE and STREET). An asterisk (*) indicates a statistically 
significant difference between groups (see Table 3 for values). Root mean square (RMS); Normalized path length (NPL); Vertical (VERT); Positive 
visual-vestibular mismatch (+ VVM); Negative visual-vestibular mismatch (−VVM)

Table 2  Means ± standard deviation (SD) and statistical 
comparisons of postural measures across the two groups for the 
whole trial in each of the two virtual scenes

*Significant differences are in bold

Positive visual-vestibular mismatch (+ VVM); Negative visual-vestibular 
mismatch (− VVM); Root mean square (RMS); Normalized path length (NPL); 
Anteroposterior (AP); Mediolateral (ML); Vertical (VERT)

 + VVM −VVM
Measure Scene Mean ± SD Mean ± SD t-statistic p-value

RMS AP Space 12.65 ± 5.96 12.23 ± 6.71 − 0.18 0.85

Street 12.00 ± 7.85 12.27 ± 7.65 0.14 0.88

RMS ML Space 10.67 ± 3.56 10.21 ± 5.86 − 0.13 0.89

Street 11.10 ± 2.67 9.37 ± 7.46 − 0.81 0.42

RMS VERT Space 8.93 ± 8.92 4.16 ± 2.00 − 2.30 0.02*
Street 7.96 ± 9.64 4.01 ± 6.78 − 2.63 0.01*

NPL AP Space 11.50 ± 4.59 10.14 ± 7.98 − 0.67 0.50

Street 10.62 ± 5.06 9.72 ± 10.28 − 0.60 0.54

NPL ML Space 10.34 ± 3.42 9.19 ± 4.85 − 0.39 0.69

Street 10.49 ± 5.64 7.49 ± 5.40 − 1.71 0.09

NPL VERT Space 9.36 ± 8.20 4.13 ± 2.73 − 2.54 0.01*
Street 7.85 ± 8.91 3.60 ± 4.47 − 3.02 0.004*
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The relationship between visual environment, pha-
sic ISCR, and tonic EDA reveals a possible relationship 
between visual context, postural, and ANS responses 
in the + VVM group that is not as evident in the 
− VVM group (Fig. 4). With + VVM, there is an associ-
ated increase in tonic EDA responses and NPL-VERT 
responses in the STREET scene; ISCR phasic responses 
of the + VVM group also suggest this association in the 
SPACE scene. In contrast, there is a distinct decrease in 
NPL-VERT responses as tonic EDA responses increase in 
the SPACE scene.

Discussion
We have found that EDA and postural sway accelera-
tion responses within a VR environment could distin-
guish between adults with vestibular migraine and 
healthy adults [26]. This current study explored whether 
visual context might be used to further discriminate 
between adults with vestibular migraine with or without 

VVM. We hypothesized that the STREET environment 
would trigger stronger symptoms, and thus, larger EDA 
and postural responses, than the SPACE environment 
because it presented a recognizable visual scene with 
identifiable cues to the performer’s orientation in space 
[21].

Impact of visual context
Individuals that tested positive for VVM responded 
with more frequent postural accelerations in the verti-
cal plane than those testing negative for VVM. In the 
STREET environment, these frequent vertical plane 
adjustments were positively associated with a larger tonic 
EDA. In the SPACE environment, however, postural 
adjustments decreased as the tonic EDA increased. An 
association between increased tonic EDA and improved 
postural performance has been previously reported [24, 
25, 48, 49]. Individuals with high levels of tonic EDA 
were shown to exhibit improved balance confidence and 

Table 3  Confidence interval and effect size of NPL-VERT with respect to time in the two visual environments

*p < 0.05 ** p < 0.01 *** p < 0.001

Scene Statistic 0 min 1 min 2 min 3 min End

SPACE p-value 0.02* 0.01** 0.01** 0.03* 0.01**

CI 95% − 2.98, − 0.21 − 6.44, − 0.67 − 5.45, − 0.42 − 4.90, − 0.17 − 4.12, − 0.68

Effect size 0.47
(Medium)

0.58
(Large)

0.51
(Large)

0.42
(Medium)

0.53
(Medium)

STREET p-value 0.12 0.01** 0.02* 0.01** 0.01**

CI 95% − 3.47, 0.36 − 5.52, − 0.68 − 4.85, − 0.31 − 5.54, − 0.89 − 4.41, − 0.72

Effect size 0.43
(Medium)

0.57
(Large)

0.46
(Large)

0.56
(Large)

0.54
(Large)

Fig. 3  A Phasic (EDA ISCR responses of the + VVM positive (black line) and −VVM (grey line) groups across the trial period of the virtual SPACE and 
STREET environments. B Tonic EDA responses of the + VVM positive (black line) and −VVM (grey line) groups across trial period of the virtual SPACE 
and STREET environments. Positive visual-vestibular mismatch (+ VVM); Negative visual-vestibular mismatch (−VVM)
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reduced center of pressure displacement in response to 
sudden external perturbations. High tonic EDA was also 
positively correlated with higher scores on the ABC scale 
that are indicative of more postural stability and less 
severe dizziness [26].

