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Abstract 

Background:  Restoring movement after hemiparesis caused by stroke is an ongoing challenge in the field of reha-
bilitation. With several therapies in use, there is no definitive prescription that optimally maps parameters of rehabilita-
tion with patient condition. Recovery gets further complicated once patients enter chronic phase. In this paper, we 
propose a rehabilitation framework based on computational modeling, capable of mapping patient characteristics to 
parameters of rehabilitation therapy.

Method:  To build such a system, we used a simple convolutional neural network capable of performing bilateral 
reaching movements in 3D space using stereovision. The network was designed to have bilateral symmetry to reflect 
the bilaterality of the cerebral hemispheres with the two halves joined by cross-connections. This network was then 
modified according to 3 chosen patient characteristics—lesion size, stage of recovery (acute or chronic) and structural 
integrity of cross-connections (analogous to Corpus Callosum). Similarly, 3 parameters were used to define rehabilita-
tion paradigms—movement complexity (Exploratory vs Stereotypic), hand selection mode (move only affected arm, 
CIMT vs move both arms, BMT), and extent of plasticity (local vs global). For each stroke condition, performance under 
each setting of the rehabilitation parameters was measured and results were analyzed to find the corresponding 
optimal rehabilitation protocol.

Results:  Upon analysis, we found that regardless of patient characteristics network showed better recovery when 
high complexity movements were used and no significant difference was found between the two hand selection 
modes. Contrary to these two parameters, optimal extent of plasticity was influenced by patient characteristics. For 
acute stroke, global plasticity is preferred only for larger lesions. However, for chronic, plasticity varies with structural 
integrity of cross-connections. Under high integrity, chronic prefers global plasticity regardless of lesion size, but with 
low integrity local plasticity is preferred.

Conclusion:  Clinically translating the results obtained, optimal recovery may be observed when paretic arm explores 
the available workspace irrespective of the hand selection mode adopted. However, the extent of plasticity to be 
used depends on characteristics of the patient mainly stage of stroke and structural integrity. By using systems as 
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developed in this study and modifying rehabilitation 
paradigms accordingly it is expected post-stroke recovery 
can be maximized.

Keywords:  Hemiparesis, Rehabilitation, CIMT, BMT, 
Visuomotor pathway, Computational modelling, Stroke 
recovery

Background
Stroke is the second most leading cause of death globally 
[1] while leaving 50% of the survivors disabled for life [2]. 
It is caused as a result of loss of blood supply to a part 
of the brain either due to ischemia (block in a cerebral 
blood vessel due to a clot) or hemorrhage (rupture of 
the blood vessel) leading to a lesion. The most common 
disability after stroke is weakness in the upper limb [3] 
contralateral to the damaged hemisphere resulting in a 
condition known as hemiparesis [4].Since the upper limb 
is compromised, the quality of life after stroke is severely 
affected [5] and the subjects become dependent on car-
egivers for their day-to-day lives [6]. In order to restore 
the lost functionality, physiotherapists often administer 
physical therapy as a rehabilitative strategy to patients 
[7].Rehabilitative therapy is of different kinds, depend-
ing on the type of setting and movements used (for a 
detailed review, please see [8]). For example, Constraint-
Induced Movement Therapy [9] (CIMT) advocates mov-
ing only the affected arm while restraining the intact arm 
to accomplish various tasks that one might encounter in 
daily life. This therapy was developed in order to encour-
age spontaneous use of the affected arm and overcome 
learned non-use. In contrast, Bimanual Therapy [10] 
(BMT) endorses moving both arms simultaneously to 
specific targets placed in the workspace. This therapy 
was developed in order to provide training for tasks that 
require bimanual movements, since many tasks in daily 
life require coordination between the two arms. As can 
be seen from the definitions, the two therapies given here 
are apparently contradictory to each other as one views 
the healthy arm to be opposing the paretic arm while the 
other views it as being assistive. However, these thera-
pies can be grouped together broadly as task-oriented 
rehabilitation [11] as they are administered as tasks to be 
completed by the patients. In such therapies, patients are 
often advised to keep practicing the task until they are 
perfected.

Though task-oriented rehabilitation has been around 
for long, recently, doubts have been raised about its 
actual efficacy. When using task-oriented rehabilitation 
practices, it is found that patients are able to perform 
well only if the testing conditions are identical to the 
training conditions indicating that it leads to poor reten-
tion [12] and less generalization [13]. On the contrary, 
introducing variability in practice has been shown to 

increase retention and transfer of skill to other unlearned 
tasks [14]. Additionally, a new task paradigm devised by 
Krakauer and Cortés [15] has proposed that encouraging 
patients to make self-chosen movements in a rich envi-
ronment can lead to higher recovery levels compared 
with dull, repetitive task-oriented practice. Further, since 
the movements are self-chosen, the entire movement/
action space is available for the patients to explore and 
are not restricted by the constraints dictated by a task. 
Hence, the complexity of the movement is higher under 
such a paradigm compared to task-oriented rehabilita-
tion. (However, it should be noted that this paradigm 
was tested on a subset of patients with subacute stroke, 
with whom it has not yielded encouraging results [16]. 
Therefore, this technique still needs more vigorous test-
ing, with multiple patient groups, before being accepted 
as a mainstream rehabilitation technique). Thus, there 
are several parameters that need to be considered while 
choosing a rehabilitation paradigm.

In this study, we wanted to develop a computational 
model capable of understanding the effect of these 
parameters on recovery after stroke and how they need 
to be modified under different patient characteristics. We 
chose reaching as the patient behaviour to replicate with 
the model. Stroke was then induced in the model, and 
recovery patterns were observed. Several computational 
models implement a similar process of capturing the 
reaching behaviour of humans (for an extensive review, 
see [17]). One approach taken by these models is to rep-
licate the brain’s sensory-motor loop [18–20]. The move-
ment performed is captured by the sensory module and 
fed back to the motor module, which uses it to compare 
the difference between intended action and performed 
action similar to the brain. The model then tries to 
reduce the error between the intended and actual move-
ments. Models can also be developed for specific reha-
bilitation therapy to understand its effect on recovery 
[21]. However, since these models have separate mod-
ules dedicated for each brain area, as the complexity of 
the movement increases, the model’s computational cost 
also increases while still being designed only to address a 
specific task or a class of tasks or implement a particular 
therapy. There are also several predictive models that use 
patient data (lesion size, location, time from onset, initial 
impairment, etc.) to predict recovery over a time frame 
[22, 23]. But such models usually only explain recovery in 
a particular group of patients while classifying the rest as 
outliers incapable of complete recovery.

For the current study, we wanted to replicate the reach-
ing behaviour observed in stroke patients. Though other 
models have attempted to do this, they all face the same 
issue of being very restricted in use only with specific 
therapies or specific patient data. The aim of our study 
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was to develop a model that can be used with multiple 
therapies in order to allow a comparison between them 
to find the optimal therapy for a given set of patient 
characteristics.

