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Abstract

Background: Therapeutic exercise for gait function using an exoskeleton-assisted Body Weight Supported Treadmill
Training (BWSTT) has been identified as a potential intervention that allows for task-based repetitive training with
appropriate kinematics while adjusting the amount of body weight support (BWS). Nonetheless, its effect on gait in
patients with stroke in the chronic phase are yet to be clarified. The primary aim of this scoping review was to present
the status of effectiveness of exoskeleton-assisted BWSTT in patients with chronic stroke. The secondary aims were to
summarise intervention protocols, types and functions of BWSTT exoskeletal robotic devices currently used clinically.

Method and results: Articles were accessed and collected from PubMed, Ovid MEDLINE, Cochrane Central Register
of Controlled Trials, and Web of Science databases, which were completed in October 2020. Articles were included if
the subjects were adults with stroke in the chronic phase (onset > 6 months) and if they utilised a robotic exoskeleton
with treadmill and body weight support and investigated the efficacy of gait exercise. A total of 721 studies were
identified, of which 11 randomised controlled trials were selected. All included studies were published from 2008

to 2020. Overall, 309 subjects were enrolled; of these, 241 (156 males, 85 females) participated. Walking outcome
measures were used more often to evaluate the functional aspects of gait than to evaluate gait independence. In 10
of 11 studies, showed the effectiveness of exoskeleton robot-assisted BWSTT in terms of outcomes contributing to
improved gait function. Two studies reported that exoskeleton-assisted BWSTT with combination therapy was sig-
nificantly more effective in improving than exoskeleton-assisted BWSTT alone. However, no significant difference was
identified between the groups; compared with therapist-assisted BWSTT groups, exoskeleton-assisted BWSTT groups
did not exhibit significant change.

Conclusion: This review suggests that exoskeleton-assisted BWSTT for patients with chronic stroke may be effective
in improving walking function. However, the potential may be “to assist”and not because of using the robot. Further
studies are required to verify its efficacy and strengthen evidence on intervention protocols.

Keywords: Robot-assisted gait training, Chronic stroke, Gait exercise, Body Weight-Supported Treadmill Training,
Exoskeleton, Scoping review
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after intensive rehabilitation, 30—40% of these patients
still have limited ability to walk [2—-4]. Exoskeleton-
assisted Body Weight Supported Treadmill Training
(BWSTT) has gained attention over the past few decades
as a popular method of post-stroke gait training due to
its advantages for task-based repetitive training [5-10].
However, for patients with stroke in the chronic phase,
improvements in gait, its outcome measures and specific
intervention protocols have yet to be clarified.

Chronic stroke

In this review, we defined chronic phase in stroke as
equal to or more than 6 months after stroke onset. It has
been suggested that the majority of functional recovery
after stroke onset occurs in the acute phase and plateaus
from 3 to 6 months after onset. However, previous stud-
ies have shown that specialised and intensive training can
improve motor function in patients with chronic stroke
who have motor dysfunction [11-14]. Moreover, the
degree and amount of improvement in motor function
has been reported to be correlated with the intensity and
frequency of rehabilitation [15-17].

Robotic devices in gait rehabilitation

A search in the PubMed for articles related to gait-
assist robots used in rehabilitation yielded no results
prior to 1989, although the number of articles rapidly
increased from 2003 to 2020 as the field was recog-
nised in rehabilitation. The application of robotic tech-
nology to rehabilitation has substantially increased in
recent years [18—22] and several gait-assistive robotic
devices are already available on the market [5-10, 23,
24]. The available assistive robot systems include HAL
(CYBERDYNE Inc., Japan), Welwalk (Toyota Motor
Corporation, Japan), Lokomat (Hocoma AG, Switzer-
land), Ekso (Ekso Bionics, USA), and many others are
currently undergoing development. All these devices

Table 1 Types of robotic devices for therapeutic gait rehabilitation
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possess one or more of the following functions: a body-
weight-support device, a treadmill, or an overground
walking system. The devices used for gait exercises uti-
lise electromechanically actuated motors that control
movement and exert force on the joints or parts of the
lower limbs. These are categorised as exoskeleton type,
end-effector type and other [25] (Table 1, Fig. 1a, b).
The exoskeleton type is wearable and assists the patient
by applying output torque directly at the targeted lower
limb joints during gait training. The timing and inten-
sity of the assistance is programmed and given during
the entire gait cycle or in a specific phase. The end-
effector type is a device placed on the plantar that pro-
vides assistance of the ideal gait trajectory to the foot
(peripheral). Types stated as other included powered
walking frames, powered ankle foot orthosis or non-
exoskeleton wire-driven types. Unlike end-effector
type robots, which have a fixed end and input pro-
grammed motion trajectory, exoskeletons are intended
to compensate for lost gait function, characterised by
dynamic assistance or control of the rotational motion
of the target joints. In equipment associated with exo-
skeletons (Fig. 1b), the adjustable body weight sup-
port (BWS) function, which prevents falls, may safely
accommodate patients with a wide range of gait func-
tion levels from Functional Ambulation Categories
(FAC) 0-4 [26]. The treadmill also facilitates speed
adjustment and repetitive gait input in a set position.
BWSTT has been reported to significantly improve
balance, gait speed, and endurance in stroke patients
[27, 28]. Furthermore, it has been reported that gait
training with adjusted weight bearing instead of full
weight improves walking speed and endurance on level
ground, leading to improved gait [29, 30]. BWSTT is
highly effective in improving gait in patients who have
suffered subacute stroke, but its effectiveness is not
clear in chronic stroke [27, 29, 31]. It has been reported