These findings imply that the presence of recognizable 
objects and verticality cues in the STREET environment 
supported the attainment of postural control and spa-
tial orientation in individuals with VVM. Conversely, the 
nebulous visual context and absence of cues to verticality 
in the SPACE environment was more challenging to the 
resolution of visual-vestibular conflict.

Autonomic and vestibular system interrelations
Our results also align with previous reports of visual 
sensitivity in individuals with vestibular migraine [8]. 
Although all participants exhibited visual dependency, 
it is of interest that those in the + VVM group produced 
the largest deviations from vertical orientation on the 

RFT. The RFT is a validated tool for otolith-utricular 
assessment as it measures the degree to which a subject 
uses available visual cues to locate gravitational verti-
cal [50, 51]. These findings suggest the possibility of 
canal-otolith dysfunction in + VVM adults. The posi-
tive association emerging between vertical acceleration 
and visual dependence could imply a compensation for 
this canal-otolith dysfunction by increasing vertical seg-
mental adjustments in order to achieve a perception of 
verticality.

There is prior evidence that canal-otolith function is 
strongly linked to both anticipatory and compensatory 
postural control [52, 53] as is the level of activation in the 
ANS. Tonic EDA reflects the level of central excitation 
(i.e., central set) that provides a readiness for expected 
disturbances. Phasic EDA is the response to a specific 
event. Therefore, the lower tonic EDA levels exhibited 
by the + VVM group at the initiation of each trial implies 
decreased central excitation. Such decreased central 

Table 4  Linear mixed model results of time, + VVM, and virtual environment

Positive visual-vestibular mismatch (+ VVM); time of exposure to scene motion (Time); Integrated skin conductance response (ISCR); root mean square (RMS); 
normalized path length (NPL); anteroposterior (AP); mediolateral (ML); vertical (VERT). *p < 0.05 **p < 0.01 ***p < 0.001

Terms Factors Sum Sq Mean Sq Num df Den df F value

ISCR Phasic Response  + VVM 0.02 0.02 1 417 0.03

Time 45.79 11.44 4 417 18.03***
 + VVM*Time 16.43 4.10 4 417 6.47***

Tonic Response  + VVM 0.01 0.01 1 417 0.008

Time 13.77 3.44 4 417 4.57**
 + VVM*Time 5.66 1.41 4 417 1.88

NPL AP  + VVM 0.01 0.01 1 37.21 0.001

Time 71.27 17.81 4 365.46 2.69*
STREET 34.67 34.67 1 364.92 5.25*
 + VVM*Time 56.32 14.08 4 365.46 2.13

NPL ML  + VVM 7.63 7.63 1 40.16 0.46

Time 235.72 58.93 4 370.05 3.60**
STREET 127.20 127.20 1 368.69 7.79**
 + VVM*Time 78.94 19.73 4 370.05 1.20

NPL VERT  + VVM 15.73 15.73 1 41.20 4.76*
Time 43.56 10.89 4 369.70 3.29*
STREET 45.28 45.28 1 369.35 13.70***
 + VVM*Time 32.26 8.06 4 369.70 2.44*

RMS AP  + VVM 3.24 3.23 1 23.21 0.16

Time 103.04 25.76 4 359.00 1.34

STREET 9.92 9.92 1 358.09 0.51

 + VVM*Time 112.07 28.01 4 359.00 1.46

RMS ML  + VVM 4.43 4.42 1 41.84 0.15

Time 411.06 102.76 4 372.99 3.49**
 + VVM*Time 103.97 25.99 4 372.99 0.88

RMS VERT  + VVM 11.99 11.99 1 40.73 2.93

STREET 18.30 18.30 1 375.78 4.47*
 + VVM*STREET 6.13 6.13 1 375.78 1.50
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excitation has been observed previously in individuals 
with canal-otolith dysfunction [54]. The highest level of 
phasic ISCR occurred in both groups when the VR envi-
ronment was initially projected. This would suggest that 
either group was capable of matching their response to 
an anticipated event with what actually did occur in the 
environment. From these results we might deduce the 
role of the ANS in postural control as that of resolving 
symptoms of visual motion sensitivity during exposure to 
complex visual environments.