Recently several studies have shown the similarity in 
activity between the different convolutional layers of the 
convolutional neural networks (CNNs) and sensory sys-
tems in the brain—both visual [24] and auditory cortex 
[25]. Additionally, these studies have also shown that 
optimizing the network architecture for a given task, 
results in connectivity similar to that observed in the 
brain [25]. Taking this as inspiration, we used convolu-
tional layers on the input side of the network to model 
the visual side of the visuomotor pathway. The output 
side of the network consists of a multilayer perceptron, 
with a single hidden layer, whose output is the muscle 
activations required to reach a given target in 3D space. 
The network is trained as a whole with the input being 
an image consisting of a sphere representing the tar-
get position in 3D space while the output is the muscle 
activations required by the arm to reach the target. The 
network is organised as a bilateral architecture to resem-
ble the bilateral organisation of the brain. Similar to the 
two hemispheres of the brain, the CNN is divided into 
two halves, where the output from each half controls the 
movement of the respective arm. For easy depiction, we 
assume that each half of the network controls the cor-
responding ipsilateral arm, instead of the more realistic 
contralateral arm. By inducing stroke in one of the halves, 

we were able to selectively impair the corresponding arm 
resulting in hemiparesis. To this model of hemipare-
sis, rehabilitation therapies of different kinds were then 
administered to and the performance after each was 
measured and compared. By this comparison, we were 
able to identify optimal rehabilitation protocol for each 
condition of stroke. However, it is to be noted that with 
the current network, we try to map the behaviour of the 
network to the behaviour seen in stroke patients, in par-
ticular their reaching behaviour. Thus, with the current 
model we are not trying to replicate the neural activity 
pattern of every layer independently in the cortex, but 
only model a gross similarity with the visuomotor path-
way of the brain, with the lower layers of the network 
representing the visual areas and the higher layers, the 
motor areas. Further, in order to reduce the model com-
plexity, we have greatly simplified the working of both the 
visual and motor areas to only those required for the task 
at hand.

Methods
Arm model
A two-link arm model is used with three degrees of 
freedom: (i) elbow flexion, (ii) shoulder flexion, and (iii) 
shoulder rotation and is hence capable of moving in a 
3D workspace. Each degree of freedom is controlled by 
an agonist–antagonist muscle pair with each arm con-
trolled by 6 muscles in total (schematic shown in Fig. 1). 
The network controls two such arms—right and left. 

Fig. 1  A A two link arm model with 2DoFs at the shoulder and 1DoF at the elbow. B The configuration of the two arms at initial instant before 
performing rotations
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The output of the network is the 12 muscle activations 
required for the arms to reach a visually presented tar-
get in the 3D-workspace. The origin of the workspace 
is considered to be in the hollow of the neck, between 
the clavicle bones of the shoulder. The right shoulder is 
at coordinates [0.15,0,0] and the left shoulder is at coor-
dinates [− 0.15,0,0]. The muscle activations obtained at 
the output of the network are used to calculate the elbow 
and shoulder angles, which is then used to find the posi-
tion of the end effector. This position is then compared 
with the actual target position given as input to the net-
work (described in the next section). The error between 
these two values is then backpropagated through the 
network, and the weights of the network are modified 
accordingly.

Angles from the corresponding muscle activations are 
calculated as follows,

where, MNAg is the muscle activation input to the agonist 
muscle and MNAn is the muscle activation to the antago-
nist muscle.

Shoulder flexion : θS1 =
(

MNAg(S1) −MNAn(S1)

)π

2
+

π

2

Shoulder rotation : θS2 = MNAg(S2) −MNAn(S2)
π

2
+

π

2

Elbowflexion: θE =
(

MNAg(E) −MNAn(E)

)π

2
+

π

2

RotRE =





cos θE 0 − sin θE
0 1 0

sin θE 0 cos θE





RotRS1 =





cos θS1 0 − sin θS1
0 1 0

sin θS1 0 cos θS1





RotRS2 =





cos θS2 − sin θS2 0
sin θS2 cos θS2 0

0 0 1





RotLE =





cos θE 0 sin θE
0 1 0

− sin θE 0 cos θE





RotLS1 =





cos θS1 0 sin θS1
0 1 0

− sin θS1 0 cos θS1





The above rotation matrices are used to calculate the 
position of the end effector along with the angles calcu-
late above, as follows,

where, Ho , Eo and So are the starting coordinates of the 
hand ([0.15, 0, 0.6] for right and [− 0.15, 0, 0.6] for left 
(0.6 is the assumed length of the whole arm)), elbow 
([0.15, 0, 0.3] for right and [− 0.15, 0, 0.3] for left (0.3 
is the assumed length of the upper arm)) and shoulder 
([0.15, 0, 0] for right and [− 0.15, 0, 0] for left) respec-
tively. We assumed the arm length to be 0.6 units. The 
length from the shoulder to elbow and elbow to wrist 
were assumed to be equal (0.3 units each) to make the 
computation simpler. We also assumed the shoulder 
length to be 0.3. The origin is supposed to be centered at 
the forehead, and hence the left shoulder’s x-coordinate 
was at − 0.15 while the right was at + 0.15.

Visual Input Generation
The inputs to the CNN are generated using Blender 
2.8 [26, 27], a free and open-source software used to 
develop animations and video games. For this study, we 
used the software to create input images for the net-
work. The image consists of a coloured sphere placed 
at the target position (i.e., centre of the sphere corre-
sponds to the target position), in front of a blank wall. 
Three such datasets are generated for each position with 
each dataset differing in colour and size of the sphere 
to ensure the network learns to reach the centre of the 
sphere and is not distracted by other features of the 
object like size or colour. As the position of the target 
is moved, the size of the sphere increases or decreases 
depending on its distance from the camera. A light 
source is used in the Blender environment to illuminate 
the scene (constraint of the software). Depending on the 
position of the target with respect to the light source, 
the sphere casts a shadow of varying size and length. 
Additionally, a glare is cast on the sphere depending 
on its position from the light source. In order to ensure 
that the network does not get biased to one of these fea-
tures and instead uses them efficiently to estimate the 
position of the target, we created different datasets with 
the same target positions, but using spheres of different 

RotLS2 =





cos θS2 sin θS2 0
− sin θS2 cos θS2 0

0 0 1





End effector position : H R/L
e =

[

(Ho − Eo)

(

Rot
R/L
E

)

+ Eo

]

[

Rot
R/L
S1

][

Rot
R/L
S2

]

+ So
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sizes and colour. Since the target position to be esti-
mated is in 3D, stereovision is incorporated in the input 
by using two input channels that are laterally shifted 
(left–right disparity) instead of a single channel. To do 
this, two cameras are placed in the scene at a distance 
analogous to the interocular distance. Representative 
images of the input used are given in Fig. 2.

Along with the images, two binary Hand Selection 
Parameters (HSPs) are fed to the network that specify 
which arm is to be moved to reach the target for that 
particular input. Thus, the hand selection mode is set 
with the help of HSPs (described in Table 1) and play a 

vital role in replicating unimanual or bimanual therapy 
conditions in the network.

As we can see, from the table, four types of move-
ment are considered—no movement, bimanual, 
unimanual right and unimanual left. Under each con-
dition, the network is trained with 3 different coloured 
targets of 3 sizes at 1174 target positions (total—
4*3*1174). For testing, 450 target positions were con-
sidered (total—4*3*450).

Testing the performance of the network
For the optimization of the network architecture, per-
formance of the network over all targets and all actions 
(specified by the two HSPs) is tested. Quantification of 
the performance is expressed in terms of Reaching Error 
(RE) defined as follows,

where, Xtarg is the 3D coordinates of the target; Xarm is 
the 3D coordinates of the arm (obtained from HR/L

e ).
The smaller the value of RE, the higher the perfor-

mance of the network. For the stroke studies, only the 
tasks in which either one or both the arms are active 
are considered i.e., the tasks with the HSPs set to [0 0] 
are removed from the analysis. This was done because 
the performance of the arm under rest condition is not 
affected by stroke and hence measuring recovery under 
this condition seems meaningless.