Type of device BWS device Treadmill Examples of some
representative product
Exoskeleton BWSTT Exoskeleton Yes Yes Lokomat (Hocoma AG, Switzer-

Overground Exoskeleton  No

End-effector Yes

Other -

land), Welwalk (Toyota Motor
Corporation, Japan), Walkbot
(P&S Mechanics Co. Ltd., Korea)

No HAL(Cyberdyne, Japan), Ekso-
GT(Ekso Bionics, USA)

G-EO System (Reha Technology,
Swissland), LokoHelp(Woodway,
USA)

- Powered AFO, Walking aids with
electric assist functions

N/A

BWSTT Body Weight Supported and Treadmill Training, BWS Body Weight Support
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Fig. 1 a Major types of robotic devices for robot-assisted therapeutic gait rehabilitation. The figure shows the Exoskeleton type (left) and the
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that gait-assistive robot training has an impact on gait
improvement [27]. On the other hand, literature com-
paring the effects in terms of differences by type of gait-
assist robot and stage of the target patients is limited,
and effects on specific endpoints are not yet clear [25,
32, 33]. Moreover, results may differ depending on the
clinical trial design and intervention protocols.

Gait exercise for stroke

Currently, several forms of intervention in gait training
have been proposed for the management of stroke. Con-
ventional physiotherapy for walking after stroke generally
includes muscle strengthening, functional task practise,
symmetrical movement practise (including weight bear-
ing and shifting training), stepping and single-leg stand-
ing targets for practising specific gait phases, circuit
training, and neurodevelopmental techniques [34]. Most
conventional gait retraining is undertaken with hands-on
assistance, which is potentially physically taxing for the
therapist.

Frequent intense gait training interventions have been
shown to result in higher overall functional improve-
ments in patients with stroke in chronic phase [5-10].
However, the physical burden and time/cost required
to maintain such functions are a key challenge amongst
therapists, as well as patients in the chronic phase after
stroke.

The use of technology-enhanced gait training for reha-
bilitation which gives mechanically assisted task-based
repetitive training is expanding; nonetheless, its compe-
tence is still being argued. A previous study reported that
individuals who received electromechanical-assisted gait
training in combination with physiotherapy after stroke
were more likely to achieve independent walking than
people who received gait training without these devices
[25, 31]. In another study, therapist-assisted locomo-
tor training was superior to robotic-assisted locomo-
tor training amongst ambulatory survivors with chronic
stroke [35]. In addition to refining the application of
devices and determining patients who may benefit from
robot-assisted training, the identification of an effective
combination therapy crossover is essential.

In summary, although significant research has been
done on exoskeleton robotic rehabilitation, only mini-
mal research has been conducted on its application in
patients with chronic stroke. Moreover, investigations
on the efficacy of devices used in robotic gait exercise in
the chronic phase are limited, and the current situation is
unclear. At the same time, while various types of robotic
assistive devices have been developed to date, the trends
in equipment, design, and functional requirements spe-
cifically for the chronic phase are still not well known [27,
29, 31].
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However, recent randomised control trials (RCT)
focusing on the efficacy of exoskeleton-assisted BWSTT
(Fig 1b) for chronic stroke have reported positive
improvements in gait [35—45], indicating that there is a
potential value in further research to clarify this finding.

Therefore, this study aimed to review and describe the
effectiveness of exoskeleton assisted BWSTT in patients
with chronic stroke. And the second objectives were to
summarise intervention protocols and the types and
functions of BWSTT exoskeletal robotic devices cur-
rently used clinically.

Methods

The literature review protocol was developed in accord-
ance with the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) Statement [46],
and with reference to the work conducted by Arksey
and O’Malley [47], Ferrari [48] and Peters [49].

Articles were accessed and collected from PubMed,
Ovid MEDLINE, Cochrane Central Register of Con-
trolled Trials, and Web of Science databases, which
were completed on October 27, 2020.