Clinical implications
Both visual context and complexity of the spatial envi-
ronment surfaces from these findings as important 
task variables to control with individuals suspected of 
having VVM. Previous evidence has shown that the 
amount of uncertainty in visual stimuli strongly influ-
ences the amount of induced postural instability [21]. 
Motion of the visual world was less complex in the 
SPACE environment as it was presented only in the 
yaw plane; however, the absence of visual cues to verti-
cal presented a challenge to individuals with VVM. The 

STREET environment contained multiplanar motion; 
however, it provided recognizable contexts of a street 
with 3D objects at randomly generated heights, moving 
cars, and walking pedestrians. The STREET environ-
ment also projected a flow of pedestrians appearing to 
move toward, away, and next to the participants. Fre-
quent postural adjustments were observed consistent 
with prior findings from immersive environments con-
taining moving avatars that elicited distinct postural 
sway behaviors in people with vestibular disorders [55].

There were some limitations of this study. First, cer-
vical (cVEMP) and ocular (oVEMP) vestibular evoked 
myogenic potential assessments were not available 
which limited our ability to confirm the integrity of oto-
lith function. Because of COVID-19 restrictions, this 
study had a small sample size and only one recruitment 
site which could limit the generalizability of our find-
ings. Lastly, only static balance control was assessed. 
Future studies that integrate assessment of dynamic 
balance tasks and measures may provide further 
insights into the impact of VVM in adults with vestibu-
lar disorders.

Fig. 4  A ISCR phasic and B tonic electrodermal activity (EDA) (x-axis) plotted against normalized path length (NPL) of trunk acceleration in the 
vertical direction (y-axis) while viewing the STREET (top 2 graphs) or SPACE (bottom 2 graphs) virtual environment. Scatterplot on the left in each 
graph portrays responses of the −VVM group; scatterplot on the right portrays responses of the + VVM group. Positive visual-vestibular mismatch 
(+ VVM); negative visual-vestibular mismatch (−VVM)
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Nevertheless, the results of this study advance our 
understanding of the behavioral impact of dizziness with 
VVM and can help to shape future guidelines for custom-
izing visual environment demands in vestibular rehabili-
tation. We have developed a conceptual model (Fig.  5) 
that encapsulates the main results of this study and sug-
gests directions for future intervention. This schematic 
accentuates the importance of both the vestibular (canal-
otolith) system and the autonomic nervous system to 
compensatory postural control.

As illustrated in Fig.  5, scores from subjective out-
come measures combined with measures of tonic EDA 
activity can provide a meaningful indication of otolith 
function. The integrity of the otolith organs influences 
CNS integration processes and, therefore, the ability to 

produce successful compensatory postural responses. 
Dysfunction in the otolith organs results in an inac-
curate perception of vertical orientation. Segmental 
adjustments (measured through trunk accelerations) 
were influenced by perception of the visual environ-
ment and might be used as augmented feedback to 
enhance somatosensory information. This would over-
whelm canal-otolith disinformation and bias the per-
former toward successful postural behaviors.

Conclusions
The results of this study support our hypothesis that 
vestibular   and autonomic systems are jointly respon-
sible for postural control and spatial orientation in 
complex visual environments. When combined with 

Fig. 5  Conceptual schematic summarizing the results of this study and future recommendations for treatment of VVM. A Visual, vestibular, and 
proprioceptive pathways were simultaneously disturbed during the experimental protocol, thereby modifying the sensory-motor integration task. 
B Results of both objective (EDA) and subjective (RFT and outcomes) measures revealed distinct differences between the + VVM and −VVM groups, 
possibly indicative of dysfunction of the vestibular otoliths with + VVM. C Impaired sensory processing in the CNS produces an impaired perception 
of vertical in the + VVM group, resulting in impaired compensatory postural behaviors. Potential interventions should focus on delivering 
augmented feedback to both segmental and higher order mechanisms in order to compensate for canal-otolith dysfunction. VVM  visual-vestibular 
mismatch, CNS  central nervous system, ANS  autonomic nervous system, EDA  electrodermal activity, RFT  Rod and Frame test, ABC  Activities of 
Balance Confidence scale, DHI  Dizziness Handicap Inventory, VVAS  Visual Vertigo Analog Scale, VSS  Vertigo Symptoms Scale
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parameterized visual environments, quantitative meas-
ures of autonomic nervous system responses can sup-
port diagnoses of VVM. Scores from subjective clinical 
outcome measures combined with measures of tonic 
EDA activity can provide a meaningful indication of 
otolith function. The positive association between ver-
tical acceleration, tonic EDA, and visual dependence 
suggests that vertical postural adjustments may be used 
to compensate for dysfunction in the vestibular laby-
rinths, however, clinicians need to consider the con-
text of the visual environment when testing or treating 
VVM.
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