Network architecture
In order to simulate hemiparesis, a network with bilateral 
symmetry is required. For this, we started with a regular 
CNN with 5 convolutional layers and 3 fully connected 
layers, split vertically into two symmetrical halves with 
each half controlling one arm. The two retinal images of 
the target are then fed to this network and the output of 
the network acts as the motor neuronal pool controlling 
the activations of the muscles of each arm.

Since the network is split into two, two kinds of feed-
forward connections are possible between successive 

RE =

∥

∥Xtarg − Xarm

∥

∥

2

Fig. 2  Visual input used in the study

Table 1  Description of hand selection parameters

Rest* position for Left Arm—(0.15,0.27,0.3); Right Arm—(0.15,0.27,0.3). (*Calculated by setting activations for all muscles at 0.5)

HSP#1 HSP#2 One object in the workspace Two objects in the workspace

0 0 Both arms at their respective home positions Both arms at their respective home positions

0 1 Right arm moves to target; Left arm at left home position (Uni-
manual Right Task)

Right arm moves to target in right workspace; Other target is 
ignored; Left arm at left home position (Unimanual Right Task)

1 0 Left arm moves to target; Right arm at right home position 
(Unimanual Left Task)

Left arm moves to target in left workspace; Other target is ignored; 
Right arm at right home position (Unimanual Left Task)

1 1 Both arms move to the same target (Bimanual Joint Task) Each arm moves to the corresponding target (Bimanual Independ-
ent Task)
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layers of the network—ipsilateral and contralateral. The 
ipsilateral connections on either side were maintained 
at 100%—regular connectivity from the previous layer to 
the next layer at all layers as in a standard CNN. In con-
trast, the contralateral connections (cross-connections) 
were optimized and given only at two layers—between 
the first two convolutional layers and the first two fully 
connected layers. This network was then used to carry 
out further studies. The optimization process that led to 

this architecture is discussed in the Additional File 1 pro-
vided (Additional File 1). The optimized architecture is 
shown below in Fig. 3. The hyperparameters used in the 
network are listed in Table 2.

Lesion study
In this study, two stages of stroke conditions were ana-
lyzed—acute and chronic stroke. Stroke is induced by set-
ting the activity of certain selected neurons to zero. After 

Fig. 3  Network architecture used in the study. Blue bars indicate convolutional layers while yellow bars indicate fully connected layers

Table 2  Hyperparameters used in the network

Learning rate used with the network is 0.0001

Layer no. and type Activation 
function used

Regularization 
used

No. of feature 
maps/nodes 
(L + R)

Kernel Size Stride length Pooling size Pooling 
Stride 
length

1 (Convolutional Layer) Relu L2 2 + 2 (5,5) (1,1) (2,2) (2,2)

2 (Convolutional Layer) Relu L2 4 + 4 (5,5) (1,1) – –

3 (Convolutional Layer) Relu L2 8 + 8 (5,5) (1,1) – –

4 (Convolutional Layer) Relu L2 4 + 4 (5,5) (1,1) – –

5 (Convolutional Layer) Relu L2 2 + 2 (5,5) (1,1) – –

6 (Fully connected layer) Sigmoid L2 50 + 50 – – – –

7 (Fully connected layer) Sigmoid L2 30 + 30 – – – –

8(Fully connected layer) Sigmoid L2 6 + 6 – – – –



Page 7 of 21Elango et al. Journal of NeuroEngineering and Rehabilitation          (2022) 19:142 	

this, various rehabilitation therapies were administered 
to the network. Recovery pattern after rehabilitation was 
analyzed in order to understand preference of one ther-
apy over the other under the given stroke conditions.

Inducing stroke in the network
Stage of  recovery: acute stroke  For acute stroke, a few 
nodes (n = 5, 10, 15 and 20 out of the 30 nodes present) 
were selected on the left half of the penultimate layer (the 
layer prior to the last/output layer) of the network and their 
activities were set to zeros. The lesion was maintained in 
the same site for  all the models in order to ensure uni-
formity in the resulting impairment. In a clinical setting, 
this would translate to recruiting patients for a study with 
similar lesion characteristics. The nodes to be set to zero 
was selected in order, for e.g., for lesion size of 5 nodes, the 
nodes 1 to 5 were set to 0, while for a lesion size of 10 nodes, 
the nodes 1 to 10 were set to 0 and so on. Since the left 
half of the network was only connected to the left arm, if 
the lesion was on the left half, only the performance of the 
left arm was affected. The reduction in performance was 
reflected in the RE of the left arm measured across targets, 
while the right arm remained intact and unaffected. In 
this fashion, hemiparesis was induced in the network. In 
this study, we only consider the left arm to be the paretic 
arm, while the right arm is maintained as the healthy arm. 
Due to the symmetry of the network, the methods/results 
obtained here for the left arm can be easily translated to the 
right arm.

Stage of recovery: chronic stroke  To replicate the learned 
non-use scenario [28] observed in chronic stroke patients, 
after inducing the lesion, we trained the model for 10 
epochs under HSP = [0 1] modality, thereby encourag-
ing the movement of only the non-paretic arm while 
the paretic arm is always at rest—at home position (The 
number of epochs was fixed at 10 as not much increase 
in damage was observed upon increasing the number of 
epochs (refer to Fig. 4).). A model trained in such a way 
is then rehabilitated under the chosen therapeutic proto-
cols, similar to the acute stroke models, and the recov-
ery between the two models is compared. In the current 
study, a very simplistic arm model is chosen, wherein the 
properties of the musculature are largely ignored and only 
the kinematics of the arm are used for modelling. Hence 
the deterioration of muscles that occur due to and after 
stroke are not considered while modelling chronic stroke.

The number of epochs used to obtain the chronic 
model is in line with those used in other similar studies 
[29] (healthy model uses 30 epochs—yielding a ratio of 
1/3 for chronic/healthy similar to a ratio of 1/4 in the Bal-
lester et al. model).

Varying corpus callosum (CC) integrity
Reduction in the structural integrity of CC has been 
observed in some patients after stroke [30–32]. The 
cross-connections in the network are similar to the CC 
in the brain. By varying the connection strength of the 
cross-connections, the structural integrity of the network 
can be compromised. The cross-connections associated 
with the penultimate layer was used for this paradigm. 
To do this, we used a method similar to the one used to 
create lesions is employed. Thus, for a given percentage 
of integrity (percentages considered, p = 0.5, 0.7 and 0.9), 
the corresponding number of cross-connections ((1 − 
p) × total number of connections) are chosen randomly 
and these values are set to zero. This is only done to the 
cross-connections on the motor region of the final opti-
mized network as it is the CC on the motor side that is 
found to play a greater role in recovery in clinical study 
[30]. This is done to both acute and chronic stroke mod-
els and performance of such a model after rehabilitation 
was analysed.