The primary search was conducted using combined
terms: (robot* OR exoskeleton OR “powered gait ortho-
sis” OR PGO OR HAL OR “hybrid assistive limb” OR
ReWalk OR Ekso OR Indego OR lower-extremity
robot OR robotic-assisted OR electromechanical OR
mechanically assisted OR powered assisted OR robotic
device OR Welwalk OR electromechanical-assisted OR
robotic OR end-effector OR assist robot OR GEAR
OR robotic orthosis OR rehabilitation robotics OR
orthotic devices OR Lokomat) AND (stroke OR post-
stroke OR CVA OR “cerebrovascular accident” OR
“cerebral infarct” OR “cerebral haemorrhage” OR hemi-
plegia OR hemiparesis) AND (gait OR walk OR walk-
ing OR ambulation OR gait training) AND (chronic OR
community OR at home). Additionally, the following
parameters were used: clinical trial/ RCT and scientific
articles written in English, with its full text available
to all the authors. Date was not restricted. Additional
references were also identified by manual search, and
duplicates were removed.

The inclusion criteria were as follows:

+ Interventions, allocated subject group, and outcome
measures that refer to the efficacy and/or effec-
tiveness of gait exercise and exoskeleton-assisted
BWSTT

o Human subjects: post-stroke, hemiplegia in the
chronic phase with onset at > 6 months
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Fig. 2 A flow diagram of the selection process. The PRISMA flow diagram [46] of the process of the database searches, the number of abstracts and
full texts screened assessed

+ Type of electromechanical robotic exoskeleton used .
in gait exercise that facilitates movement or exerts
force on the hip, knee, or ankle joints

Used only the following interventions for the subject
group: BWS device on a treadmill, electromyographi-
cally driven neuromuscular electrical stimulation,
and virtual reality (VR)/augmented reality

The exclusion criteria were as follows: + Did not apply force on the limb nor was movement
facilitated by the device
« The stated devices were not for use on the lower + Used the end-effector type of device or exoskeleton
limbs (upper limbs, hand robots, devices for control- for overground walking
ling pelvic motion, etc.) + Reported only technology development
« The disease stage was not clearly stated or there were
stages other than chronic in the target group The selection process is shown in the flow diagram in
o Included healthy participants or children Fig. 2 [46].
aged < 18 years With respect to the reference selection process and
+ Included participants with mixed diagnosis the inclusion and exclusion criteria above, the titles

« Used only general braces such as ankle foot orthosis and abstracts of potential articles were screened by
and had a drive source that was not controllable elec-  two reviewers to remove irrelevant studies. Potentially

tro mechanically
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eligible studies were chosen from the remainder if full
texts were available.

From the final selected studies, data on the study design
and subjects, equipment used for the interventions, gait
exercise treatment protocol, evaluation tools, and report-
ing of information on the effectiveness of clinical gait
exercise were extracted from the selected articles to pro-
vide information on the results and effects that would be
useful in clinical practise (Table 2). Additionally, data on
the characteristics, type and functional requirements of
the gait assistive robots as devices used in the selected lit-
erature were summarised to analyse them for use in the
chronic stage (Table 3).

Results

The PRISMA flow diagram for this study is presented in
Fig. 2. Overall, 721 studies were identified through data-
base search, and 48 additional potentially relevant stud-
ies were found through manual search. From a total of
769 studies, 350 were retrieved by screening the studies’
written language and article type. Additionally, duplicate
records were removed. After assessing the eligibility of
articles based on the title, abstract, and full text, 11 were
selected. All included studies were published from 2008
to 2020. Six studies were published between 2015 and
2020 and five studies were published before 2014.

Study design
All included studies were RCTs or randomised crossover
trials. Most studies included fewer than 30 participants
and were recognised as small-scale pilot studies except
for three RCTs [35, 44, 45] which included 34, 48, and 48
participants.

Participants

A total of 309 subjects were enrolled in all included stud-
ies; of these, 241 (156 males, 85 females) participated. All
participants were patients with chronic stroke with onset
at>6 months. The mean age was 57.8+7.0 years. The
subjects were community residents or recruited from the
outpatient department in three studies [42, 43, 45], were
hospitalised in four studies [36, 37, 41, 44], and belonged
to other categories or were unknown in four studies [35,
38-40].

In addition, in a few studies, the subjects were condi-
tioned to a certain level of walking prior to the interven-
tion (a level of independence in which the subjects were
able to walk for more than 10 m without a walking assis-
tive device or without receiving walking assistance). Few
studies also involved the use of a cane, orthotic device, or
walker to walk for more than 10 m.

Three reports specified a walking speed of 0.3 m/s [39]
and 0.8 m/s or more [35, 38]. Furthermore, four studies
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used the Berg Balance Scale (BBS) [36, 45], Timed Up
and Go Test [36], Functional Independence Measure
[36], Modified Ashworth Scale [42, 43], etc. at the func-
tional level.

Training period

The duration of intervention and the duration of a ses-
sion differed in each study. In the included studies, the
duration of intervention ranged from 3 weeks [45] to
5 months [36], and the number of training sessions var-
ied from nine [45] to 12 sessions [35, 38—40], 18 ses-
sions [44], and 20 sessions [36, 41, 42].

The duration of one session of lower-limb robotic gait
training was 30 min [38, 39, 41, 44, 45], 45 min [37], and
60 min [36, 42, 43], with 30 min being set in approxi-
mately half of the studies. In addition, the frequency
range was, in descending order of days, five days a week
[43, 43], three days a week [38—41, 44, 45], and two days
a week [41]. Most of the studies were conducted five or
three times a week.

Training protocol and subject group characteristics
All selected studies utilised gait training on a treadmill
and included BWSTT robot-assisted gait training as the
intervention. The characteristics of the training pro-
tocol and comparison groups were as follows: the most
frequent comparisons were robot-assisted gait train-
ing groups vs. therapist-assisted groups [35, 36, 38, 39],
and the second most frequent comparisons were robot-
assisted gait training with combination therapy groups
vs. robot-assisted gait training groups. Combination
therapy was described as transcranial direct current stim-
ulation (tDCS) [40] or functional electrical stimulation
(FES) [41]. Robot-assisted gait training with conventional
therapy was compared with robot-assisted gait training
alone in one study [45], the effects of robot-assisted gait
training were compared between the affected and non-
affected sides in another study [37], and the intervention
was evaluated in BWSTT robot-assisted gait training
groups vs. a robot-free group in two studies [42, 43].
Additional studies compared an exercise loading index,
heart rate reserve, and rating of perceived exertion for
robot-assisted gait training [44] and compared the effects
of different walking speeds between robot-assisted
groups [54].

Outcome measures

Walking outcome measures were used more often to
evaluate the functional aspects of gait than to evaluate
gait independence. Two studies evaluated the Functional
Ambulation Category [37, 40] and Rivermead Visual Gait
Assessment [45] as the measures of gait and mobility
independence. Two studies either measured the walking
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Table 3 Description of devices used in the selected literature

(2022) 19:143

Page 11 0f 18

Studies and exoskeletons Design  Type of actuator

Assist joint Device description

Lokomat [35, 36, 38-41, 44] Bilateral

(Hocoma AG, Switzerland)

Walkbot [37] (P&S Mechanics, Bilateral

South Korea) less motor)

RoboGait [45] (Bama Technology,  Bilateral

Turkey) motor)

GEAR system/Welwalk [42, 43] Unilateral  Electric Actuation [53]

(Toyota Motor Corporation, Japan)

Electric Actuation [50] (DC motor)

Electric Actuation [51] (DC brush-

Electric Actuation [52] (Linear

Hip and knee (ankle passive) System consisting of a robotic
lower-extremity orthosis with:

««A dynamic body weight support
system that supports vertical/lateral
centre-of-gravity movement
«Pelvic position is fixed
--Adjustable level of assist, gait
speed, and guidance force (from
100 to 0%)

-Computer-regulated motors for
individual joints

«:Synchronised treadmill and visual
feedback utilities

System consisting of a robotic
lower-extremity orthosis with:

««+A dynamic body weight sup-
port system that supports vertical
centre-of-gravity movement
«Pelvic position is fixed
«:Synchronisation of the hip, knee,
and ankle to assist patients in learn-
ing correct gait patterns, imped-
ance control: patient’s voluntary
efforts are detected and patients are
allowed to influence gait patterns
during rehabilitation, automatic
adjustment of leg length, motion
analysis: kinetic and kinematic data
reconstructed as a 3D image
«:Synchronised treadmill

Hip, knee, and ankle

Hip and knee System consisting of a robotic
lower-extremity orthosis with:
«+Body weight supported system
and pelvic position is fixed
«Eight force sensors measuring
in pairs in each joint and four force
sensor amplifiers

«:Synchronised treadmill and
biofeedback utilities

Knee System consisting of a robotic
lower-extremity orthosis with:
«+-Body weight supported system
«+Gait phase is calculated using
data from the pressure sensor
««-Adjustable level of assist, gait
speed, and guidance force (from
100 to 0%)

«:Real-time feedback system for
gait characteristics on the monitor
screen

««Recording of quantitative data
during intervention with biofeed-
back system

speed or utilised the 10-m walk test as a quantitative
assessment of gait function [40, 44]. In addition, two
studies [35, 43] assessed gait endurance using the 6-min
walk test, whereas four studies [36, 39, 40, 43] assessed
it using the Timed Up and Go Test. Four studies [36, 40—
42] assessed balance ability using the BBS. Three studies
evaluated spatiotemporal parameters such as stance time

and stride length, floor reaction force data, and kinematic
gait parameters such as angular changes in each joint
were measured using a 3D motion capture system [38,
42, 44].