Administering rehabilitation therapy in the network
Analysing effect of  complexity of  movement: stereotypic 
vs exploratory movement condition  Therapy is admin-
istered in two different formats in the network—using 
stereotypic or exploratory movements. Stereotypic move-
ments are used to replicate task-oriented rehabilitation 
in which, the movements are inspired by those used in 
daily life and are restricted to a particular region in the 
workspace. To capture this, under stereotypic condition, 
the inputs used are confined to a sphere in the workspace 
(Fig. 5a). The M points chosen from the sphere are repeat-

Fig. 4  Reaching Error vs Number of epochs retrained for models with 
different lesion sizes. As the number of epochs used is increased the 
damage to the network also increases. However, there is a saturation 
after 10 epochs with the models showing no significant difference in 
damage with increasing number of epochs
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edly presented (N times) during therapy to capture repeti-
tive practice used in task-oriented rehabilitation, result-
ing in M × N (= P = 300) points used for therapy. For the 
Exploratory workspace (Fig.  5b), the entire region used 
during training is used for the rehabilitation, but with 
much fewer points considered (300 points for rehab vs 
1173 for training healthy model). Thus, the final number 
of points used under both conditions are equal (P = 300 
for both). The workspace for Exploratory is defined as fol-
lows, for left − 0.6 < x < 0, 0 < y < 0.6, − 0.1 < z < 0.5 and for 
right—0 < x < 0.6, 0 < y < 0.6, − 0.1 < z < 0.5. Comparatively, 
the Stereotypic workspace is much smaller, for left—-
0.3 < x < − 0.2, 0.25 < y < 0.35, 0.05 < z < 0.15 and for right—
0.1 < x < 0.2, 0.25 < y < 0.35, 0.05 < z < 0.15.

Analysing effect of hand selection mode: CIMT vs BMT  In 
order to replicate CIMT, the inputs generated under the 
Stereotypic and Exploratory conditions are used with 
the HSPs set to [1 0]. Thus, only the affected arm (left) 
is moved while the unaffected arm (right) remains at 
rest (home) position. For BMT, both arms are active, and 
hence the HSPs are set to [1 1]. Depending on the num-
ber of targets (objects) in the workspace, the arms either 
reach the same target or reach separate targets under 
BMT condition.

Analysing the  effect of  the  extent of  plasticity: global 
vs local  For patients with high impairment or in the 
chronic phase of stroke, when conventional therapy fails, 
studies have shown that integrating multisensory stimuli 
in the environment can help in recovery [33]. This is made 
possible because they often involve activation of multiple 
sensory areas which serve as alternative pathways that 
can be used by the brain to compensate for the cell loss 
caused by the stroke. Trying to capture the essence of this 
philosophy, we varied the number (or strength) of con-

nections that were available for retraining. Under local 
plasticity condition, only the connections associated with 
the lesioned layer were retrained. Whereas under global 
plasticity condition, the connections in the entire network 
were retrained.

Statistical analysis
The mean RE across the input space was the final param-
eter used to measure performance. For the stroke stud-
ies, 5 models trained with random weight initialization 
were used and the mean values averaged across these 5 
individually trained models were used for final analysis 
and comparison. Since there are many treatment groups 
to be compared, one-way ANOVA test was used fol-
lowed by a Tukey HSD test. The significance level was 
set at psig = 0.05. Before running the ANOVA test, Lev-
ene test was used to check for homogeneity of variance. 
For those groups/conditions that violated this test, Welch 
correction was applied to the ANOVA test and Dunn-
Bonferroni test was selected as the post-hoc test for these 
groups. Again, significance value was set at psig = 0.05. All 
the analyses were run on Python implementation using 
appropriate modules/libraries. The p-values obtained for 
each comparison is provided in Additional File 2.

Results
In this study, we present a computational model of biman-
ual reaching which can be used to map stroke character-
istics to parameters of rehabilitation. To achieve this, we 
used a CNN model to replicate the visuomotor pathway in 
the brain. The characteristics of stroke chosen were lesion 
size, time since stroke onset (Acute vs Chronic) and struc-
tural integrity of the network. Similarly, three parameters 
were chosen to define the rehabilitation paradigm—com-
plexity of movement, participation of the unaffected arm 

Fig. 5  Stereotypic and Exploratory conditions used for therapy/retraining in the model. Red dots indicate targets for right arm, while blue dots 
indicate targets for left arm
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during rehabilitation (movement type) and the number of 
connections available (local vs global) for retraining.

Acute stroke
Acute stroke was induced in the network by setting 
the activity of a few selected nodes to zeros. This in 
turn reduces the performance of the network which 
can be quantified by the Reaching Error (RE) defined 
as the Euclidean distance between the desired (target) 
and the actual position of the arm. The plots shown in 
Fig. 6 indicate the error exhibited by the network before 
(healthy case) and after inducing lesion. From the plot 
for the healthy network, it can be seen that the network 
is able to reach to almost all the points in the workspace 
efficiently. However, a network with a lesion finds it dif-
ficult to reach certain areas and this inaccessible area 
seems to expand as the lesion size is increased. By inac-
cessible area, we mean targets with RE greater than a 
threshold of 0.06 (this value is chosen since it is 1/10th 
the actual length of the arm). In the Fig. 6, we have plot-
ted the error (RE) shown by the network for a given tar-
get. Each of the points in the 3D plot represents a target 
position presented as input to the network. The colour 
of the point represents the reaching error (colour code 
varies for each lesion size, as the maximum error shown 

by the network for each lesion size varies. Colour bar 
depicting the colour code used is given next to each of 
the plots). From the figure, we can see that as the lesion 
size increases, the network has increasing number of 
targets with high error (colour of the targets becomes 
more yellow, and less blue). This is more explicitly 
shown in Fig.  7. which exhibits only those targets for 
which the RE of the network crosses the threshold. For 
a healthy network, this consists of very few points and 
only of points in the edges of the workspace. Whereas 
for a stroke affected network, as lesion size increases, 
more and more of the workspace is filled with such 
points. Figure 8. represents the inverse of Fig. 7. i.e., it 
shows the number of targets having RE lesser than 0.06. 
In this figure, we see that the number of targets keep 
decreasing as lesion size increases, thus indicating that 
the network’s ability to reach to targets in its workspace 
efficiently keeps decreasing with increasing lesion size. 
Thus, we conclude that the available workspace for the 
network also reduces. With the stroke induced in the 
network, the network’s ability to attempt to move to 
a target does not change, only it’s efficiency. If the RE 
crosses 0.06, we conclude that it was a poor attempt, 
hence the corresponding target is unreachable for the 
network.

Fig. 6  Reaching Error across workspace for A Healthy network and stroke-induced network with a lesion size of B 5, C 10, D 15 and E 20 nodes. 
Lesion is induced in the penultimate layer of the network which has a total of 30 nodes. As the lesion size increases, the number of targets showing 
error increases along with the value of the error (indicated by the color bar given to the right side of each plot)
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Fig. 7  Targets showing RE > 0.6 for A Healthy network and stroke-induced network with a lesion size of B 5, C 10, D 15 and E 20 nodes. Lesion is 
induced in the penultimate layer of the network which has a total of 30 nodes. As the lesion size increases, the number of targets crossing the error 
threshold increases. The red line indicates the starting position of the arm. It is provided to show that error starts increasing from the edges of the 
workspace