Except for those mentioned above, with respect to
performance-based outcome measures that are directly
related to gait assessment, the Modified Ashworth Scale
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[45] was investigated as a score of spasticity and a scale of
sensorimotor function in stroke. In another study using
combination therapy, robot-assisted gait training was
undertaken with neurophysiological assessment using an
electroencephalogram (EEG). Furthermore, four of the
11 studies included self-reported assessments for depres-
sion and satisfaction with treatment (Hamilton Rating
Scale for Depression, Center for Epidemiological Studies-
Depression Scale [35, 36], Global Rating of Change [42]).

Types of exoskeletons and their control methods

In all selected studies, exoskeletons utilised a combina-
tion of a treadmill and BWS system. In this review, the
most utilised exoskeleton was Lokomat, which was used
in seven studies [35, 36, 38—41, 44]. The Wellwalk proto-
type was used in two studies. [42, 43]. Other exoskeletons
used were Walkbot [37] and RoboGait [45]. Wellwalk
was the only unilateral type; the other exoskeletons had
a bilateral set-up.

Lower-limb robots utilised the following joint assis-
tance: Walkbot: hip knee and ankle tri-joint control [37];
Lokomat and RoboGait: hip and knee bi-joint control
[35]; and Gait Exercise Assist Robot (GEAR) system/
Wellwalk: knee and ankle joint bi-joint control [42, 43].
These four lower-limb robotic devices have an integrated
BWS system and treadmill. Of these, Lokomat [35, 36,
38-41, 44], Walkbot [37], and RoboGait [45] have a pel-
vic immobilisation device in addition to the assisted joint
to fix the trajectory of the centre-of-gravity movement in
the pelvis. In the GEAR system/Welwalk [42, 43], the pel-
vic movement is not fixed and is relatively free. All the
above-mentioned devices are equipped with visual and
auditory feedback functions and the ability to see the
patient’s gait.

Table 3 provides further details about all four devices,
including their design and type of actuator, and describes
these devices, including control strategies and their
function.

Walking speed and BWS in treadmill gait training

The setting criteria for the treadmill walking speed var-
ied. Some studies did not state a numerical speed but
specified it as the maximum speed that the patients could
achieve [42, 43]. Alternatively, some studies used an indi-
vidual patient’s comfortable speed that decreased to the
appropriate speed [40] or set a constant speed (2.5 km/h
to 3.0 km/h [39], 0.2 km/h to 3.2 km/h [45]). In addition,
some had a fixed starting speed, with gradual increases
in speed in accordance with the patients’ maximal effort
and improvement (starting at 0.8 km/h to 1.5 km/h [36]
or 1.2 km/h [41, 44]). Others had a fixed maximum

(2022) 19:143

Page 12 0of 18

speed, and the speed gradually increased within the
upper limit of its maximum value (up to 2.2 km/h [37]
and up to 3.0 km/h [35, 38]).

The criteria for BWS also varied widely. In some stud-
ies, BWS at the beginning of the protocol was set as the
percentage of each patient’s body weight and was gradu-
ally decreased based on the patient’s ability or improve-
ment [36, 38, 40, 41, 44]. In particular, most studies were
based on a gradual decrease in the upper limit of BWS
from 40% [38, 40, 41, 44] and from 50% [36] at the start
of the protocol. The lower limit was set in the range of
0-20%, depending on the patient’s improvement and
change in ability [36, 40, 41, 44].

Efficacy of BWSTT exoskeleton-assisted gait training

and results of individual studies

In all 11 RCTs, the effects of exoskeletal robot-assisted
training varied due to different intervention protocols,
intervention periods, and lower-limb robotic devices
used (Table 2). The results were classified according to
the characteristics of the subject groups as follows:

Four studies [35, 36, 38, 39] were categorised into
BWSTT-robot assisted gait training (BWSTT-RAGT)
vs BWSTT- therapist assisted gait training (BWSTT-
TAGT) (Table 4, 4.1). In all three studies [35, 36, 39], both
groups showed improvement in gait outcome measures
(Table 4) when comparing within each group. However,
no significant between-group difference was observed
[35, 36, 39]. In one study [35], the BWSTT-RAGT group
had a lower improvement in walking speed (self-selected
velocity and fast velocity) than the BWSTT-TAGT group.
In addition, the results of one study [38] indicated that
robot-assisted gait training groups did not show a signifi-
cant change within and between groups.