Fig. 8  Targets showing RE < 0.6 for A Healthy network and stroke-induced network with a lesion size of B 5, C 10, D 15 and E 20 nodes. Lesion is 
induced in the penultimate layer of the network which has a total of 30 nodes. As the lesion size increases, the number of targets below the error 
threshold decreases. The red line indicates the starting position of the arm. It is provided to show that as the lesion size increases, the workspace 
gets restricted to areas closer to the arm
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Effect of complexity of movement used for therapy: 
stereotypic vs exploratory
For rehabilitation, we chose movements with two dif-
ferent levels of complexity—Stereotypic and Explora-
tory. Under stereotypic condition, the inputs chosen 
for rehabilitation belonged to a small area confined by 
a sphere in the workspace while for exploratory con-
dition, no such restriction was placed and the entire 
workspace was open for “exploring”. As the entire 
workspace is available under the exploratory condition, 
the complexity of the movement used increases. This 
way, we were able to analyse the effect of complexity 
of movement used on recovery. From the plots shown 
below (Fig. 9), we see that the performance of the net-
work after rehabilitation with exploratory movements 
is better than the performance after rehabilitation with 
stereotypic movements (p < 0.05 for all lesion sizes, 

while comparing corresponding exploratory therapy 
with stereotypic therapy) regardless of the hand selec-
tion mode (CIMT or BMT). This effect is consistent 
across lesion sizes and for smaller lesion sizes (n = 5, 
10), rehabilitation with exploratory workspace brings 
the network’s performance to levels comparable to a 
healthy network (Fig.  9). Since this result is achieved 
regardless of the type of the movement used, we can 
conclude that the dependence of recovery of the net-
work is on the type of movement complexity and not 
the choice of hand selection (moving only the affected 
arm vs. moving both arms). Also, as the lesion size 
increases, performance does not seem to improve upon 
using a stereotypic workspace for rehabilitation and the 
error remains at the same level after rehabilitation as it 
was before (Fig. 9).

Fig. 9  Comparison of different therapies under global and local plasticity conditions for acute stroke model with a lesion size of A 5, B 10, C 15 
and D 20 nodes. Lesion is introduced in the penultimate layer of the network consisting of 30 nodes. [Key for x-axis: 10S (CIMT Stereotypic), 11S 
(BMT Stereotypic), 10E (CIMT Exploratory), 11E (BMT Exploratory)]. For both hand movement conditions, exploratory therapy works better than the 
corresponding stereotypic therapy across all lesion sizes (p < 0.05 upon comparing mean RE for network after therapy with 11S vs 11E and 10S vs 
10E, and p > 0.1 when comparing therapies within E therapy i.e., 10E vs 11E and within S therapy i.e., 10S vs 11S). Upon comparing the performance 
based on plasticity condition, we can see that no significant changes are observed when the size of the lesion is small (p > 0.1 (n.s.) for therapy 11E 
under local vs global plasticity condition and for therapy 10E under local vs global plasticity condition. S therapies were not compared for plasticity 
condition since we see the E therapy is better than S). However, for larger lesions, global plasticity condition is better (p < 0.05 for lesion size = 20 
nodes (Fig. 8D) for therapy 11E under local vs global plasticity condition and for therapy 10E under local vs global plasticity condition). With higher 
lesion size, the resulting damage is also higher. Hence the network requires more connections in order to recover
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Effect of hand selection mode used for therapy: CIMT vs BMT
To check the effect of movement of the unaffected arm 
on the performance of the affected arm, we selected 
two types of movements—move only the affected arm 
(CIMT) and move the affected along with the unaffected 
arm (BMT) during therapy. Upon comparing the per-
formance of the network after these two movements as 
rehabilitation therapies (Fig. 9), no visible trend emerges 
(p > 0.1—not significant (n.s.)). Both hand selection 
modes seem to improve the performance of the net-
work equally and in both therapies, using exploratory 
movements improves performance better than using 
stereotypic movements. This is true across all lesion 
conditions and under both conditions of plasticity. This 
result stresses again the importance of the complexity 
of movements used to improve the network’s perfor-
mance rather than the hand selection mode used during 
rehabilitation.

The effect of the number of connections retrained: local vs 
global plasticity
In order to check the effect of the number of connections 
available for retraining, we used two conditions—global 
and local. When the network was trained under global 
plasticity condition, connections across the entire net-
work are available for retraining. However, under local 
plasticity, only the afferent connections associated with 
the lesioned layer are retrained. Comparing the perfor-
mance of the network trained with global plasticity with 
local plasticity, it is found that for smaller lesion sizes 
(n = 5, 10, 15), there is not much difference between the 
two cases (p > 0.2) (Fig. 9). However, for the extreme case 
of lesion size = 20, performance improves only upon 
using global plasticity. But here again, a significant differ-
ence is not found between using CIMT or BMT but using 
exploratory movements does prove more beneficial com-
pared to stereotypic movements.

Fig. 10  Comparison of different therapies under global and local plasticity conditions for chronic stroke model with lesion size of A 5, B 10, C 15, 
and D 20 nodes. Lesion is induced in the penultimate layer containing a total of 30 nodes. [Key for x-axis: Chronic Stroke (C), 10S (CIMT Stereotypic), 
11S (BMT Stereotypic), 10E (CIMT Exploratory), 11E (BMT Exploratory)]. Similar to acute stroke models, chronic stroke models also show a preference 
to exploratory movements over stereotypic (p < 0.05 upon comparing mean RE for network after therapy with 11S vs 11E and 10S vs 10E, and p > 0.1 
when comparing therapies within E therapy i.e., 10E vs 11E and within S therapy i.e., 10S vs 11S). However, under chronic condition, the network 
prefers global plasticity over local plasticity even for smaller lesion sizes (p < 0.05 for all lesion size for therapy 11E under local vs global plasticity 
condition and for therapy 10E under local vs global plasticity condition). This shows that, for the same lesion size, damage in the network is higher 
in the chronic condition than in the acute condition, hence needing more connections for recovery
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Chronic stroke
Chronic stroke is induced in the network after training 
the network with hand selection mode set to [0 1] modal-
ity for 10 epochs after the lesion has been induced. The 
plots given in Fig. 10 show performance under this con-
dition. Due to the repeated use of the non-paretic arm, 
the paretic arm’s performance deteriorates further.

Effect of hand selection mode used for therapy: CIMT vs BMT
The network is retrained under CIMT and BMT with 
both stereotypic and exploratory movements similar to 
the acute stroke models. As observed in the acute stroke 
models, the performance of the chronic stroke model 
is significantly higher under exploratory movements 
than stereotypic movements with both CIMT and BMT 
(Fig.  10). Again, similar to the acute stroke model, no 
significant difference is found between retraining with 
CIMT and BMT.

Effect of plasticity
On training under global plasticity condition, the net-
work performance (Fig. 10) improves significantly better 
than under local plasticity for all lesion sizes regardless of 
therapy used. Unlike acute models, chronic stroke mod-
els do not show a lesion size-specific selectivity for global 
plasticity.

Effect of integrity of CC on recovery
With the acute and chronic models discussed above, we 
were able to establish that using an exploratory move-
ment condition was better than using stereotypic move-
ment condition. Hence, for recovery after loss of CC 
integrity, only CIMT and BMT under exploratory con-
dition were considered. The two different plasticity 
conditions—global and local—were still used. Optimal 
plasticity condition for rehabilitation was found for each 
of the models.