In BWSTT-RAGT vs BWSTT-RAGT with combination
therapy (Table 4, 4.2), two studies [40, 41] reported that
robot-assisted BWSTT-RAGT with combination therapy
was significantly more effective in improving gait mainly
in activity level of outcome within and between groups
than BWSTT-RAGT alone. Furthermore, in a study using
tDCS as combination therapy [40], the BWSTT-RAGT
with active tDCS group showed greater improvements in
10 MWT (10 Metre Walk Test), FAC, and SIS-16 (Stroke
Impact Scale-16) measures except for the BBS than the
sham group. In another trial investigating the effects of
an intervention combining robot-assisted gait training
and FES, maximal knee flexion during gait was signifi-
cantly greater than that before training in the BWSTT-
RAGT with FES group [41].
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4.1 BSWTT-RAGT vs BSWTT-TAGT

Author Hornby et al. [35] Belas Dos Santos Lewek et al. [38] Westlake et al. [39]
etal. [36]
Additional treatment provided N/A Conventional PT N/A N/A
Results in BSWTT-RAGT  Body function/struc- SSV+0.07,d=0.29 SARA — 3.5,d=049 No change FMLE +2.6,d=0.56,
groups (pre, post ture level FV40.06,d=0.19 BBS+5.8,d=0.31 BBS+14,d=0.2
change, p<0.05) TUG — 0:19s,d=0.64 SS+0.01 m/s,d=0.29
FV+0.09 m/s,d=0.15
SLR (abs) — 0.16,
d=0.31
Activity level - FIM+4.6,d=034 - -
Results between groups (p < 0.05) BWSTT-TAGT group No significant differ- No significant differ- No significant difference
showed greater ence ence
improvements in
SSV+0.06 m/s,
d=0.65FV+0.07 m/s,
d=0.69, Single

limb stance time
atFV:4+244+37%,
d=091

4.2 BSWTT-RAGT vs BSWTT-RAGT with combination therapy

Author

Danzl et al. [40]

Bae etal.[41]

Additional treatment provided

Results in BSWTT-RAGT groups

(pre, post change, p <0.05)

Results between groups (p < 0.05)

tDCS for experimental group

Body function/structure level  1T0MWT + improved

FAC+improved
SIS-16 +improved

BSWTT-RAGT with active tDCS group
showed greater improvement than the
sham group in T0MWT, FAC, and SIS-

16 measures except BBS

FES for experimental group
Conventional PT

MAS +192,d=0.27

TUG — 5635,d=038

BBS +3.43,d=041

Gait speed + 0.007 m/s,d=047

Step length +0.05,d=043

Stride length +0.33,d=0.33

Maximal Knee flexion+18.747 d=1.07
Maximal Knee flexion 4 6.904 d =0.58

BSWTT-RAGT with FES group showed a
significantly greater in Maximal Knee
flexion+8.97,d=0.56

4.3 BSWTT-RAGT vs BWSTT

Author

Ogino et al. [42]

Ogino et al. [43]

Additional treatment provided
Results in BSWTT-RAGT groups

(pre, post change, p<0.05)

Results between groups (p < 0.05)

N/A

Body function/structure level ~ GRC scale (change of gait)

+improved

No significant difference

N/A

TOMWT +0.09 m/s

BSWTT-RAGT group were significantly improved in
TUG (r=0.57), 6-min walk (r=0.51) and score of
general health in SF-8 (r=0.49)

4.4 Other

Author

Assist unaffected limb vs
affected limb

Seo et al. [37]

HRR vs RPE guided BSWTT-  BSWTT-RAGT vs

RAGT

Bae et al. [44]

Conventional PT

Erbil et al. [45]

Additional treatment provided

N/A

N/A

Conventional PT
BoNT-A
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4.4 Other

Author

Assist unaffected limb vs
affected limb

Seo et al. [37]

HRR vs RPE guided BSWTT-
RAGT

Bae et al. [44]

BSWTT-RAGT vs
Conventional PT

Erbil et al. [45]

Results in BSWTT-RAGT groups
(pre, post change, p<0.05)

Body function/structure level

Activity level

Results between groups (p < 0.05)

Assist US:
FMLE+3.2,d=1.18
MI+11.7,d=232

Step length asymmetry ratio
-0.2,d=20

Hip maximal extension
moment (US) -0.5,d=1.79
Assist AS:
FMLE+2.7,d=1.29

Ankle maximal dorsiflexion
angle (US) -89,d=3.26

Assist US: FAC+0.7,d=2.33

No significant difference

HRR guided:

FMLE +3.67,d=0.23,
TOMWT +0.22 m/s, d=0.80,
WS+0.20m/s,d=1.53

And Improved in Stride
length, Cadence, Single and
Double support rate, Swing
time, Stance time, Step
length, and Symmetrical
index

RPE guided:
FMLE+2.20,d=0.63,
TOMWT+0.13 m/s,d=041,
WS+0.14m/s,d=0.14

And Improved in Stride
length, Cadence, Single sup-
port rate Single and Double
support rate, Swing time,
Stance time, Step length,
Symmetrical index

HRR-guided group showed
significantly improved in com-
pared to RPE-guided group

in FMLE, T0OMWT, WS, Stride
length, Cadence, Single sup-
port rate, Single and Double
support rate, Swing time,
Symmetrical index

MAS — 15,
d=294
Tardieu Scale
(spasticity grade)
—02,d=044
BBS+27,
d=0.29
TUG+57,
d=0.66

RVGA+53,
d=10
BSWTT-RAGT
group is signifi-
cantly higher in
TUG, BBS, and
RVGA

Each study was categorised according to the characteristics of the comparison group under investigation. The results of BWSTT-RAGT intervention groups in pre-post
change (p <0.05) and results compared to the control group are shown. Descriptive values are presented as the mean change and d describes effect size. Results were
categorised as Body function/structure level and Activity level [55, 56]. RAGT Robot-assisted gait training, TAGT Therapist-assisted gait training, BWSTT Body-Weight
Supported Treadmill Training, PT Physiotherapy, AS Affected side, US Unaffected side, BBS Berg balance scale, BWS body weight support, FAC Family Assistance Centre,
FIM Functional Independence Measure, FMLE, Functional Mobilisation Lower Extremities; MMAS Modified Motor Assessment Scale, SARA Scale for Assessment and
Rating of Ataxia, TUG Timed Up and Go, RVGA Rivermead Visual Gait Assessment, WS walking speed, FES functional electrical stimulation, GRC scale Global rating of

change scale

Table 4, 4.3 shows studies comparing BWSTT-RAGT

and BWSTT, two of which were applicable [42, 43]. In
these two studies, effects were found within the BWSTT-
RAGT group for activity level measures, including the
10MWT. There were no significant differences between
the groups regarding kinetics and gait pattern changes
[42]. However, quantitative measures of gait, such as
TUG and 6-min walk, in the BWSTT-RAGT were higher
than in the BWSTT group [43].

In other categories summarised in Table 4, 4.4, one
study [45] which compared with conventional physi-
otherapy showed greater improvement in gait function
between group in BSWTT-RAGT group. One of the
studies compared the effect of robot assistance on the
unaffected limb or affected limb during BWSTT-RAGT

[37], and others compared the method of guiding the tar-
get of BWSTT-RAGT [38]. Both studies [37, 44] showed
significant improvement in outcome measures both in
body function/structure and activity level in both con-
ducted BWSTT-RAGT groups.

Discussion

The purpose of this review was to present and assess the
status of effectiveness of robot-assisted BWSTT. Eleven
studies were included, indicating that only a small num-
ber of RCTs on this topic have been published. As the
date of publishing ranged from 2008 to 2020, it could be
said that this is a relatively new field. Additionally, more
positive improvements in walking in the acute to suba-
cute phase have been reported [26, 31, 57]. There exist
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few reviews about BWSTT robot-assisted gait exercise
that focus on the chronic phase after stroke; hence, its
efficacy remains unclarified.

Effect of robot-assisted gait training in the chronic phase
after stroke

There is an expectation that robotic rehabilitation will
lead to a paradigm shift in work due to the therapeu-
tic effect on the patient and the reduced burden on the
therapist. From this perspective, the results of this review
lead to the conclusion that it is not possible to conclude
that BWSTT-RAGT is significantly more effective.

We have identified from the study protocol that it is
relevant to address papers that present the results of the
target intervention group which investigate the effect of
exoskeleton used RAGT from the perspective of scoping
the current RAGT.

Within the BWSTT-RAGT group, pre- and post-inter-
vention results demonstrated that 10 out of 11 studies
[35-37, 39-45] showed a significant improvement in
some gait function outcome. Furthermore, there was no
significant worsening of gait function in all selected stud-
ies [35—45].

The four of the 11 selected studies compared BWSTT-
RAGT with BWSTT-TAGT, indicated that there was
either no significant difference between the groups [36,
38, 39] or a predominant change in the therapist-assisted
group as compared to that in the group receiving conven-
tional gait exercise and the group receiving robot-assisted
gait exercise [35]. Therefore, we did not reach the conclu-
sion that the robot was more effective than the therapist
for chronic stroke patients.