Fig. 11  Comparison of different therapies for acute stroke model with lesion size of A 5, B 10, C 15 and D 20 nodes, under different values of 
structural integrity of CC are given. Lesion is induced in the penultimate layer having a total of 30 nodes. [Key for x-axis: 10L (CIMT Exploratory 
under local plasticity), 11L (BMT Exploratory under local plasticity), 10G (CIMT Exploratory under global plasticity), 11G (BMT Exploratory under 
global plasticity)]. When the lesion size is low (5, 10 and 15 nodes), the network shows no preference for either plasticity condition over all values 
of structural integrity of the CC (p > 0.1 when comparing 10L with 10G and 11L with 11G. Each therapy is compared with the other under the same 
integrity condition). However, for lesion size of 20, global is preferred over local plasticity (p < 0.02 when comparing 10L with 10G and p < 0.025 
when comparing 11L with 11G). These results are similar to what is observed in acute stroke condition with 100% integrity (Fig. 8)
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The effect of CC integrity on acute stroke
Under acute stroke, after reducing the integrity of the 
CC, the network is trained under CIMT and BMT with 
an exploratory workspace under local and global plas-
ticity condition. As the integrity of the CC is reduced, 
the recovery achieved under all therapies reduces. For 
all values of CC integrity, the network seems to prefer 
global plasticity to local plasticity for lesion size n = 20 
(Fig.  11D). Thus, for a lesion size of 20, for all integrity 
values (including 100%) it is recommended to go for 
global plasticity condition. Whereas for all other condi-
tions of lesion sizes and integrity values, no significant 
difference is found between the two plasticity conditions, 
and hence, local plasticity is recommended (since global 
is not significantly better than local, and global is more 
computationally expensive, local is recommended over 
global, for the network).

The effect of CC integrity on chronic stroke
Under acute condition, therapy is administered right 
after introducing lesion. However, for developing chronic 
stroke in the model, the model was made to perform 
unimanual movements with the healthy arm for a few 
epochs after inducing stroke. This condition can be taken 
as analogous to a patient who, after stroke onset, does 
not undergo rehabilitation of any kind until the end of 
acute stroke period. Thus, for chronic stroke, the model 
shows higher error when compared with acute stroke. 
The same therapies administered under acute condition 
are also used for the chronic models (Fig.  12). For 50% 
CC integrity under chronic models, similar to the acute 
model, the network seems to prefer local plasticity for 
lesion sizes 5, 10 and 15 (although for 10 and 15 the mean 
RE under global is lesser than the corresponding local, 
the difference is not significant, hence we recommend 

Fig. 12  Comparison of different therapies for chronic stroke model with lesion size of A 5, B 10, C 15 and D 20, under different values of structural 
integrity of CC are given. Lesion is induced in the penultimate layer having a total of 30 nodes. [Key for x-axis: 10L (CIMT Exploratory under local 
plasticity), 11L (BMT Exploratory under local plasticity), 10G (CIMT Exploratory under global plasticity), 11G (BMT Exploratory under global plasticity)]. 
For lesion size of 5 and 10 nodes, the network does not show preference of one plasticity condition over the other (p > 0.1 under all CC integrity 
values when comparing 10L with 10G and 11L with 11G). However, for a lesion size of 15, 70% and 90% show preference of global plasticity over 
local plasticity (p < 0.05 when comparing 10L and 10 G, p > 0.1 when comparing 11L and 11G). However, for a lesion size of 20, regardless of the 
value of CC integrity, the network prefers global over local plasticity (p < 0.005 when comparing 10L and 10G for all CC integrity values, and p < 0.009 
when comparing 10L and 10G). Thus, as the integrity of the connections goes down, the network tries to compensate with retraining of only the 
local connections, and preferring retraining of the entire network (global plasticity) only when the damage is too high (20 nodes)
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local plasticity for the network, as was the case with acute 
stroke condition), and global plasticity for a lesion size of 
20 nodes (p < 0.005 for 10L vs 10G and p < 0.009 for 11L 
vs 11G). However, for 70% integrity, the network prefers 
local plasticity for a lesion size of 5 and 10 nodes (for 
lesion size of 5 and 10 the mean RE under global is lesser 
than the corresponding local, the difference is not sig-
nificant, hence, again, we recommend local plasticity for 
the network), and global plasticity for 15 (p < 0.05 when 
comparing 10L and 10G) and 20 nodes (p < 0.005 for 10L 
vs 10G and p < 0.009 for 11L vs 11G). Similar result was 
also observed for 90% integrity (for a lesion size of n = 15, 
p < 0.05 when comparing 10L and 10G, and for lesion size 
of n = 20 p < 0.005 for 10L vs 10G and p < 0.009 for 11L 
vs 11G, while no significant difference was found (p > 0.1) 
between L and G therapies for lesion size of n = 5,10).

Discussion
Visuomotor network model
This paper describes a modified CNN capable of per-
forming a visuomotor reaching task and used as a model 
for stroke-related motor impairment and rehabilitation. 
The CNN was designed as a network with bilateral sym-
metry to reflect the hemispherical organization of the 
brain. The resulting architecture was optimized to simu-
late a stereovision-based reaching task performed by 
humans. Whereas the convolutional layers closer to the 
input are interpreted as visual areas, the fully connected 
layers closer to the output are interpreted as motor 
areas. The cross-connections used in the network can be 
interpreted in terms of the corpus callosum fibres that 
connect the two hemispheres of the brain (Refer to Addi-
tional File 1 for further details related to this). We used 
this analogy to replicate the loss of structural integrity in 
the CC observed in stroke patients by setting the value of 
some of the cross-connection weights to zero. By doing 
this, we were able to illustrate the importance of struc-
tural properties of a network on recovery.

In order to introduce stroke in the optimized net-
work, in line with what occurs in the brain after stroke 
onset, a few nodes in the motor region of the network 
were silenced. This affected the reaching performance 
of the network as quantified by mean RE. By observing 
the arm’s workspace (Fig.  5), we see that the arm can 
reach to all the points in the workspace prior to stroke 
with seemingly no difficulty. However, post-stroke, the 
network loses its ability to reach to points accurately in 
specific regions. This region expands as the size of the 
lesion increases. After therapy, recovery is reflected by 
the network’s ability to regain the performance lost due 
to stroke. Thus, the network can serve as a simplified 
model of impairment and recovery post-stroke that is 
capable of incorporating properties of the lesion (lesion 

size, location, CC integrity) and the resulting impairment 
in functional properties of the arm of the affected indi-
vidual (RE of the paretic arm).

Measuring performance of the model
Reaching Error (RE) is the parameter used in the study 
to analyse the performance of the network under nor-
mal and stroke conditions. Both healthy, and impaired 
models are analysed using this parameter. In the clinical 
setting, motor impairment after stroke is measured with 
the help of standardised tests like Fugl Meyer Analysis 
(FMA), Wolf Motor Function Test (WMFT) etc. How-
ever, there are several disadvantages associated with 
these measures. For instance, they do not always make a 
distinction between recovery and compensation, and are 
very subjective in nature since they are scored by visual 
observation performed by physiotherapists. Hence, sev-
eral attempts have been made by researchers over the 
years to invent better measures to evaluate recovery after 
stroke. Some of these include kinematic parameters such 
as movement time, smoothness of trajectory, peak veloc-
ity, and accuracy [34, 35]. Accuracy can be measured by 
both trajectory length, and endpoint accuracy. RE has 
been used by multiple studies to measure recovery and 
the improvements in RE have also been correlated with 
improvement in standard scales used in stroke [36–39]. 
RE measures the distance between the final hand point 
and the target position, which are distributed all over 
the workspace, thereby determining the accuracy of the 
intended movement. Additionally, in a recent consensus 
paper authored by multiple stroke experts regarding the 
kinematic measures to be used in place of standardised 
scales for measuring impairment, endpoint accuracy 
was a suggested parameter [40]. Since RE can be readily 
measured by our model, we chose this as our measure of 
performance.

Promoting recovery under acute stroke
In the current study, we capture two stages in stroke 
recovery—acute and chronic stages. In patients, the 
acute stage occurs after the onset of stroke and lasts up 
to 2  weeks, after which the subacute period starts and 
lasts up to six months. Chronic stage sets in after this 
and can last for the patient’s entire lifetime [41]. In order 
to replicate the acute stage and the subsequent therapy 
session in the model, we initiate the retraining of the 
model directly after introducing the lesion. The model 
undergoes therapy under two different movement com-
plexity conditions—Exploratory vs. Stereotypic—and 
two different movement types differing in hand selection 
mode—CIMT vs. BMT. Conventional therapy adminis-
tered in the form of occupational therapy is often set up 
to replicate tasks performed during Activities of Daily 
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Life (ADL) to restore the patient’s independence in their 
daily life [42]. Thus, the movements used are related to 
the tasks performed by the arms during a typical day 
[43]. Stereotypic movement condition captures this in 
the restricted area of its workspace while exploratory 
movement condition is set up in contrast by using the 
entire workspace. Upon administering the four combina-
tions, we find an apparent bias of the model to recover 
better under the Exploratory condition when compared 
with the Stereotypic condition, regardless of the type 
of movement used (CIMT or BMT). Due to the contra-
dictory approaches between CIMT and BMT, there has 
long been a debate about deciding the more efficient 
therapy in promoting recovery for hemiparesis, with 
no clear winner emerging [44]. The results obtained in 
this study seem to show that the movement complexity 
(Stereotypic vs Exploratory) chosen for therapy is more 
important than the hand selection mode as long as the 
affected arm is moved (Fig.  8 for acute and Fig.  9 for 
chronic). Strengthening this point further, we see this 
result repeated across the results discussed here, with the 
Exploratory approach being significantly better than Ste-
reotypic for both acute and chronic models under local 
and global plasticity conditions regardless of level of CC 
integrity. In the clinical setting, patients often find it dif-
ficult to move their arm more than a few inches. For such 
patients, Exploratory therapy might not be a realistic 
rehabilitation technique. During the course of the reha-
bilitation, patients start with simpler movements and 
then progress to more difficult ones which slowly take 
them away from their comfort zone [45, 46]. This can be 
modified such that, the patients expand their comfort 
zone in both the action space and the workspace, slowly 
incorporating more “exploratory” type movements. Sup-
plementing such rehabilitation practices along with the 
conventional standard therapy in use could improve per-
formance to levels more than what is typically observed 
in patients.

Overcoming learned non‑use in chronic stroke
During the chronic stage, many patients suffering from 
hemiparesis caused due to stroke undergo a phenom-
enon of learned non-use, whereby due to the prolonged 
impairment and reduced functionality of the paretic arm, 
the patients tend to use healthy arm as a compensation 
in ADL. This in turn leads to the setting up of a vicious 
cycle of non-use due to impairment, and worsening 
impairment due to non-use leading to further non-use 
[28]. While there are many reasons for why the patients 
choose the healthy arm over the paretic arm to make 
movements, these are not considered in this study—only 
the effects of the phenomenon are considered, and not 
the causes [44]. CIMT is meant to counteract the effect 

caused by learned non-use, by restraining the unaffected 
healthy arm while encouraging the use of the affected 
paretic arm [9]. In order to replicate the effect of non-
use and induce chronic stroke in the model, instead of 
retraining with therapy directly after inducing stroke, 
we run the model over a few epochs of retraining where 
we choose movements such that only the healthy arm is 
moved. Thus, this induces learned non-use in the model, 
and it is reflected in the deteriorating performance of the 
paretic arm. Furthermore, from the model, we can also 
see that for larger lesion sizes, setting up learned non-use 
proves to be dangerous as performance gets worse than 
acute stroke. Once the chronic model is created, therapy 
is administered in a manner similar to the acute stroke 
models. Here, again, we see that in the Exploratory con-
dition performance is better than under the Stereotypic 
condition regardless of the hand selection mode (CIMT 
or BMT) used for therapy. However, upon comparison 
with the acute models, the recovery observed is not com-
parable to the healthy condition, even for smaller lesion 
sizes. This is similar to what is observed in reality, as 
chronic patients do not show same improvement as acute 
patients.

In order to improve recovery in the model, we chose to 
increase the number of retrained connections by retrain-
ing the weights in the entire model (global plasticity) 
instead of only retraining the weights associated with the 
lesioned layer (local plasticity) i.e., increasing the extent 
of plasticity. This allowed us to analyse the effect the 
number of retrained connections had on recovery. Imple-
menting the previously used combinations of therapy, 
we see that under global plasticity condition, the perfor-
mance of the network is significantly better than using 
local plasticity condition for all lesion sizes. Again, simi-
lar to what we observed in the acute models, we can see 
that Exploratory is better than using Stereotypic move-
ments. Interestingly, in the acute models, with 100% CC 
integrity, we observed that the model showed lesion size-
specific improvement, i.e., for smaller lesion sizes, local 
and global plasticity showed similar improvement while 
for larger lesion sizes global plasticity was better at pro-
moting recovery. This lesion size-specific preference 
was not observed in the chronic models. Regardless of 
the size of the lesion, the chronic models showed better 
performance under global plasticity condition for 100% 
CC integrity. Thus, the network showed preference to an 
increased extent of plasticity as the damage to the net-
work worsened.

Multisensory integration as rehabilitation therapy
According to the proportional recovery rule (PRR), most 
patients achieve 70% recovery in the first three months 
after stroke [47]. This time period is often called as the 
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“critical period” and is characterized by heightened plas-
ticity opened by the injury caused due to stroke [48]. 
After this period, especially once the patient enters the 
chronic phase, recovery is often minimal. Furthermore, 
patients in the acute and subacute stage show recovery 
proportional to the dosage of therapy (number of ses-
sions, number of repetitions of movement per session, 
etc.) used [49]. However, this phenomenon is not exhib-
ited in chronic stroke patients [50]. In order to help in 
the recovery of chronic patients, several researchers have 
tried to restart, and boost plasticity in the perilesional 
areas as a way of reopening the critical period [51–53]. 
Recently, studies in rodents [33] have shown that using 
Enriched Environment (EE), which can promote multi-
modal sensory stimulation, can be beneficial for recov-
ery. This is possible because multi-sensory stimulation 
can activate areas functionally connected to the regions 
affected by stroke and increase plasticity at the perile-
sional site. Similar studies have also been proposed in 
humans by using gaming environments, simulated in 
Virtual Reality (VR). These environments can serve as 
EE by providing an immersive experience as therapy 
[15]. Using an EE helps in both engaging a patient dur-
ing therapy, by keeping their curiosity and motivational 
levels high and at the same time, activating more areas 
in the brain. This specific feature of the EE is what we try 
to achieve with the help of global plasticity in this study, 
wherein we also try to recruit more areas, and make the 
network more conducive to the therapy offered. On the 
other hand, local plasticity refers to using conventional 
therapy for rehabilitation which focuses only on repeated 

performance of motor tasks. The results obtained here 
indicate that such therapies similar to EE need to be 
explored more, especially for chronic stroke patients.