On other hand, those comparing the BWSTT-RAGT
only group to the BWSTT-RAGT with combination ther-
apy group (tDCS [40], FES [41]) have reported significant
effects on improving gait outcome measures in between
groups. Further research is encouraged, as BWSTT-
RAGT with combination therapy may further enhance
the efficacy of BWSTT-RAGT. Furthermore, there are
studies excluded from the conditions for acceptance,
although the following studies have been reported. In
studies reporting on improvements in brain function
levels that may be involved in the improvement of gait
function and an RCT focusing on robot assisted gait
training with combination therapy using visual stimula-
tion with VR had shown and identified three main areas
of brain activity, as measured by electroencephalography
that were significantly evident in the robot assist with
VR group [58]. Another RCT [59] of BSWTT-RAGT
reported improvements in cognitive flexibility and shift-
ing skills, selective attention/visual research, and quality
of life.
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The results of two out of 11 references [42, 43], which
were from the same research group, and BWSTT-RAGT
was effective between the groups, depending on the out-
come. These indicate that BWSTT-RAGT in addition to
BWSTT alone may be more effective than BWSTT alone
in improving dynamic balance, speed and endurance
during gait [43], but the actual changes in gait pattern in
kinetics are not yet cleared [44]. Additionally, in a com-
parison of BSWTT-RAGT and Conventional Physiother-
apy [45], the BSWTT-RAGT group showed a significant
improvement between groups.

To summarise these results, some showed that
BWSTT-RAGT was more effective than the target group,
while others showed no significance. These results indi-
cate that BWSTT-RAGT seems to be more effective
than gait training with BWSTT alone, whether the robot
or the therapist provides the assistance. Regarding gait
assistance, it is unclear whether it is worthwhile to use
the current exoskeletal robot. Nevertheless, from the
viewpoint of dependency of neural plasticity and train-
ing dose, it is impractical for therapists to provide long-
term assistance in gait rehabilitation, therefore the use of
robots should be advantageous from a clinical point of
view. In addition, the significance of combination therapy
together with BWSTT-RAGT has been demonstrated to
be more effective than conventional physiotherapy, indi-
cating that exoskeleton robot-assisted training has poten-
tial, with further research expected in the future.

Types of exoskeleton design

Amongst the selected studies, there were four
BWSTT-type exoskeletal robots: Lokomat, Walkbot,
RoboGait, and GEAR system. The GEAR system is a
prototype of the Welwalk and is already in clinical use
as of 2021. The features of the devices and the details
of assistance methods and intervention protocols vary.
The differences in gait exercise effects between them
are also not yet clear [60].

Lokomat and Walkbot are characterised by restricted
motion of the pelvic girdle in the sagittal plane. The
pelvic girdle’s semi-fixation in a certain position may
reduce the abnormal gait pattern of the lower-limb
joints [61]. With Lokomat, the timing of each mus-
cle’s activation during gait is changed by adjusting
the speed and guidance force [61]. On the other hand,
with Welwalk, the pelvis is not fixed by the device, and
there is more freedom in the direction of movement as
compared to that with Lokomat and Walkbot. Other
than the feature of BWS on the treadmill, the Welwalk
can be used in situations closer to overground walking.

Regarding the protocol for adjusting the assist,
there are a wide variety of possible assist trajectories,
assist volumes, torque values at the joint, and control
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strategies. All included studies employed assist-as-
needed approaches tailored to the gait of individual
patients [35—45]. In all studies reviewed, these settings
were applied and adapted to the subjects’ gait using an
exploratory and experimental approach. For compari-
sons of effectiveness, the details of the settings of these
elements need to be considered.

Summary of future research questions

Based on the results of this review, future research
questions and directions are discussed. Firstly, are
there purpose-specific combinations of exoskeleton-
assisted BWSTT and effective combination therapies
for use in patients with chronic hemiplegia? If there
are, what are these purpose-specific combinations?
Secondly, do the effects of various robotic devices
on gait training differ among patients with chronic
hemiplegia?

Currently, the clinical use of exoskeleton-assisted
BWSTT in patients with chronic stroke remains
unclear due to a lack of evidence. Large RCTs in which
patient recruitment, numerical assisted adjustments,
treadmill speed, and details of intervention protocols
that are compared with a control group will be needed
in the future. This may aid in determining the appro-
priate applications of exoskeleton-assisted BWSTT.

Limitations

The quality of evidence has not been assessed in the
literature. A greater range of intervention methodolo-
gies and non-specific selection of case types need to be
included. The type and severity of subjects’ disability, as
well as intervention methodologies and protocols, are
not considered and included. To address these limita-
tions in the future, a high-quality systematic review
with an expanded scope is necessary to be conducted.

Conclusions
This review suggests that exoskeletal robot-assisted
BWSTT for patients with chronic stroke may be effec-
tive in improving walking function as 10 out of 11
studies showed the effectiveness of exoskeleton robot-
assisted BWSTT in terms of outcomes contributing to
improved gait function. However, the potential may be
“to assist” and not because of using the robot. In other
words, the effect could be attributed to assisting, irre-
spective of whether it is due to a robot or therapist.
Further studies are required to verify the effectiveness
of BWSTT exoskeletal robotic training in patients with
chronic stroke, strengthen the evidence on intervention
protocols, and provide detailed information regarding
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the application of different robot types to enable best
practise for the benefit of patients.
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