Role of corpus callosum in recovery after stroke
In the study discussed here, we were able to demon-
strate how a simple convolutional network trained on 
supervised learning can function as a simplified model 
of recovery post-stroke. The network properties were 
manipulated in order to incorporate several features of 
stroke like time since onset (acute vs chronic), location 
of the lesion, size of the lesion and also damage caused 
to the integrity of the neighbouring regions like the CC 
due to the lesion. By including these as characteristics 
in the study, we were able to understand the impact of 
each of these features on post-stroke recovery. When no 
significant difference was found between the two plas-
ticity conditions, considering the computational cost 
involved, local plasticity was recommended for the net-
work. Translating this result to a clinical setting, since no 
significant difference is found between the two plasticity 
conditions, and keeping in mind that (1) approximately 
same level of recovery is achieved in both, (2) global plas-
ticity-type rehabilitation requires additional factors such 
as EE, VR, multisensory integration etc., local plasticity-
type rehabilitation (i.e., conventional therapy) maybe 
recommended. Based on this, the plasticity condition 
recommended for different levels of CC integrity and dif-
ferent lesions sizes, under acute and chronic stroke, are 
illustrated in Fig. 13.

Fig. 13  Plot showing regions of optimal plasticity condition  for A acute stroke and B chronic stroke
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In the model, for acute stroke condition, CC integrity 
does not play a role in the preference of the plasticity con-
dition. For all CC integrity values, if the lesion size is 20 
(highest lesion size considered), the model prefers global 
over local plasticity. However, for chronic stroke condi-
tion, the network shows the effect of CC integrity on the 
preference of the plasticity condition. Comparing the 
damage caused by a given lesion size, in a model with a 
given level of CC integrity, the model with chronic stroke 
experiences higher performance loss than the same model 
with acute stroke. Thus, to regain the lost performance, a 
chronic model would likewise require more effort. In the 
current study, regardless of the level of damage, all models 
are given rehabilitation with the same number of points 
over the same number of training epochs. This was done 
in order to bring out the differences in setting (i.e., plas-
ticity condition required, and type of workspace required) 
required for performance to improve in both the models. 
We believe that the extra effort required by the chronic 
model is reflected in the plasticity preference since global 
plasticity recruits more connections and resources during 
training when compared to local plasticity. Hence chronic 
models prefer global plasticity more than acute mod-
els. Bringing this result to the experimental setting, in a 
stroke study with mice [54], the authors were able to show 
that by inducing a second stroke to the mice, the win-
dow of plasticity occurring after stroke can be reopened 
and helps in the recovery of damage caused by both the 
strokes. Thus, plasticity plays a very important role in 
recovery after stroke. Obviously, it is not suggested that a 
stroke patient be induced with a second stroke. However, 
other ways to induce plasticity needs to  be explored to 
promote efficient recovery.

The role of the cortico-spinal tract in impact due to, 
and recovery after, stroke has long been measured in 
clinical studies. However, only recently the effect of CC 
has been studied [30, 31]. It is often found that the level 
of CC integrity even in controls can vary due to many 
different lifestyle choices, fitness levels [55], pre-morbid-
ities like diabetes [56, 57] and sometimes even hobbies 
like playing a musical instrument [58, 59]. The study dis-
cussed here illustrates the necessity to understand and 
profile a patient completely before prescribing a reha-
bilitation protocol for them. In such scenarios, a com-
putational model can come in handy by serving as a test 
bed that can combine different features of the patient 
and reveal the optimal rehabilitation protocol suitable 
for that patient. The model discussed here, though sim-
ple from a computational perspective and obviously not 
without limitations (discussed below), can serve as a 
prototype for such a test bed and also offers testable pre-
dictions and hypotheses that can be relevant to stroke 
rehabilitation.

Conclusion
The main conclusions from the study reported here are 
given below:

Effect of Movement Complexity: Upon comparing 
recovery from using a Stereotypic vs using Exploratory 
movements, it is clear that Exploratory movements are 
much better in facilitating recovery. This is seen across 
models regardless of the size of the lesion, number of 
connections available for retraining, time since stroke 
onset (acute/chronic) and structural integrity. Thus, this 
result illustrates that more emphasis should be given on 
designing the environment used for rehabilitation such 
that it is equipped to encourage patients to move and 
explore.

Effect of Hand Selection Mode: To the stroke model, 
two types of movements were administered in the form 
of therapy—BMT and CIMT. However, upon comparison 
of recovery between these two, there emerged no signifi-
cant difference.

Effect of Plasticity: It is seen from the study here that 
under more debilitating conditions like higher lesion 
size (for acute model) or longer time since stroke onset 
(chronic condition), increasing number of connections 
available for retraining results in significant improve-
ments. In the clinical setting, increasing the number 
of connections can translate to activating the intact 
regions of the brain by using techniques like multisen-
sory integration.

Effect of Structural Integrity: The structural integ-
rity of the network plays an important role in recov-
ery. Even with high levels of damage (higher lesion size 
under acute condition, or if the network is in chronic 
stroke condition) if the structural integrity is compro-
mised, the network prefers local plasticity over the 
global plasticity condition in restoring performance.

Although CNNs have been used before to model the 
sensory systems of the brain, this is the first time, to 
our knowledge, they have been applied to simulate the 
visuomotor pathway of the brain, particularly to model 
stroke rehabilitation. The model is capable of replicat-
ing a simple bimanual visuomotor reaching task in 3D 
space and the impairment caused by a stroke in the 
motor cortex along with the subsequent recovery after 
administration of therapy. However, at present, it does 
have several limitations.

•	 The role of the ipsilateral hemisphere in controlling 
the upper extremity function is not considered in 
the model, even though substantial evidence exists 
for the control of the arm function by M1 of the 
ipsilateral hemisphere [60, 61].

•	 The current model only shows a gross similarity with 
the visuomotor pathway of the brain. However, the 
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modelling efforts discussed in this study are part of a 
larger project involving clinical, and imaging aspects. 
Hence, in future versions of the model, efforts will 
be made to make the model to more closely resem-
ble the brain, in order to draw comparisons between 
imaging data obtained from patients, and the activity 
pattern obtained in the network.

•	 Only lesion in the penultimate layer is discussed, no 
other lesion location is considered. This also needs 
to be done after the brain-network mapping is per-
formed.

•	 Arm setup used cannot show dynamic features like 
force, rigidity etc. Expanding the muscle model to 
incorporate these can help in also understanding the 
effect of stroke on these parameters which are well 
established in clinical studies.

•	 Additionally, since the current model is a static 
model, movement complexity, which is used as one 
of the characteristics used to define therapy, can only 
be defined in terms of the range of the workspace 
covered. But if a dynamic network is used, movement 
complexity can also be defined in terms of the com-
plexity of the trajectory. In a future work, we intend 
to do the same.

•	 Furthermore, providing feedback on the movement 
made by visually showing the patient’s hand move-
ment has proven to be quite effective for stroke 
rehabilitation [62]. Currently, since the model only 
performs one-shot reaching, therapy with feedback 
cannot be administered.

•	 A more rigorous comparison between the network 
model and real clinical setting in the number of 
epochs used for therapy, time since onset and differ-
ence in arm use under acute and chronic condition 
(by including the nature and the amount of therapy 
administered) can help in providing rehabilitation 
protocol that can be directly used on the patient.

Thus, the aforementioned limitations should be 
addressed in a future study. Expanding the network to 
include such dynamic aspects can help in developing 
the model into a more realistic and patient-specific test 
bench to provide the optimal rehabilitation protocol in 
a patient-specific fashion.
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